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ABSTRACT

The characteristics of the two-level quasi-geostrophic mode] are evaluated for a wide range of parameter
values in the Jovian domain. The results support the hypothesis- that baroclinic instability energizes the
circulation of Jupiter and Saturn and that the blocking effect of planetary wave propagation on quasi-
geostrophic turbulent cascades determines the width and zonality of the bands—the degree of zonality
being higher in the absence of surface drag.

The model circulations consist of multiple westerly jets, separated by strong easterly flows—the result
of momentum partitioning by the Kuo vortex separation process. There are no large-scale vertical motions.
A cyclic variation occurs (with a time scale of several years) during which phases with intense, large-scale
baroclinic activity alternate with longer, more quiescent phases involving weak, small-scale baroclinic
instability and neutral baroclinic waves. These neutral waves, generated by quasi-two-dimensional cascades
and propagating at speeds of O(1 m s™), provide the major mode of adjustment in the quasi-steady phase
and form the gyres endemic to multiple jet circulations.

Similar large-scale motions occur for all the parameter values considered: for weak and strong static-
stabilities, for eddy sizes ranging from 2000-9500 km and for pole-to-equator temperature differences varying
from 5-90 K. The weak thermal gradients maintain strong dynamical activity by their association, in geo-
strophic motion, with the large value of the specific-heat constant for hydrogen.

For Jupiter, a correspondence between the theoretical perturbation pressure and the observed planetary-
scale features suggests that condensation processes related to the geostrophically balanced pressure varia-
tions produce the main cloud bands and Great Red Spot, while local temperature changes due to baroclinic
instability and frontogenesis create the eddy cloud systems embedded within the main bands. An analogy
between the Great Red Spot and the warm high-pressure region of a neutral baroclinic wave leads us to
suggest that the scale selectivity and energy source of ultralong, baroclinically unstable waves could explain
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the size and persistence of the Jovian feature.

1. Introduction

To help isolate the formative processes of the plane-
tary circulations of Jupiter and Saturn, we continue
our evaluation of the behavior, under Jovian conditions,
of mechanisms known to be important in the Earth’s
atmosphere. The solutions in Part 1 (Williams, 1978)
showed that zonally banded forms of circulation, com-
posed of multiple easterly and westerly jets, arise in a
quasi-barotropic model of a rapidly rotating atmo-
sphere when two-dimensional turbulent cascades,
driven by pseudo-baroclinic eddies, interact.- with
Rossby-wave propagation. The flows resemble that on
Jupiter most closely when the scale of the eddies is
comparable to that of the jets—such eddies could be
produced by baroclinic instability. To determine
whether multi-jet circulations can occur under realistic
planetary conditions requires that we now examine
their generation in a deferministic model -with self-
regulating energy sources.

The two-level quasi-geostrophic approximation
(Phillips, 1956) provides the simplest circulation model

appropriate to this task. With it, the characteristics
of quasi-geostrophic turbulence—particularly the de-
pendence of multiple-jet formation and equilibration
on the temporal and spatial scales of energy conver-
sion—can be evaluated in the Jovian parameter range
and possible analogies with the planetary circulation
examined.! The unwarranted belief that the circulations
of Jupiter and Earth differ fundamentally in their dy-
namics (because of the pseudo-axisymmetry of the
former)—a difference that would invalidate the rele-
vance of the quasi-geostrophic approximation to
Jupiter—is due to a parameterically limited under-
standing of the nonlinear responses of this model.

The characteristic responses of the two-level model,
as revealed by linear analysis, assist in designing and
in interpreting the calculations. In particular, normal-
mode studies (Phillips, 1954; Stone, 1969; Simmons,
1974) indicate that in quasi-geostrophic circulations, the

! To distinguish between planet and model, the term “Jovian
regime”” will be used when referring to the latter.
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baroclinic eddies should be equal in size to the Rossby
radius of deformation Z, in the longitudinal direction
and to the geometric mean of L, and Lz (a scale in-
herent in the curvature of the mean zonal flow) in the
latitudinal direction. This result applies to the eddy-
free phases of the flow, but not to the turbulent phases
where the scale Ly is determined &y the eddy charac-
teristics, rather than vice versa.?

Theory, however, does not place any binding con-
straints on the value of the unknown parameters, such
as the static stability. Global integration of the two-
level model, using parameterizations of eddy heat flux
based on instability theory, gives an estimate of the
contribution of baroclinic eddies to the mean static
stability: 10 K km™ for Jupiter (Stone, 1972). Un-
fortunately, such estimates do not provide any real
measure of the planetary lapse rate because cloud and
convection effects also play a major role in determining
the atmospheric parameter, both on Earth (e.g.,
Schneider and Dickinson, 1974) and Jupiter. Further-
more, the theoretical assumptions fail in the Jovian
regime, where—because the barotropic component so
greatly exceeds the baroclinic—the nonlinear exchanges
differ from their terrestrial forms.

The relevance of the two-level model to a deep atmo-
sphere depends mainly on the vertical variation of the
static stability. If the vertical structure of Jupiter’s
circulation resembles that of the ocean where activity
decays exponentially with depth, only a minor modifi-
cation of the baroclinic characteristics, as represented
by the two-level model, occurs (Gill et al., 1974;
Williams, 1974). If a baroclinic layer behaves in the
same way as MclIntyre’s (1972) stratospheric model,
significant energy could be lost to lower layers (Stone,
1976) ; but, for this to occur requires that the fluid have
a singular vertical structure, not typical of the ocean or
a deep atmosphere [see Philander (1978), Eq. (20)].

Observations of Jupiter relate mainly to the quasi-
barotropic features of the circulation. Nothing definitive
is known about the baroclinic or vertical aspect of the
atmosphere. Experimental and theoretical uncertainties
in interpreting spacecraft measurements undermine all
attempts to estimate the planet’s thermal structure.
Any inferences made about the meridional temperature
variation—such as the view that Jupiter has no baro-
clinicity—are quite arbitrary. Thus, there is no conflict
with the theory to be presented.

2. The quasi-geostrophic model

The two-level quasi-geostrophic §-plane model de-
scribes the approximate behavior of the largest scales
of motion in a rotating planetary atmosphere. The
governing equations, derived by Phillips (1956, 1963)

2 Li equals Lg[Ew(ZU/B)*], where U is the rms velocity
and B the northward gradient of the Coriolis force. (See the
discussion of the Rhines effect in Part 1.)
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and Pedlosky (1964), are reviewed in this section; a
reformulation of the numerical scheme, boundary con-
ditions and diagnostic equations is given in Appendix A.

LisT OoF SYMBOLS

We adopt the following standard notation for 8-plane
flow:

x prograde distance coordinate (toward east)

¥ northward distance coordinate

? pressure (the vertical coordinate)

! time

u, v, w time rate of change of x, y, p following the
motion

\' horizontal velocity vector

U rms velocity scale

] latitude

C] potential temperature

® geopotential [ =gz where z is height ]

f Coriolis term [ =29 sing]

fo Coriolis term at mean latitude 8o [ =2 sinf]

8 Rossby parameter [ =22 cosfy/a]

a planetary radius

Q planetary rotation rate

g acceleration of gravity

R specific gas constant

Cp specific heat at constant pressure

T temperature

AT temperature difference between pole and
equator on p, isobar

v horizontal small-scale diffusion coefficient

Q non-adiabatic heating rate per unit mass.

H non-adiabatic heating rate function [ =RQ/c,]

)2 scale height [ =RT/g]

j23 pressure at mass center of dynamic layer
b pressure at bottom of active layer
Ap pressure grid interval [ =ps—p,]
¥ inverse static stability parameter {=0,[(®,

—&3)(0;—03) ], assumed constant}
A2 Froude parameter [ = fi*y?, where \™' is the .. .

Rossby radius of deformation]
7D time scale of surface (Ekman layer) drag
77 time scale of interface drag
q potential vorticity
¢ vorticity [ =Va/]
¥ geostrophic streamfunction [u= —y,, v=y.]
v horizontal gradient operator on an isobaric

surface
w vertical velocity [assumed = —hw/ps ]
7% ¥  x, y components of vertical stress

X
) zonal mean I:=X—1 / ( )dx:I
0
Y
(( )Y domain mean |:= Yy / (")dy:l
0
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@) baroclinic component [ =( );—( )3, difference
between values at p1, ps levels]
) barotropic component [ =( )1+ ( )s, sum of
values at p;, p3 levels]
8.4 differencing operator { =[ A4 (x+Ax/2)
— A (x—Ax/2)]/Ax}

4) averaging operator { =[4 (x4 Ax/2)
+A4(x—Ax/2)]/2}

At time step

n number of time steps.

a. The basic equations

In the quasi-static, quasi-geostrophic approximation,
the equations of motion, thermodynamic energy and
mass conservation are

V- Vu—(fo)* = —&;+»VPud-grs, (1

14V Vot (fu)* = — &, 4+ vViut-grY, (2)

(1n©),+V-¥(In0)+w(n®),=0/c,T,  (3)
V- Vi, =0, 4)

where the asterisk denotes quantities accurate to first
order in Rossby number, the other quantities being
zero-order (quasi-geostrophic) terms.

The continuously varying atmosphere is replaced by
one consisting of two layers in which the horizontal
velocities and pressure forces are independent of height.
Quantities are defined at pressure levels denoted by
pr (=0, 4), where the subscript indicates the level in
increments of Ap/2 from the upper surface (when the
two layers are of equal mass). Velocities at the py, ps
levels represent flow in the upper and.lower layers,
respectively. Evaluation of the thermodynamic equa-
tion at the p; level excludes prediction of static stability
changes and implies that the heating be regarded as a
vertically averaged quantity.

The B-plane approximation f*=fo+8(y—Y/2) is

made for fluid occupying a rectangular region 0<2< X,
_ . —~—0£y£Y, centered on midlatitudes, with periodicity in

x and impermeability on latitudinal vertical walls whose
distance apart equals the planetary pole-to-equator
span. Then, assuming a vertical boundary condition
w=0 on po and p4, a constant static-stability factor
v2>0, the validity of the quasi-geostrophic approxi-
mation &= fq, and linear stress forms with time scales
7p and 7y, it follows that the primitive equations can be
written in the following vorticity form (on taking the
curl) and the thermodynamic energy equation in quasi-
static form:

St Vo ) e, )

23

i .
$at Vs V(f*+§'3)+?—0w2=VV2§'3+§'/TI"‘§'4/TD, (6)
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V:y= —V;,,= _(:)Q/P-z. (8)

By eliminating w,, the equations can be reduced to
the concise potential vorticity forms

qut Ve V(f*4+q) =V~ foy?H—{ /74, )
@set Vs V(f*+¢5) =Vt foy*H+{ /11— /7p,  (10)
q1="V1— N, (11)
gs= Vs, (12)

The velocity V and vorticity { terms in (5), (6), (7),
(9) and (10) are evaluated from the geostrophic stream-
function. Eq. (8) then gives a higher order (in Rossby
number) mean meridional circulation. The quantity ¢
(evaluated at the p, level) provides a measure of
hydrostatic temperature change through the relation
T,=fw/R" given by the hydrostatic equation
&,=—RT/p.

b. Physical assumptions

The heating function H represents the imbalance of
the radiative, convective and interior heating sources
and specifies the heat that the large-scale motions must
redistribute. We regard the static stability as being
controlled primarily by the convective and radiative
heat transfers, with the baroclinic eddies making only a
secondary contribution. _

The interaction with the lower regions is represented
by a simple drag or Ekman formulation. We use two
definitions for the surface vorticity ¢,:

£h=—31Hi8s, (13)
f=%§'3; (14)

where the first is an extrapolation form (Phillips, 1956)
and the second, a layer-localized form (Charney, 1959).
The drag time scale is relatively short for Earth
(rp=2.5X10% s) but apparently lengthy for Jupiter.
The term §/7; describes the vertical diffusion of mo-
mentum across the p, interface by small-scale (cumulus)
convection. This term appears to have little effect on
flow character and is omitted from most calculations.
The lateral diffusion terms are primarily a numerical
device to represent subgrid-scale motion and produce
meaningful spectra. To reduce the effects of this term
on the largest scales and make it more scale selective,
we occasionally replace the simple diffusion expression
by the form
Htr' VY (15)

where the coefficient for the zonal mean # is sub-
stantially less than that for the eddies »". This modifi-
cation has no fundamental consequences and proves
useful in computationally difficult, weakly energized
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flows. For convenience, we write all equations with the
standard diffusion formulation. ,

The selection of the lateral boundary conditions is
constrained by, and inseparable from, the use of a
finite-difference formulation. Boundary conditions that
vield a state of wall-neutrality, and conserve vorticity,
momentum, mass and heat are imposed. Appendix A
describes the reasons for this choice and the method of
solving the prediction and diagnostic equations.

3. Design of experiments

The quasi-geostrophic equations describe time-de-
pendent three-dimensional flow in the multi-parameter
space defined by X, Y, fo, 8, v% H, 7p, 71 and ». To
evaluate the equations in the planetary context, we
must choose values for these parameters appropriate
to Jupiter. Few are known, so a ‘ Jovian regime” is
defined, in which ¥V, fo, 8 are set at Jupiter’s values,
while allowing the other parameters to vary arbitrarily.

The values of y%, H, 7p constitute the major unknown
items of dynamical significance in the Jovian regime
and in the following sections we attempt to place
bounds on their magnitudes.

a. Static stabilily

Given the lack of observational estimates, the static-
stability factor v* was chosen empirically to have values
lying between 10 and 250 s®* km~2 These correspond,
via the relation

(0.)=0,/gy2,

to strong and weak lapse rates of 1 and 102 K km™,
respectively (£ is the distance between the p; and p;
levels).

Corresponding to this y? range, the. critical baro-
clinicity needed to activate the baroclinic instability
mechanism varies from 40-2 K for the strongly and
weakly stable atmospheres, respectively (see Table 1
and Fig. 1). This is according to an analysis (Phillips,
1954) which gives the minimum shear and baroclinicity
and the preferred longitudinal length scale for eddy
development as

726 = ﬁ/‘Yzfoz,

(16)

AT =BY/Rfey’, Le=2x2i/yvf,. (17)

TasLE 1. Minimum values of critical length scale, shear and
temperature differential as function of 2 (after Phillips, 1954),
using Jovian values of fo, 8, R (see Table 2) so that L,=3X10%/y
[km3, #,=60/2 [m s71], AT .=400/+2 [K].

¥? L, e AT,
(s? km™2) (km) (m s™) (K)
10 9500 6 40

25 6000 2 16

50 4200 1 8
100 3000 0.6 4
250 2000 0.2 2
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Fi6. 1. Instability curves for the two-level model showing time
in days for an unstable wave to double its amplitude, as a function
of the nondimensional vertical wind shear %A%/ versus a nondi-
mensional wavenumber k2/2)\2, Evaluation is for values of fo=2.5
X104 57, 3=0.36 X108 s~ km™! and extremes of static stability
(a) v*=25 s km™2, (b) v2=250 s2km2, J1 and G denote approxi-
mate locations of main instabilities and gyres, respectively.

Jupiter’s baroclinicity can be estimated from the
global heat flux measurements, if we assume that the
polar region is heated only by the interior source and
the equatorial by both interior and solar sources. The
corresponding effective temperatures, 100 and 135 K,
give a AT of 35 K. This further suggests that, if the
criteria of linear theory are relevant, the preferred
value of 4? is 25 s km™2 Saturn, with its weaker
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YI
F16. 2. Form of the heating distribution Hr(y) from equatorial
to polar boundaries. Solid curve is standard linear variation,

dotted is based on weak exponential function ¢’ and dashed on
the strong exponential function ¢ [see Eq. (18)].

interior source, could have AT=70 K and *=10 s?
km™2.

The upper bound on the static stability factor
(y2=250 s? km2) arises because of the computational
difficulty in resolving eddies much smaller than the
2000 km scale. The corresponding solution, with a
AT.~2 K, indicates that, in a weakly dissipative atmo-
sphere, circulations can occur at very small baro-
clinicity levels (of the order of errors in the Pioneer 11
effective temperature measurements).

b. Heating distribution

The heat balance of Jupiter’s atmosphere cannot
be estimated directly because of the unknown distribu-
tion of the interior supply. Three important factors
disturb any thermodynamic analogy with Earth: the
high opacity and long radiative time scale of the hydro-
aerosols (Rossow, 1978) and the unknown relaxation
time of small-scale convection.

For the model, we examine the response to simple
empirical heating functions which are written in the
form H=H,-Hp(y), where H, is the amplitude and
Hr(y) the normalized latitudinal distribution. For the
majority of the calculations, the function has the simple
linear form Hr(y)=1-2y, y'=y/¥ =0, 1, correspond-
ing to uniform baroclinicity. However, because circu-
lations are sensitive to the heating distribution, the
effects of variable baroclinicity are examined via the

simple exponential form
Hr(y)=c1tc. exp(—dy’), (18)

with d=1 and 3 for moderate and strong changes. The
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constants ¢; and ¢, satisfy the integral constraints

v v
/ H rdy=0, / | Hr|dy=0.5
0 0

for consistency with the linear form (Fig. 2). All func-
tions describe an excess heating in low latitudes and a
deficiency in high latitudes.

¢. Heating amplitude

Imposing a heating rate on the model is analogous
to fixing the static stability and can be misleading if
physical constraints are violated. The eddies in the
Jovian regime can only transfer a certain amount of
heat poleward and cannot cope with excessive heating
rates—under which a continual rise in AT occurs. Al-
though theoretical estimates of the eddy heat transfer
rates can be made, they are not sufficiently accurate;
numerical experimentation is preferable.
~ Estimates of the value of H, appropriate to Earth
give values between 1 and 2 units (a unit being 10—*
km? s7%); Phillips used H,=1.2 units. In the absence
of motion, H,=1 unit produces an equatorial tempera-
ture rise of 0.25 K per day in the terrestrial regime and
0.25 K per month in the Jovian regime. Jupiter’s
atmosphere receives about 1/25 as much solar heat as
Earth, together with a comparable amount from the
planet’s interior, so that a heating rate of 0.1-0.2 units
seems appropriate for the model. For computational
efficiency and accuracy,? a value of H,=0.4 units was
used for the initial calculations but solutions indicate
that H,=0.2 units is the preferred value for flow
equilibration.

The main significance of the heating rate lies in its
control of the time scale of events, through its rate of
buildup of the critical temperature gradients for in-
stability. Short-term calculations, involving only the
instability of the axisymmetric state and the inertial
aftermath, do not depend crucially on the value of H,.

d. Dissipation

The time scale 7p must exceed the doubling times in
Fig. 1 if the drag is not to inhibit baroclinic instability.
Experimentation indicates that when 7p=~100 days,*
the drag makes a primary contribution to the charac-
teristics of the circulation by modifying the zonality
of the jets. When 7p =500 days (the inertial time scale),
the drag effect is secondary but sufficient for momentum
equilibration. Dissipative time scales are longer for
lighter gases: 7p varies as R (Phillips, 1956). For short-
term calculations, the vertical stresses are omitted.

3Too small a value of H, produces small tendencies in the
prediction equations. (See Part 1, Appendix Section 8).
¢ In this paper, 1 day equals 86 400 s.
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TABLE 2. Jupiter regime cases. Constant parameter values (comparative terrestrial values in parenthesis): a=0.7X10° (0.6XX10%)
km, 2=0.176X 1073 (0.73X 107%) 571, R=0.42X1072 (0.29X1073) km?s~2 K™, f,=0.25X 1072 (1.0X 107 s, 3=0.36X 1078 (0.16X1077)

sl km™, £=20(8) km. L denotes linear distribution. {§ stress term used throughout.

H, ¢—————Axisymmetric stagg—————>
2 (10— X Y v Total
(s? km? D Tr (18 (e Resolution (km? Al time AT U, Himax
Case km?) s Hp (105s) (105s) km) km) X/Ax Y/Ay s (108s1) (days) (K) (ms™) (ms™)
n 25 0.4 L ) © 35 110 128 256 0.02 80 1840 29.4 2.3 4.5
J2 10 1.0 'L % ] 60 110 128 128 0.20 170 1564 57.0 4.9 9.8
J3 50 0.4 L 0 © 32 110 128 256 0.02 90 1035  16.7 1.3 2.6
J4 100 0.4 L © © 22 110 128 512 0.01 80 644 10.5 0.8 1.6
J5 250 0.4 L oo ) 15 110 128 512 0.01 80 322 5.2 0.4 0.8
Jot 50 04 v © © 35 110 128 256 0.02 90 1035 16.9 1.3 3.8
n 50 04 % o © 35 110 128 256 0.02 90 1035 18.4 1.8 8.1
J8 25 0.4 L 500 1000 35 110 128 256 0.05 80 1840  29.0 29 4.6
J9 25 0.4 L 100 ® 35 110 128 256 0.10 80 1840 28.6 39 4.6
B1 25 0.22 L o ) 15 50 64 64 0.10 80 1840 14.8 2.5 5.0
B2 25 022 L 500 2000 15 50 64 64 0.03 80 1840 14.0 3.2 5.0
B3 25 0.1 L 500 2000 15 50 64 64 0.03 160 3681 13.6 3.5 5.0
Dt 25 022 L 0 © 15 50 64 64 0.03 160 3681  13.7 3.9 5.1
TaBLE 2—Continued
min, max min, max min, max Total Time Final Final
v v At time steps AT U,
Case (km? s™1) (km? s—1) (108 s) (days) (10%) (K) (m s™) (ms™)

1 0.10, 0.30 0.01, 0.12 . 1.2,5 2355 100 55.4 60.0 6.0

J2 0.05, 0.30-  0.05,0.3 1.5, 4 1480 64 91.3 104.0 14.0

J3 0.01, 0.06 0.01, 0.06 25,4 873 28 219 29.8 3.3

J4 0.01, 0.04 0.01, 0.04 2,4 402 14 15.7 27.6 3.0

J5 0.01, 0.03 0.01, 0.03 1,4 353 16 10.0 38.7 3.4

Jor 0.04, 0.08 0.04, 0.08 2.5, 3 597 20 24.0 26.6 4.7

n 0.03, 0.15 0.03, 0.15 14,3 318 20 18.4 36.1 4.5

J8 0.03, 0.15 0.03, 0.15 1.2, 4 1410 58 41.5 61.1 144

J9 0.10 0.10 1.7, 4 1527 60 42.9 37.2 12.2

B1 0.10, 0.15 0.01, 0.05 22,5 3757 129 18.5 50.3 9.9

B2 0.10, 0.03 22,3 4288 156 154 40.9 12,0

B3 0.10, 0.03 3 7306 220 13.2 28.2 7.5

D1 0.03 0.03 1.7, 3 1427 54 14.2 52.3 16.0

! Integration over active and nonactive regions.
2 Equivalent to twice this value over full ¥.
3 Value at p; level, y2=62, vs2=16 [s® km™2].

The computational diffusion coefficient » depends on
resolution and is chosen empirically from test calcu-
lations—by examining spectral convergence and by
keeping the turbulent Reynolds number Rr (see Part 1)
near 2000.

e. Resolution

Four factors influence the choice of resolution and
longitudinal sector size: an economic limit to 256128

grid points, the need to have at least 16 grid points
over the eddy scale L,, the constraint that X 24L, for
full nonlinearity (see Part 3), and the possibility of
producing gyres of the size of the Great Red Spot. For
the basic case J1 (Table 2) these conditions suggest a
maximum sector size of 35000 km, allowing an ample
seven wavelengths across the domain. In cases where
L, is much smaller, the latitudinal resolution is in-
creased to 512 grid points, while X is decreased to
retain just seven wavelengths.
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TasLe 3. Case J1: Instantaneous global means of energy and energy conversion. Units are 1075 km? s™2 for K, K, P10 km?s?
for P; 1072 km? s™3 for conversion terms; km? s for diffusion coefficients; m s71 for the rms velocity scale and K for AT. Time is

measured from end of ax1symmetr1c spinup.

Days AT U. K' K P P (QP)y (PP} {(PK') {(K'Ky (PR} (RFy (K'F} {(PF) {(PF}) %
0 294 23 0 5 0 168 211 0 0 0 0 0 0 0 0 001 0.10
43 302 3.3 3 5 2 176 216 13 8 0 o 0 1 0 1 001 0.10
58 304 81 36 10 18 178 218 99 78 16 3 0 13 0 5 001 0.10
104 30.1 17.6 176 61 59 182 221 101 75 12 3 0 31 0 9 001 0.10
178 30.6 22.7 201 241 45 192 226 49 54 80 5 1 23 0 6 001 0.10
247 313 251 140 425 36 203 232 36 36 23 7 3 16 1 5 003 0.10
316 323 251 94 488 12 216 240 -1 5 43 7 4 4 2 1 005 0.10
385 333 243 39 512 5 229 247 1 1 13 7 4 2 2 0 005 0.15
454 342 23.7 56 467 6 244 255 0 1 —4 7 3 2 2 0 0.05 0.15
522 353 231 34 465 5 258 262 1 1 3 8 3 1 3 0 005 0.15
591 363 226 40 438 S5 274 270 1 1 -1 8 3 1 3 0 0.05 015
660 37.3 221 25 433 4 289 277 1 1 5 9 3 1 3 0 005 0.15
729 384 216 28 411 4 305 285 0 1 -1 9 3 1 3 0 005 0.15
798 39.4 212 24 398 4 322 293 2 1 3 9 3 1 3 0 005 0.15
867 40.4 208 18 38 3 339 300 2 1 —8 9 3 1 3 0 005 015

1004 42.5 201 20 35 5 374 315 4 1 -8 9 2 1 4 0 0.05 0.15

1142 445 19.6 17 342 5 410 330 5 2 3 10 2 1 4 0 005 0.15
1211 455 198 25 340 11 429 338 18 14 3 10 2 6 4 2 005 0.5

1279 459 254 13 453 52 444 34 193 139 -5 11 4 38 5 14 0.05 0.15

1306 45.5 29.4 258 510 81 448 345 234 142 —40 14 4 48 5 15 0.05 0.15

1392 452 49.6 888 1315 299 447 344 1247 885 1012 16 10 210 6 64 005 0.5

1443 449 67.9 1150 3100 242 428 337 1342 528 1498 22 22 179 6 41 0.08 0.20

1471 43.6 737 948 4087 228 420 334 763 592 —10 3 44 188 10 55 0.8 0.20

1554 44.0 77.1 525 5135 115 422 334 218 187 408 17 65 85 11 - 24 010 025

1609 44.7 763 487 5077 105 429 337 216 111 —578 26 62 60 11 17 010 025

1671 455 74.4 269 5044 74 441 342 191 79 —395 2 74 42 13 14 012 030

17390 46.3 719 195 4782 54 457 348 30 20 —~580 0 67 17 14 6 012 030

1773 46.8 70.6 187 4609 52 467 352 21 22 —112 4 62 16 14 6 012 0.30

1876 48.3 68.0 138 4352 44 491 361 25 24 593 5 56 18 14 6 012 030

1944 49.3 66.3 229 4028 55 510 368 28 63 —163 6 47 36 16 10 0.12 0.30

2013 50.3 652 83 4150 29 525 373  —65 16 48 8 26 17 15 8 0.12 0.30

2081 51.3 642 62 4042 22 546 380 39 8 —15 9 25 5 15 3 012 0.30

2150 52.3 63.2 64 3004 20 568 388 11 2 —15 1 23 3 16 1 012 030

2184 52.8 62.6 62 3837 22 579 392 4 2 -1 6 22 2 16 1 012 0.30

2355 554 60.0 45 3542 16 635 411 ~1 2 5 5 20 2 17 1 012 0.30

f. Classes of solution

The solutions to be presented fall into five categories
(Table 2). The main series (J1-]5) details the basic
characteristics of quasi-geostrophic circulations and
their dependence on the static stability. The second
group (J6 and J7) examines the sensitivity of the circu-
lations to the heating distribution H ¢(y). The effect of
weak and strong surface drag on flow character is esti-
mated for two cases (J8 and J9).

A trio of calculations (B1-B3) examines long-term
flow equilibration with and without drag. To increase
the efficiency of these lengthy calculations, the resolu-
tion and size of the 8 plane are reduced. The flow
regime, however, remains comparable to that of the
J cases. Another calculation with the smaller plane
(D1) takes a preliminary look at the effects produced
by a static stability that varies with height.

The calculations to be described are difficult to make,
requiring high resolution and minimal dissipation, and
the results depend partly on the computational factors.
To proceed from such solutions to planetary application
may require some extrapolation in parameter space.

4. The basic case: J1

The solution J1 exemplifies quasi-geostrophic circu-
lations in the Jovian regime and is also optimal in
computational accuracy and physical relevance.

The lengthy spinup of the J1 circulation begins with
the baroclinic instability of the axisymmetric state and
the generation of a multi-jet circulation. After a long
quasi-steady phase, the multiple jets become baro-
clinically unstable, resulting in a flow with fewer but
stronger jets. In the subsequent quasi-steady phase,
the circulation takes on its equilibrated form. Contours
of the most informative fields and integrals of the
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energy conversion rates display the distinctive phases
of this development (Figs. 4-15 and Table 3).5:

a. First unstable phase: 0~-316 days

The unstable axisymmetric state consists of a linearly
varying temperature field with AT=29.4 K, together
with a uniform zonal flow of £2.3 m s~* in the upper
and lower layers and a barely discernible Hadley cell
(its maximum vertical velocity, 3X10~® km s, is
close to the numerical round-off limit). Remnants of
this state can be seen in the weakly perturbed fields
of Fig. 4.

Although the waves form irregularly, the initial flow-
development agrees with the predictions of linear theory
in the scale selection (Fig. 3) and the correlation be-
tween variables (Fig. 4). The longitudinal wave scale
corresponds to the radius of deformation (k.=7 in Fig.
3a) and the latitudinal scale to the length (L,Lgz)*
(ky=41in Fig. 3b), if Lz=Y. As the instability amplifies,
development becomes latitudinally localized and the
scale Ly irrelevant (Fig. 5).

The axisymmetric flow form rapidly disappears as
the nonlinear cascades create new distributions of zonal
momentum. In areas where momentum formation is
strong (e.g., the region marked A in Fig. 5a), the { and
¢’ fields indicate the action of the 8 vortex-separation
process, as described by Kuo (1951) and the solutions
of Part 1. Eddies transfer westerly momentum and heat
from the easterly to the westerly flows, so that the
easterlies become more barotropic (Table 4). This
separation of vorticity and baroclinicity suggests the
existence of a partitioning process involving potential
vorticity.

In keeping with the ideas of two-dimensional turbu-
lence, the streamfunction eddies become larger in scale,
and the potential vorticity and vorticity are more finely
scaled into shear layers as the nonlinear cascades
continue (Figs. 6a, 6b and 6f). Although a mean zonal
flow exists, large gyres predominate—gyres whose con-
vergence areas produce the quasi-geostrophic fronto-
genesis (Williams and Plotkin, 1968) apparent in
Fig. Ge.

The generation of eddy kinetic energy (from po-
tential) and the nonlinear cascading decline as wave
propagation takes over in transferring the eddy kinetic
energy into the mean zonal flow (Table 3). This transfer
peaks at 178 days, by which time a proper jet-like
circulation has begun to emerge (Fig. 7). Potential
vorticity loses its fine layers and vertical motion be-
comes confined to the maximum baroclinicity areas of
the westerly jets.

8 Only instantaneous solutions are presented because the un-
predictability of meaningful periods made time-averaging im-
practical. In some phases, energy conversions vary rapidly in
sign, so the instantaneous values in Tables 3-5 reflect only the
magnitudes of the terms and not overall tendencies.

¢ Note that parameter values associated with a number of these
and subsequent figures require more space than is available in
the legends. Complete legends are given in Appendix B.
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F1G. 3. Case J1 at 43 days: (a) longitudinal spectrum of #?+4?
at y'=1/8, (b) latitudinal spectrum of u? at x'=3. Abscissa is
wavenumber.

The near-vanishing of the conversion integral { P’K’}
signifies the end of the first major instability at 316
days (Table 3). The velocity scale U=25 m s~! and
the width of the five fully established jet pairs comply
with the Lg relation, suggesting the action of the Rhines
effect (Rhines, 1975) (Fig. 8). Less than 209, of the
kinetic energy lies in the eddy mode and this' propor-
tion will decline to 3%, over the next 900 days.

b. First quasi-steady phase: 316-1210 days

The flow now enters a quasi-steady phase in which
the prevailing configuration at the end of the first
major instability hardly alters for 3 years. However,
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weak energy conversions and momentum changes con-
tinue to occur as the ¥’ contours (Fig. 9c) and the
{K'K} integral testify.

Large-scale neutral baroclinic waves can be identi-
fied, in the quasi-steady phase, by a coincidence of the
¢/ and §’ contours in the presence of vertical shear
(Figs. 9c and 10a). They have warm, high-pressure and
cold, low-pressure correlations and form the interjet
gyres. Their latitudinal and longitudinal length scales
(Lg and X, respectively; see Fig. 1) indicate that these
are forced waves driven by energy decascading, as in
the Rhines effect.

Embedded within the neutral baroclinic waves in
the maximum-baroclinicity area of the westerly jets
are baroclinically unstable waves of scale L, (in x and
v). This form of instability occurs at a weaker baro-
clinicity than the major instability and transfers a
small amount of heat locally (Table 3), thereby reduc-
ing the baroclinicity in the jet maxima (Fig. 9c profile)
and retarding the onset of the major instability. Weak
Ferrel cells form in association with these waves be-
cause of their steady, quasi-linear form (Fig. 9b profile).

At the end of the first quasi-steady phase (at 1140
days), five pairs of baroclinic westerlies and barotropic
easterlies continue to coast along with minor adjust-
ments being made through the propagation of neutral
baroclinic waves (very much as in Fig. 9). During this
phase, U has fallen from 25-19.6 m s~! due to internal
dissipation.

¢. Second unstable phase: 1200~1500 days

The second major instability begins in the two most
northerly jets and will eventually spread southward.
As the eddy energy of the northerly instability cascades
to a larger scale (Fig. 11c), frontogenesis occurs (Fig.
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11e). The small-scale vertical motion (Fig. 11d) releases
potential energy within the concentrated isotherms
along which the local jet stream, boosted from 30-70
m s7, now flows. The northerly momentum gain re-
mains localized and the other jets unaltered. The minor
instability still occurs in the undisturbed jets but ap-
pears only in the zero contour values because of its
relative weakness.

The instability of the central and equatorward zones
sets in and peaks while that in the north decays (Fig.
12). Each zone remains unstable for ~200 days. At
the end of the potential-energy release, the jets have
attained 130 m.s™! maxima and have coalesced into
four pairs to comply with the Lgscale (Fig. 13).

During the second instability phase, U increases from
19.6-77 m s~*. This enormous gain indicates the strength
of the instability and explains why the zonality of the
quasi-steady flow was so drastically disrupted. In other
solutions, where a strong zonal flow already exists,
major instability phases do not cause a radical inter-
ruption of the circulation (see e.g., J9). This should
also hold true during any further major instabilities in
J1, for then R>>K’. However, the creation of powerful
jets during the second instability requires that the
time step be decreased from 3000 to 1200 s, precluding
integrating as far as the third unstable phase iz this case.

d. Second quasi-steady phase: 16000-2400+ days

As the calculation enters the second quasi-steady
phase, the circulation consists of four westerly and two
easterly jets (Fig. 14). A central easterly flow has been
almost eliminated as the two central jets coalesce to
meet the Lg constraint (cf. Figs. 14 and 15).

The dominant gyre, lying between the northernmost
westerly and easterly flows, is permanent to the extent

TAaBLE 4. Case J1: Instantaneous momentum and temperature and their budgets at 58 days over the latitudes of jet formation (see
Fig. 5a). Zonal velocity in m s~ and its rate of change in units of 10~ km s™2. Temperature rate of change in units of 1077 K s™.

w2

J oy — (w1o1)y foP viliyy T, — (01 T2)y HR™ vRp:  vTy,
152 0.69 -7.92 2.02 0.01 —3.03 —1.35 —-0.17 0.18 0.01
154 0.33 —8.61 1.45 0.01 —-3.02 1.26 —0.19 0.20 0.00
156 0.99 —3.74 1.34 0.01 -3.36 3.19 —-0.20 —0.24 0.00
158 2.59 2.93 1.45 0.01 —-3.54 0.73 —0.22 1.21 0.00
160 5.05 11.62 —2.66 0.02 -3.72 —~1.55 —0.23 2.74 —0.01
162 8.34 25.53 —7.74 —0.03 -3.97 —~1.28 —0.25 0.31 —-0.01
164 9.16 18.77 —7.00 —-0.06 —4.29 —0.30 —-0.26 —2.22 0.00
166 6.16 —17.75 0.08 0.03 —4.58 8.64 —0.28 —5.49 —0.01
168 4.66 —3.33 9.83 —0.08 —4.96 —1.05 —0.29 1.40 0.02
170 —0.58 —-0.07 3.95 —0.02 —-5.23 —~7.78 —0.31 3.39 0.03
172 —6.15 —17.67 -1.76 0.06 -5.31 —1.25 —0.32 —0.09 0.01
174 —7.38 —9.88 0.34 0.08 —5.33 5.06 —0.33 —2.75 —0.01
176 —3.35 —5.67 5.84 —-0.01 -5.43 1.35 —0.35 —0.18 —0.02
178 0.45 —18.92 4.03 0.02 —5.68 —~1.19 —-0.36 2.09 0.00
180 5.19 4.24 0.79 —-0.04 —5.95 3.62 —-0.38 0.05 —0.01
182 7.29 10.39 0.15 —0.05 —6.30 —0.18 —0.39 0.85 0.01
184 5.91 10.09 —1.42 —0.01 —6.60 —~0.57 —0.41 0.18 0.01
186 3.95 6.75 —1.70 0.00 —6.85 —0.96 —0.42 —0.04 0.01
188 2.16 —1.14 —1.29 0.01 —-7.08 0.92 —0.44 —=0.77 —0,01
190 1.42 —6.67 0.75 0.02 -7.31 2.98 —0.45 —0.88 0.00
192 1.54 —4.73 2.19 0.00 - —7.57 2.77 —0.47 0.10 0.00
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Fic. 5. Case J1 at 58 days. Variables and notation as in Fig. 4. A denotes jet formation area discussed in text.
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Fic. 7. Case J1 at 178 days, legend as in Fig. 4.
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Fic. 8. Case J1 at 316 days, legend as in F ig. 4.
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Fi16. 9. Case J1 at 591 days, legend as in Fig. 4.
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Fic. 10. Case J1 at (a) 591 days, (b) 1773 days. Perturbation temperature.

(a) APs=1.6km?s™,
(b) Afy=8.0 km?s™,

that it exists continuously from its inception at 1400
days to the end of the calculation at 2355 days. For
convenience, we will refer to it as the “Gyre.” The
¢’ and ¢/ fields (Figs. 10b and 14c) indicate that the
object is centered on the warm, high-pressure region
of a neutral baroclinic wave. During the interval from
1773-1825 days, the Gyre moves eastward at an average
speed of 0.5 m s~ but, in general, motion can be in either
direction.

The solution is terminated at 2355 days for economy
and also because it is not equilibrating. An excessive
heating rate causes the thermal imbalance: eddy heat
transport can only reduce AT by S K per 10° days
under a heating rate that produces a rise of 15 K per
10° days. Reducing H, to a more appropriate rate of
0.15 units would result in formidable computational
demands, by lengthening the integration period and
exposing the circulation to greater computational dis-
sipation during the quasi-steady phases. The equilib-
rated solutions of Section 8 suggest that a more realistic
J1 circulation would vary about the above features,
rather than continuing to evolve toward a state with a
single strong jet. ’

T5=20 K,
T5=30K,

wy=5X10"% km s™!
wy=7X10"" km s7L.

e. J1 and Jupiter’s bands

Turning to the planetary implication of the J1 solu-
tion, a detailed comparison of the model’s dynamics
with that of Jupiter’s atmosphere would not be relevant
and would be extending the analogy beyond its intended
limit. It is of interest, however, to draw attention to
those characteristics that are common to both systems.

Both circulations consist of multiple easterly and
westerly jets with a strong zonal orientation and of
latitudinal motions that are weak except near the
inter-jet gyres. In the model, small-scale vertical
motions of order 10~% and 10~% km s™! occur in the
major and minor baroclinic instabilities, but no large-
scale mean vertical motions exist; the Jovian situation
is unknown.

Extrapolating from J1 to more weakly-heated,
equilibrating model flows suggests the existence of
energy cycles with 3-7 year periods. Some cyclic be-
havior, with periods ranging from 3-8 years, can also
be observed in band motions on Jupiter (Fig. 16), and
appropriately attributed to inertial effects. Northward
band movement occupies-less than one-third of each
cycle, as does the major instability phase in the model
circulations.
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Fic. 11. Case J1 at 1306 days, legend as in Fig. 4.
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F16. 12. Case J1 at 1392 days, legend as in Fig. 4.
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Fic. 13. Case J1 at 1471 days, legend as in Fig. 4.
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(e)

F16. 14. Case J1 at 1773 days, legend as in Fig. 4.




952 JOURNAL OF THE ATMOSPHERIC SCIENCES VoLUME 36

v (| 1

>

(e)

FiG. 15. Case J1 at 2184 days, legend as in Fig. 4.
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Fic. 16. Latitudinal position of the northern edge of North
Equatorial Belt of Jupiter as a function of time, beginning in
1908 (after Peek, 1958). Dotted line interpolates data.

J- J1 and the Great Red Spot

The Gyre and Great Red Spot are both warm, high-
pressure anomalies and possess many features in
common : an anticyclonic zonal-mean flow environment
and the same latitudinally anisotropic distribution of
adjacent eddies, a latitudinal uniqueness and a slow
longitudinal drift (in either direction), a quasi-per-
manence and a shape that varies from elliptical at the
boundary to oval at the core [cf. Fig. 15a and Gehrels’
(1976, Fig. 8)]. The Gyre corresponds to just the
central part—‘the tip of the iceberg”—of a forced,
neutral baroclinic wave with a latitudinal scale of Lg;
neither the cause of the Great Red Spot nor its extent
beyond the visible portion are known.

The two objects differ mainly in their longitudinal
uniqueness and scale. However, because the above
similarities imply that the Great Red Spot can be
described by the quasi-geostrophic equations [i.e.,
ageostrophic effects (hurricanes, topography, étc.)? are
superfluous], differences in scale selection must be due
to the fwo-layer approximation to the equations. Both
objects lie well within the ultralong wave regime dis-
covered by Green (1960). The normal mode charac-
teristics of this regime require a minimum of four layers
for their proper representation (Hirota, 1968) and, for
the parameters of the Jovian regime, the preferred ultra-
long waves occur at length scales two to three times
larger than for Earth (Fig. 17) [see Williams (1979)].

In the four-level model, gyres could be produced in
association with the ultralong baroclinically unstable
waves, rather than with the neutral waves, but would
be similar to the Gyre because of the quasi-neutral
form of the instability. In addition, such gyres could be
self-sustaining (in a weakly dissipative atmosphere)
because of their small energy supply. The preferred
wave scales are 34 000, 24 000 and 17 000 km when
¥?=35, 10 and 25 s? km~2 and 4=40, 20 and 10 m s,

7 Semi-permanent high pressure areas, such as the Aleutian
stratospheric anticyclone, may provide the only (limited) ter-
restrial analogy to the Great Red Spot (cf. Mahiman and
Moxim, 1978, Fig. 4.2).
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Figc. 17. Baroclinic instability growth rates of Jovian regime
with doubling time in days for four-layer model (after Hirota,
1968). G denotes preferred scale of gyres: (a) y?=10 s* km™?,
(b) v2=25s? km™2,

respectively. The Great Red Spot is presently 28 000
km by 14 000 km in size.

Analysis of the Gyre in terms of normal-mode con-
cepts cannot account for the longitudinal uniqueness of
the Great Red Spot. A similar difficulty occurs in
understanding localized cyclogensis in. the Earth’s
atmosphere. Spatial instabilities (Thacker, 1976;
Merkine, 1977) can explain localized activity for local-
ized sources but not for homogeneous sources such as
occur in the Jovian situation.® Pending current investi-
gations, we conjecture that an analogy exists (within
the limitations of normal-mode concepts) between the
Great Red Spot and an optimally selected, ultralong,
near-neutral, localized baroclinically unstable wave. In
short, the Red Spot could be a Green wave.

g Jland J upitér’s cloud formation

The similarity between the streamfunction—rather
than the temperature, vertical motion or vorticity®—
of the Gyre and the clouds of the Great Red Spot

8In Part 3, we show that localized cyclogenesis can occur in
the homogeneous case, particularly when Thacker’s criterion

U>2U is met—a condition highly favored in the Jovian regime.

9 This distinction cannot be made for the jets and bands and
this led us to suggest in Part 1 that vertical circulation cells
induced by Ekman pumping could cause the clouds. The less-
ambiguous structure of the (baroclinic) Gyre eliminates this
possibility.
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Fi1G. 18. Latitudinal proﬁ\les of 1, lw’g |, %1 at 1825 days; pole on the left, equator on the right. Lined shading corresponds to
clouds of zones (y1>0), dotted shading to eddy clouds. ¢;= 1000 km? s7, fwy [*=2X10"5 km s7%, u:= 160 m s

suggests that the larger scale Jovian clouds may be
correlated with horizontal variations in the pressure
deviation.®® Such mechanically induced clouds would
resemble the terrestrial cirrostratus forms, such as
sometimes occur, appropriately enough, on the equator-
ward side of the jet stream.

If Jupiter’s cloudy Zones correspond to the high
pressure areas (¢>0) of the model, then the observed
differential rotation of those bands reflects directly the
geostrophic balance w=—y, (Fig. 18) and not (in-
-directly) the vertical motion associated with convective
models of cloud formation. This would be in agreement
with the quasi-geostrophic view that the circulation is
essentially horizontal.

The separation in scale between the variations in the
geostrophic-pressure and the w, T fields is greater in
the Jovian regime than the terrestrial. This allows
clouds to form in close association with both sets of
variation as shown in Fig. 18: the smaller eddy clouds
(represented by |[w’| profile) being mainly visible
within the larger banded clouds (represented by the ¢
profile) where the amplitude of the pressure variations
is weakest. The existence of eddy clouds on just the
poleward edges of the Jovian Zones supports this view.

5. Static-stability variation: J2-]5

The parametric dependence of the circulations is
evaluated for four wide-ranging values of the static-
stability (Table 2). Surface drag is omitted in all cases.
Table 5 documents the energy budget at the end of
each calculation.

a. J2: y*=10s* km2

Zonal jets form rapidly (in 150 days) in this strongly
stable fluid and by 299 days have evolved into four
westerly jets of 130 m s~! magnitude (Figs. 19a and
19b).1 The first quasi-steady phase sets in at 450 days

10 The deviation is from some standard atmospheric pressure
that is a function of height only.

11 Even in the most complex flow stages of J1, the larger and
smaller scales of the ¢ distribution reflect the 7" and w fields. This
conciseness justifies plotting only the y, ¢ variables to represent
the other solutions.

with a velocity scale of U1=76 m s~ and at 500 days the
three northernmost jets merge into a single 150 m s™*
flow. This jet increases to 230 m s~! during the second
major instability, which begins at 1200 days (Figs. 19¢c
and 19d). The large northerly gyre, corresponding to
the cold low-pressure area of a neutral baroclinic wave,
is transient.

With its broader bands, stronger flow and larger
baroclinicity, the J2 solution may be more relevant to
Saturn than Jupiter: [A solution with the same parame-
ter values as J2, but using the Phillips’ system of
boundary conditions, was discussed in Williams (1975)].

b. J3-J5:+*=50, 100, 250 s? km?

Although the potential energy is released more slowly
and at smaller scales in the low vertical-stability cases,
strong zonal circulations develop if high-resolution and
low- (perhaps marginal) diffusion coefficients are used.

Initia] flow development parallels that of J1 and by
the first quasi-steady phase four to six pairs of jets,
with magnitudes ranging from 50-80 m s™, have
evolved through the decascade (Fig. 20). Surprisingly,
the flow with the weakest static stability and baro-
clinicity (J5) is the strongest. Again gyres of sector size
form. The smaller eddies transfer less heat, suggesting
that heating rates less than 0.1 units are necessary for
equilibration in these cases (Table 2).

The basic similarity of the large-scale circulation
patterns in J1-J5 indicates the unimportance of eddy
size or baroclinicity level—they range from 2000-9500
km and 5-90 K—in forming what are essentially quasi-
barotropic features. This universality justifies para-
metric extrapolation in drawing analogies with the
planetary flows.

6. Baroclinicity variation: J6, J7

Although the above solutions indicate that flow-form
does not depend crucially on static stability, a circula-
tion can be modified by latitudinal variations in the
static stability, the 8 term and the heating gradient
dHr/3dy. To examine the last of these effects, two
simple exponential heating functions are used (Fig. 2)



May 1979 GARETH P.

WILLIAMS 955

_ TasLE 5. Instantaneous energy conversion and other integral mean values at the end of each calculation. Units are 10-¢ km? s for K,
K, P’'; 10~ km? 572 for P; 1072 km? s73 for conversion terms; m s! for the rms velocity; K for AT; km? s7? for {1, Time is measured

from end of axisymmetric spinup.

Case Days AT Jr, Uy K’ K P P (0P} (PP} (P'K'} {K'K)
]2 1480 913 0 103.7 684 9731 78 725 692 50 23 —586
J3 873 279 0 29.8 186 671 27 329 419 13 3 —83
J4 402 15.7 0 276 112 624 24 201 462 23 9 —35
J5 354 100 0 387 2714 1182 73 191 713 90 127 —100
J6 597  24.0 0 26.6 49 630 . 8 239 358 6 3 —10
J7 318 184 0 361 354 907 32 161 301 —23 3 377
J8 1410 415 =357 61.1 109 3502 13 388 321 35 6 —141
J9 1527 429  —642 372 307 945 109 379 317 353 232 32
B1 3757 18.6 0 50.3 65 2357 22 72 69 116 82 173
B2 4288 154  —380 40.9 57 1509 16 46 55 24 31 16
B3 7306 132 =216 28.2 34 706 13 40 26 34 32 43

TABLE 5—(Continued)

Case {PK) (KF} {K'F} (KD} {(K'D}y (KI} ({K'I} {PF} (P'F) V' v
J2 8 80 19 — — — — 48 4 0.30  0.30
13 1 4 2 — — — — 4 1 0.06  0.06
J4 0 4 4 — — — — 2 2 0.04  0.04
J5 2 8 51 — — — — 2 20 0.03  0.03
J6 0 8 2 — — — — 5 1 0.08 008
J7 -1 10 6 — — — — 5 1 0.15  0.15
18 4 40 5 34 1 0 13 1 0.15  0.15
J9 0 12 61 44 12 — 9 15 0.10  0.10
B1 2 22 36 — — — — 5 11 0.15  0.15
B2 -2 10 23 14 0 0 0 2 6 0.10  0.03
B3 -1 4 14 6 0 0 0 1 3 0.10  0.03

for a fluid with a moderate stability (y>=350 s> km=?)
and a drag-free surface (Tables 2 and 5).

a. J6: Moderate baroclinicity variation

In the moderately exponential heating function, the
gradient at the poleward end is only one-third that at
the equatorial boundary, in keeping with the possibility
that the polar regions of Jupiter are uniformly heated
by the interior source. As a result of this uneven baro-
clinicity, instability sets in earlier and more strongly
and produces jets in the equatorial third of the 8-plane
(Figs. 21a and 21b). By the first quasi-steady phase,
a weaker zonal flow has also developed in the central
region (Figs. 21c and 21d).

b. J7: Strong baroclinicity variation

Heating with the strongly varying function—the
baroclinicity is 20 times greater at the equatorial end—
leads to the simultaneous and rapid development of a
predominating westerly jet and anticyclonic gyre, (Figs
21e and 21f). As in J6, the localized flows are stable
and the zonal momentum remains in the region of
production.

An additional analogy exists between the J6, J7
solutions and Jupiter, in that both have stronger jets

near the equator and none beyond 50 ° latitude (see
Fig. 1, Part 1). Whether the planetary characteristics
are also caused by baroclinicity variations, rather than
by 8, ¥? variations, is unknown.

7. Drag variation: J8, J9

To illustrate the effect of surface drag on quasi-
geostrophic circulations, we present two cases: one
typical of weak drag, the other of strong drag. Both
correspond to a reevaluation of J1 with the 7p, 77 terms
activated and with diffusion simplified by setting 7=’

a. J8: Weak drag

When 7p=500 days, the drag only influences the
circulation moderately, in that momentum equilibrates
without altering the character of the flow (Figs. 22a
and 22b). In the second quasi-steady phase, the circu-
lation J8 reveals a basic similarity with J1, despite
differences in the number and the amplitude of the jets
and in the incidence of the major instability—the first
instability ends at 450 days (300 days in J1) and the
second one starts at 1000 days (1200 days in J1) in
the equatorward area (poleward area in J1). Any
vertical motion due to Ekman pumping would be of
order 10~® km s~ for the J8 parameters.
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Fic. 19. Case J2 at 299 days (a,b) and 1480 days (c,d). Basic fields and profiles are ¥, @, {1 on the left and
@1, T, 2 on the right. Integration sectors are repeated 7 times longitudinally to yield an optimum plotting area
approximately equivalent to the quadrant of a sphere. Other notation as in Fig. 4. r=2 in all frames.

() Ag1=150 km? s,

%;=120m s

£5=3X10"5 st

(b) Agi=8X1075 571, T5=40 K, wy=2X10"6 km s
(¢) AY1=300 km? s, %7=250 m s, £3=2.5X1075 571
(d) Ap=5X10"5¢1, T5=50K, we=2X10"7 km s,

b. J9: Strong drag

When 7p=100 days, the surface drag significantly
modifies both the character and energy cycle of the
circulation. The quasi-steady phases are shorter and
the first three major instabilities of J9 occur between
days 0-200, 500-770 and 1050-1210. At the end of the
third quasi-steady phase (at 1500 days) Uy has decayed
to 34 m s7!, indicating a rapid momentum equilibration
under this strong drag. However, the mean baroclinicity
AT increases continuously from 28.6-42.9 K (Tables

2 and 5), implying the need again for a reduced heating -

rate. .

The lack of disruption of jet zonality during the third
major instability of J9 (Figs. 22c and 22d) contrasts
with the second instability of J1 and illustrates the
stability of fully developed jets. However, because of

cascade blocking by the strong drag, the flow is basically
less zonal than that of J1—this is most apparent in the
third quasi-steady phase (Figs. 22e and 22f). To
balance momentum loss at the surface the westerlies
are stronger and more concentrated than the broader
easterlies. As a consequence of this asymmetry the
gyres are less elliptical in shape.than those of J1.12

Comparing J1, J8 and J9 with Jupiter leads to the
conclusion that drag on the planet must be weak
(rp2500 days), if the quasi-geostrophic model is
relevant. The interface stress, represented by the 7r
term, also appears to be weak, but its indistinctive role
makes it difficult to isolate quantitatively.

12 Terrestrial analogs to the Great Red Spot, if they exist, will
also be non-elliptical for the same reason. (See Footnote 7).
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F16. 20. Case J3 at 586 days (a,b), Case J4 at 402 days (c,d) and Case J5 at 354 days (e,f). Legend as in Fig. 19.

/
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Fic. 21. Case J6 at 196 days (a,b) and 597 days (c,d), and Case J7 at 318 days (e,f). Legend as in Fig. 19. r=3.
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F1G. 22. Casé J8 at 1410 days (a,b), and Case J9 at 1137 days (c,d) and 1332 days (e,f). Legend as in Fig. 19. r=3.
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Fic. 23. Cases B1, B2 and B3. Evolution of rms velocity scale U, (solid lines) and temperature differential A7" (dashed lines).
Line labeled H, indicates rate of increase of AT that would occur in absence of motion in B1 or B2.

8. Equilibration: B1-B3

The computations to examine the equilibration
(rather than the character) of the circulations are equi-
valent to reevaluating J1 or J8 with a reduced domain
size and resolution. The B and J systems have similar
multi-jet circulations and equilibration properties.

a. B1: No drag

Three westerly jets prevail throughout the B1 calcu-
lation. The AT, U plots (Fig. 23) show that after the
three major energy conversions have occurred, the
energy cycle becomes less regular even though both
forms of instability still occur. The B1 circulation may
be equilibrating but only over a very long time scale.

b. B2: Weak drag

The circulation in the B2 case (with its weak surface
and interface stresses) has a different evolution from B1
but a similar final form. Moreover, the flow may be
equilibrating (Fig. 23). Comparing the final AT values
for B1 and B2—18.5 and 15.4 K (Table 2)— shows
that the eddies reduce the heating gradient by 11 and
13 K. In B2, the reduction almost balances the 14 K
baroclinicity generation.?®

¢. B3: Reduced heating rate
To be certain that eddies capable of coping with a
heating imbalance can be produced, case B2 was re-

13 The choice of the heating rate for the J cases was based on
the apparent equilibration of a prototype B2 calculation.

calculated with a heating rate halved to 0.1 units
(equivalent to 0.2 units for the J domain). The circu-
lation approaches its quasi-equilibrated, double-jet form
in the first 5 years but then fluctuates with a period of
about 10 years (Fig. 23). After 20 years, AT is 0.4 K
less than its initial value and Uy is less than its value
after the initial spinup, i.e., kinetic and thermal
equilibration has occurred.

9. Vertical variations: D1

The over-simplified vertical structure of the two-level
model limits any analogy between the baroclinic aspects
of the solutions and Jupiter. To represent properly the
decay of activity with depth requires consideration of
the depth variation of the static stability and the heat-
ing rate. '

a. U nequal-layer model

A preliminary estimate of the effect of depth varia-
tions in the static stability can be obtained by con-
sidering, as in oceanography, a model in which the lower
layer is § times more massive than the upper. The
terms —A\i2H fo! and A\ *H fo~! replace the corresponding
ones in the prediction equations (9) and (10), while
the g, are defined as

= Vz‘l’r‘)\f‘;, gs= VAN,

where A\2=72(148)/2, A?=N(146"1)/2, with A? now
being the mean, p.-level value. Redefining the baro-
tropic mode as J= (Y1+8&3)/ (1+38) allows the numeri-
cal scheme to proceed as before. -

19)
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b. D1:6=4

As an example of these depth effects, case D1 is
calculated with §=4 (arbitrarily chosen to be as in
ocean models) imposed on the Bl system. The static-
stability factor has values of v?=62 s? km™? and
v2=16 s? km~2, so the eddies are smaller in the upper
layer.

Although the solution resembles those in the B set,
the easterly flows are more barotropic, the energy cycle
is less regular and the heat transport is more efficient:
after 1427 days, AT has risen from 13.7-14.2 K, com-
pared to 16.0 K in B1 (Table 2). These differences are
mainly due to the modification of the instability prop-
erties by the unequal layering (Gill et al., 1974).

10. Conclusions

Our evaluation of the two-level model supports the
hypothesis that quasi-geostrophic circulations with
multiple, zonally aligned jets can be realistically pro-

duced under conditions appropriate to Jupiter and -

Saturn. The jets result from the interaction of planetary
wave propagation and a quasi-geostrophic turbulent
cascading that is energized by baroclinic instability—
all in the manner imitated by the quasi-two-dimensional
cascades examined in Part 1.

The circulations exhibit more than just multiple
forms of terrestrial phenomena—there are items
peculiar to weakly heated, weakly dissipated multi-jet
flows: interjet exchanges by neutral baroclinic waves
and energy conversion on two different time and space
scales. Absence of an effective surface drag allows the
flows to develop far beyond the axisymmetric state,
thereby revealing more clearly the evolution of a free
atmosphere toward a zonal, barotropic end state—a
state whose strength obscures its source (i.e., |¥|>>{¥])
and whose appearance deviates from the terrestrial
“norm.” Baroclinic aspects of the circulation exhibit
their customary form.

Neutral baroclinic waves provide an important ad-
justment process in a baroclinic fluid and occur natur-
ally, as gyres, in multi-jet circulations."* The gyres are
analogous in many respects to the Great Red Spot and
suggest that the object can be described by the quasi-
geostrophic equations. Considerations of longitudinal
scale and uniqueness indicate that ultralong baro-
clinically unstable (Green) waves may provide a closer
analogy to the planetary item, but only if the atmo-
sphere is strongly stable.

The cloud formation implied by the solutions is one
in which condensation in the bands is correlated (by
compression effects) with horizontal variations in the
geostrophic pressure. If this is so, then the observed
differential rotation of Jupiter’s bands indicates geo-

14 The absence of gyres in the quasi-barotropic multi-jet circula-
tions (see Part 1) indicates that baroclinicity is essential to
their existence.
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strophy, not vertical motion. Embedded within the
main cloud bands are three-dimensional (eddy) features
due to baroclinic instability and frontogenesis.

On Jupiter, the failure to complete the decascade of
energy into the zonal mode in polar regions leads to a
different regime beyond 50° latitude. This might be
occurring because of 1) the lack of baroclinicity in the
more uniformly heated polar regions and the consequent
low kinetic energy levels, 2) the easier occurrence of
(smaller) baroclinically unstable eddies. in areas with
lower 8 and higher fy values, 3) the reduced wave
propagation at lower 8 values and 4) the non-geo-
strophy of a convectively-unstable region. However,
it is also possible that observations were made during
a major instability in which zonality had temporarily
disintegrated in high latitudes.

Comparing Saturn with Jupiter, the broader bands
and stronger jets—items related by the Lg scale—can
be explained, in the quasi-geostrophic view, by a larger
static stability or a weaker dissipation. The quasi-steady
phases should be longer and the planet generally more
quiescent. Detailed observations of Saturn will provide
a crucial test of our predictions.
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APPENDIX A

Reformulation of the Numerical Procedure for the
Quasi-Geostrophic Model

The numerical formulation of the quasi-geostrophic
model as given by Phillips had defects due to nonlinear
instability and overspecification of the boundary con-
ditions. The reformulation given below results in a
system that remains computationally stable and
physically meaningful indefinitely because of its com-
plete internal consistency.

a. Grid system

The basic variables g, Y« are discretized at grid points
r=(E—1DAx, y=(j—DAy (=1, 2, ..., M), (j=1,
2, ..., L), commencing on the lateral walls.
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b. Prediction equations

In central difference notation, the prediction equa-
tions (9) and (10) become

6¢q‘1+](¢1; f*+q1) = V(‘Sn"‘aw)ql—fO'YzH_f/Th (A1)

5;@%'{'.’(‘!’3, f*+q3) = V(5,¢+ 5yy)q3+f0‘72H
+&/11—¢4/1p, (A2)

where J ({,4d)=y.A4,—¥ 4 is the advection Jacobian.
All quantities are at the central time level nAt except
the diffusion and vertical stress terms which are
evaluated at (r—1)A¢. For the nonlinear terms a form
of Arakawa’s (1966) Jacobian (45) is used in the interior
and a form of his expressions (73) and (74) for predicting
qi on the latitudinal walls; this boundary prediction is
necessary to fulfill the kinetic-energy and enstrophy-
conserving properties of the Arakawa Jacobian and
produce stable solutions.

¢. Boundary condition problems

Physical conditions cannot be imposed at the lateral
boundaries because of the inherently inviscid nature of
the quasi-geostrophic equations. For example, a slip
condition {z=0 on the horizontal motion implies [via
Egs. (5) and (6)] a non-slip condition wp=0 on the
vertical motion; while a non-slip condition #p=0 im-
plies a slipping vertical motion wp7#0 (B denotes a
lateral wall value).

We thus opt for quasi-inviscid computational con-
ditions: conditions that give the preferred inviscid
scheme when the limit » —0 is taken. They are deter-
mined by imposing the conservation of vorticity, mo-
mentum, mass and heat on the integral form of the
finite-difference equations in a manner that neutralizes
truncation errors between the ¥z, ¢gp variables, yet
allows prediction of ¢ (to satisfy the Arakawa Jacobian
constraints).

d. Integral constraints: Barotropic component

To select the most suitable boundary conditions for
the two-level model, the equations must be written in
their barotropic and baroclinic forms. The barotropic
variables ¢, § control the conservation of vorticity and
momentum ; their integral equations are

(@) =@ €/ 7o, (43)

Jn=0=¢. (A4)

These equations are subject to the same boundary
truncation problems as the quasi-barotropic equations,
except that here the drag term contains a baroclinic
component. As in Part 1, the wall effects can be neutral-
ized by setting »J,=0 in the (g;)» equation and by pre-
dicting ¥ using the doubly integrated form of (A4)
(with the prediction terms substituted for g):

tic(Y)—-\z: (0) = _[';4/717:]5’: (A5)
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where the undesirable » terms have been omitted. These
two conditions produce barotropic-vorticity and mo-
mentum conservation when 7p —©.

e. Integral constraints: Baroclinic component

No unique boundary condition exists for the baro-
clinic component of the quasi-geostrophic equations
and the geostrophic relationship between velocity and
temperature inhibits a physical choice. Conservation of
mass and heat can only be guaranteed by the baroclinic
variables and computational -conditions based on this
need are selected, being appropriate to viscous or in-
viscid fluids. .

If the ¢, ¥ equations are not treated in a manner con-
sistent with the equations for w, {, there is no guarantee
that the diagnostic variables are physically meaningful.
Consistency is provided by the baroclinic integral
constraints: '

(4)=v{duu) —2E)/ T1+(E4)/ 7D,
$yu_2)‘2$=5:

(a6)

(A7)

(?z)=2§(wz)+v(§‘y,,)—2({‘)/n+(;'4)/1'1), - (A8)

?(“h) = V(‘zt - V@uu) ’ (A9)

)%
V)=V (0) = ——(ws). (A10)

j 2

To guarantee mass conservation, requires that
(w2)=0 in (A10). This implies heat conservation in
(A9) (when »}s,=0) and baroclinic-vorticity conserva-
tion in (A8) (when v{p,=0). These implicit conditions
on (A8)-(A10) must be realized indirectly through the
4, ¥ equations (A6) and (A7), by setting »js,=0 in
the §; equation and by summing (A7) over all grid
points:

M - 1—VYe -
Py Qi=[%ﬁ1+u+>\2¢x:l
=1 (Ay)

(JL - zz}; 1)
Ay)*

where the (undefinable) wall values of x?/-w are left in

the § form, where ()=0 has been imposed and where
indices denote j values. To make (A11) consistent with
{4.)=0, we set each residual boundary term to zero
(an arbitrary constant), effectively defining “#p”=0:

Po— (124 ]=38y)a, (A1)
Fra—di[14+N Ay =409 (A13)

gt 7] @aw
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A “4g”=0 condition is the only way of realizing
7v* (0)=0 in the sidewall momentum equation.

f. Eddy boundary conditions

Conditions on the barotropic and baroclinic eddy
streamfunctions are identical and straightforward.
We set ¥, =0 to make the sidewalls impermeable to the
geostrophic flow.

g. Implementing the boundary conditions

To apply the above constraints, the prediction equa-
tions can be used in their fundamental form (Al),
(A2) but the Poisson equations must be solved in the
barotropic, baroclinic form

=g, (A14)

(V=2 =4, (A1)

with condition (AS) on (A14) and (A12), (A13) on
(A15). This meéthod of solution corresponds to the

inviscid one—the diffusion terms enter as a computation
addendum and do not set the tone of the calculation.

h. Solving the Poisson equations

The technique for solving (A14), (A15) can be de-
scribed for the general finite difference equation

(a8 — 2NY =g, (A16)

where for the barotropic case A=0 and a different

boundary condition exists for . To solve (A16), exactly
the periodic eigenfunction expansion is made for the
x-dependence

M-2
V=% Vo),
2ra

2\
H o (7) =I‘a( ) cosl: (4— 1)]
M—1 M—-1

for a=0,1, ..., (M—1)/2,

)

for a=(M41)/2, ..., M~=2, (Al7)
where i=1,2, ..., M, T,=2"tfor a=0 and (M —1)/2

but I',=1 for other «.
Substitution of (A17) into (A16) yields

Aa
61”1 a_. + 2)\2> [- . a,
v ( axy e=q

(A18)
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where
r 27a M—-1
2(1—cos >, a=0,1, ..., —
M—-1 2
2 / M-—1
Ax=4 2|:1—c0a a— >:|,
M—1\ 2
M+1
a= e, M =2
L 2

are the eigenvalues. To solve the difference equation
(A18) it is written as

— AN+ BYS—Ci¥5-=D;, (A19)
where
4;=C;=1, B;=2[1+2(Ay)"]+r*(Ay/Ax)%,
' D= — (Ay)*¢5.

This equation is solved using the backward recursion
functions E;, F; defined as

\//‘;= ?;1E§+Fc;i Ec;: (Bj-CjE7—1)-l;
F4=E%(D;+C;Fj_;).

To apply the boundary conditions the variables are
split into mean and eddy form y=y¢-y'. For both
barotropic and baroclinic eddy components ¥'=0 so
that ¢*=0 when a70. For the zeroth mode ¢°
=¢(M—1)}, so the zonal mean conditions (A5) and
(A12), (A13) can be implemented. These boundary
conditions determine values of E$, F$ for initiating the
recursion. The trigometric transform (A17) and its
inverse are evaluated using fast Fourier techniques as

‘discussed in Part 1.

1. Diagnostic vertical velocities

Three separate estimates of the vertical veldcity can
be obtained from Egs. (5)-(7). When these equations
are differenced in the same way as the basic prediction
equations (i.e., Arakawa Jacobians are used) then all
three sets of w, values are identical (to within roundoff
error)—an indication that the formulation is internally
consistent and programmed correctly. The magnitude
of the roundoff indicates the accuracy to which w, is
calculated (10~ km s71).

j. Diagnostic meridional circulation

In the continuum, the lateral boundaries are im-
permeable to the first order meridional flow only if
V*(O)=0; however, this condition can only be met
implicitly by realizing Ap,=0. The finite-difference
scheme does specify such a condition in (A12), (A13)
but only to within limits set by boundary truncation

* €ITorsS.
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v* (y) is calculated at mid-grid points from the
expression

(A20)

=2

. Ay
Vigtr= —P—(‘%@j=1+ 2. @),
2

with V,,=—7V;, The upper boundary condition

V*(Y )=0 is achieved through the implicit conserva-
tion of (ws) by the prediction equations.

k. Diagnostic momentum balance

The equations for mean momentum changes in the
two layers,

Hy=— (my+foV:+ vitryy— B/ 71,
- (—“—:;;:) u+f0f/;+ Vﬁsyu"l‘a/fl—'ﬂ‘i/"'Dr .

are calculated using finite-difference forms related to
the prediction equations, i.e., from the corresponding

terms of
. v
- / $redy.
0

In particular, the nonlinear term is very sensitive to its
formulation and is best calculated as

/ J@,5)dy

0

(A21)
(A22)

Hze=

using the Arakawa Jacobian.
The zonal velocity can be accurately defined for the
fluid interior but truncation errors in defining 5 affect

the indirect realization of V*(O)=O, which in turn
disrupts the otherwise accurate estimates of the in-
terior momentum balances; however, the inaccuracy
has no dynamical consequence.

I. Diagnostic heat balance

The equation for the mean temperature change,
; T q ws
T2z= - ('1)2T2)u+—+
R 72Rp2
involves the inverse of the calculation made to obtain
@ and as such is identically satisfied if the same numeri-
cal expressions are adhered to, The equation thus con-
tains no numerical diagnostic.

+ VT?VU)

(A23)

m. Diagnostic energy balance

The mean and eddy kinetic energies K, K’ and po-
tential energies P, P’ have an energy exchange scheme
that can be written as

R.={PR}y+{K'R}—{(RF}—{RD}—{RI}, (A24)
K,={P'K'y—{K'R}—{K'F}—{K'D}—{K'I}, (A25)
B,= —{PR}—{PP'}+{QP)—{PF}, (A26)

1= —{P'K'}+{PP'}—{P'F}, (A27)
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where Q, F, D and I denote changes related to heating,
lateral diffusion, surface drag and interface stress,
respectively. Domain means rather than totals are cal-
culated. By formulating the individual terms in relation
to the basic ¢, ¥ equations, exact balances can be
achieved in the finite-difference form. However, this
does not necessarily indicate numerical accuracy be-
cause the basic potential energy equations effectively
involve an identity—as in (A23)—and the kinetic
energy equations are likewise identities if they use
values of w, derived from the ¢, equations. The only
valid numerical check comes from comparing the con-
version terms {PK}, {P'K’} on calculating them in
separate ways, but this is essentially the same as com-
comparing the three w, estimates.

The various terms are listed below in forms related
to the prediction equations. Each variable is at the
central time level #, unless noted to the contrary, and
the % indices denote sums for both levels.

@) P=3(j?

>\2
(0P} =—(HY)
1

0

(PPy =] @r,9))
{PR}= —'—;E(&zif) with w, based on (7)
2

(PFy= =05,
(i) P'=p(fr)

Ara

Pi=Nff")

{PK'}= _Zf<w'2¢:> with w, based on (7)
2

{P'F}y=—v\(J’ (V) ).
K=— @kf )
Ri=—@urr)

(iit)

{PR)= —fg(égzz) with . based on (‘5), (6)
P2

(K'Ry =] Wnte)
(BF)=v(luti")
- {BD == @)
(RD}=—rpFaf3 ™).
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(iv) K'=— (k)

Ki=—ith)

{P'K'} =-—!3(w'2$’) with w; based on (5), (6)
23
{K'F}=v(gr(VENE™)
{(K'T}= =73 (f/§'»1)
{K'D}=—7rp2(Ystd ™).

The definition of kinetic energy from the product ¢
involves a transformation with boundary terms that
can be written

R R Y A R A

for the layered case. Our ch01ce of boundary conditions
\03—-0 (when 7p= ) and “x//By =0 indicates that this
term is insignificant, zero except for unavoidable
boundary truncation contributions—in practice it is
always less than 10 of the kinetic energy.

n. Accuracy level

The problem of calculating small predictors (see
Part I) becomes more acute for the higher resolutions
and weaker heating rates of the Jovian calculations

GARETH P.
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compared to the terrestrial ones. Nonetheless, accurate
solutions are obtained. For example, at the end of the
J1 calculation the domain means of {(w)~10—* km s,
(w)~107 km s, (T)~10"2 K, {g)~10~7 s7! lie well
below the average value of each variable; thus, basic
items are adequately conserved.

In the identity §= §—223), the terms are of the order
of 10-%, 107, 10> s~! so the motion-dependent diag-
nostics lose two decimal places of accuracy (the
machine has 6). The upper boundary value of V*(y)
~10~% km s~ is satisfactorily small.

0. Computational procedure

The calculations are carried out in the traditional
manner established by Phillips (1956). First, an axisym-
metric state is generated until a supercritical tempera-
ture differential exists. Then a random perturbation of
the barotropic eddy field g™ (prior to the y**! calcu-
lation) induces three-dimensional motion without dis-
turbing integrals or consistency.

Extrapolation of (A1), (A2) by the leapfrog scheme
is governed by the advective time-step criterion
At< (Ax/|u|+Ay/|v])~. For efficiency, optimum Af
values are used, being reduced in value as the energy
level rises.

APPENDIX B

Supplementary Figure Legends

Fie. 4. Case J1 at 43 days. Basic fields and profiles. Fields are streamfunction, potential
vorticity, eddy streamfunction, vertical velocity, vertical streamfunction differential (tempera-
ture) and vorticity in (a)-(f), respectively; indices denote pressure level, abscissa x=0, X,
ordinate y=0, Y¥; field is denoted by contour interval, e.g., A¢, in (a), with zero and negative
values shaded by selection of gridpoints. On right hand side, zonal mean fields have scales
denoted by asterisked values, with zero value at center, e.g., #(y) indicated from —u] at left
boundary to +u; at right boundary; heavy-line profile is listed before light one. (T, denotes

temperature difference between grid points).

(a) AY1=20 km? s, w;=5m s, H=5X10"7 g

(b) Aqa=4X10"° s"‘, T;=20 K, =5%10"8 km s~!
() AY;=2km?s, T5,=02K, |y |*=1X10"% km s~!
(d) Aw,=5X10""km s, 1=5ms, =5X10"7 s,
(e) Af=10 km? s, T:=20 K, wy=5X10"% km s!
) A=2X10"%s", w;=5ms, =5msL

F16. 5. Case J1 at 58 days. Variables and notation as in Fig. 4. A denotes jet formation area

discussed in text.
(a) AY1=20 km?s™,

wy=15m s,

§;=7>< 10— 51

(b) Ag1=4X10"%s7, T;=20 K, wy=1.2X10"% km s™!
(c) AY;=10km? s, T‘;,,,_o 2K, |} |*=5X10-" km 5~
(d) Aw,=3X10"%km s, uy=15m = G=TX10"8s"!

(e) Af,=15km?s™, T;=20K, w,=1.2X10-% km s~

€  Ar=15X105s1,

u’{= 1Sms™,

Uy=15m s
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Fic. 6. Case J1 at 104 days, legend as in Fig. 4.

(a)
(b)
(c)
(d)
(e)
®)

APy =30 km? 71, =22 ms™,

Agy=5X10"% s, T5=20K,
Ay, =30 km? 57!, T,,=0.25K,
Aw;=8X 1078 km s, ;=22 ms,
AJy=16 km? 57, T;=20K,

AL, =1.5X107° s“‘ uy=22ms7,

Fic. 7. Case J1 at 178 days, legend as in Fig. 4.

(a)
(b)
()
(d)
(e)
()

AP =40 km? 57, uj=50m s,
Ag=4X105 57, CTI=20K,
Ay, =40 km? 57, T}, =04 K,
A, =8X10~¢ km s7}, ;=50 m s,
APy =16 km? s, T;=20K,

Abr=1.5X1075 s, ;=50 m s,

Fic. 8. Case J1 at 316 days, legend as in Fig. 4.

(a)
(b)
(c)
(d)
(e)
()

Ay =40 km? 571, u; =50 m s,

Agi=3X10~5 571, Ti=20 K,
Ay, =20 km? s71, T;,=0.35 K,
Aw,=1.5X10"8 km s, u; =50 m s,
Ay =16 km? s7, T;=20 K,

Ab,=8X10"8 s #;=50 m 7,

F1c. 9. Case J1 at 591 days, legend as in Fig. 4.

(a)
()
(c)
(d)
(e)
)

Fic. 11.
(a)
(b)
(c)
(d)
(e)
®

Fi1G. 12.

(a)
(b)
(0
(d)
(e)
®

F1c. 13.

(a)
(b)
(c)
(d)
(e)
®

AY1=40 km? s, u}'=60 m s~
Aqi=3X10~5 571, =20 K,

Ay =20 km?s™, TW—O 3 K
Awg--SXlO“7 km s, ;=60 m s"
Ad;=16 km? s, Ty=20K,

Afy=5X107° s“ u;‘=60 ms™,

Case J1 at 1306 days, legend as m Fig. 4.

AYy; =60 km? 571, ;=100 m s~
Aqi=6X107° s“, T;=25K,
AY;=60 km s, T;u,= 25 K,

Awy=1X10" km 57,
Af2=20 km? s~ T:=25K,
A =3X107% 571,

Case J1 at 1392 days, legend as in Fig. 4.
Ay, =100 km? s,
Ag1=1.2X10"¢sL
Ay =60 km? 7%, TW—O 7K,
Aw,=35X10"% km 577, ul =100 m s,
Ay =30 km? s™1, =25 K,
Afy=4X10"5 571, '

T3=15K,

Case J1 at 1471 days, legend as in Fig. 4.
Ay =120 km? 57,
Aq1=1.2X10"¢s71, T;=25K,
Ay; =80 km? 57, 75,=0.7K,
Aw,=5X10"% km 571,
AP, =30 km? s,

ALy =5X10"% s,

Ti=25K,

u; =100 m 57,

u; =100 m 7%,

%*=100 m s,

u}‘= 100 m s,

;=150 m s7,

u; =150 m s7,

=150 m s,

G=11Xx10"°s"!
wy=1.2X10~¢ km s!

jwzl* 6X 1075 km s!
=1.1x10-5 51
w,=1.2X10"% km s
wy=22 m s,

{=2X10"% 5™
w,=7X10"7 km s~}
|w2[* 6X10% km s}
$3=2X10"%s~!
wy=7X10~7 km s!
uy=50 msL

g;‘= 1.5%105 s~
w,=2.5X10~7 km s~!

lwzl* 1.6X107% km s™!
FH=1.5X10"% g™
w,=2.5%X10~7 km s™!
1y =50 m s,

(;‘=2><10"5 st
w,=5X10"8 km s~!
]wzi* 8X10~7 km s™!
£=2X10"% 57
=5X 1073 km s™!
=60 m sL

£=2X10-5 5!
¥ = 2% 106 km s~!
|2y *=1.2X 1075 km s~
G=2X10"%s1
wy=2X10"% km s~
;=100 m s,

5=3X10"%g}
wy=2X10"% km s™!
|wy | ¥ =6X10"5 km s™!

$3=3X10"5 g1
=2X10"%km s™!

=100 m s, .

5*;,‘=4><10—5 s
wy,=1X10"% km s
]wzl* 4X10~% km s™
3'2 4X10~°s7?
wy=1X10"%km s’
uh=150 m L.

VoLuME 36
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Fic. 14. Case J1 at 1773 days, legend as in Fig. 4.
(a) AY;=150 km?s7, ;=160 m s, {;-——4)(10—5 s
(b) A@p=4X10"%s71, T;=30K, wy=TX10"7 km s~!
() AY;=30km?s™, T5,=0.7K, |2y |* 8X10~% km s™!
(d) Aw,=8X10"¢km s, #;=160 m s, G=4X10"5 71
(e) Ag,=20 km?s™, »=30 K, wy=TX10"7 km s~}
()  Af=15X10"557, u;=160 m s, 43 =160 m s7L.
Fic. 15. Case J1 at 2184 days, legend as in Fig. 4.
(a) AY1=150 km? s, #;=130 m s, §‘Z= 2X 1075 51
(b) Aq@:=4X10"%s7, =30 K, wy=1X10"" km s
() AY;=20km?s™, T;,=05K, |'w2|* 1.2X107% km s7!
(d) Aw,=7X10""km s, ;=130 m s, $=2X10"% s
(e) AP2=20km?s, T3=30 K, wy=1X10"7 km s~
) Af=5X10"%s"1, ;=130 m s, #; =130 m s7L
F1c. 20. Case J3 at 586 days (a,b); Case J4 at 402 days (c,d) and Case J5 at 354 days (e,f).

Legend as in Fig. 19.
(a) AY1=80 km? s,

* —!
#; =60 m s,

G=1.35X10"%s1 r=3

(b) Ap=7X10"5s7, T,=10K, wy=1.5X10""km s, r=3
(c) Ay1=80 km?s™!, u;=60 m s™! $3=3X10"5s71, r=5

(d) Aq:i=8X10"%s7, T;=10K, 7/02---2><10—6 km s1, =5
() AY1=80km?s71, =80 m s, §'2 =4X10"% 5! 1—7

(©) Agi=2X10-*s1, Ti= wh=1X10-5 km s, r=17.

F1c. 21. Case J6 at 196 days (a,b) and 597 days (c,d), and Case J7 at 318 days (e, f) Legend

as in Fig. 19. r=3.
(a) AyY1=80 km?s™!,

u;=70 m s,

{3=2X10"5 5!

(b) Aq=1X10"*s, T;=10K, wy=2X10"¢ km s~!
() Ay;=80 km?s™!, ;=70 m s, G=2X10"% 571,

(d) Ag;=8X10"5s, T;=15 K, wy=2X10"7 km s~
(e) AY;=150 km?s71, ;=100 m s, $H=3X10"5 5!

) Ap=8X10"%s, T;=12K, w;=1.6X10"7 km s~!

F1G. 22. Case J8 at 1410 days (a,b), and Case J9 at 1137 days (c,d) and 1332 days (e,f). Legend

as in Fig. 19. r=3.

(a) AY1=200 km?s™, ;=200 m s, $3=4X10"5 57!
(b) Ag:=8X107%s71’ T;=25 K, =4X10"7" km s!
(c) AY1=120 km? s, #;=100 m s~! $H=3X10"5 57!
d) Ap=12X10"%s7, T;=25 K, =4X10"¢km s!
(e) AY1=120 km? s, u;=120 m sT}, §'Z=3X10_5 s™!
) Ap=8X10"°%s7, T;=25 K, w;=2)(10_G km s~
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