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ABSTRACT

We examine the relevance to Jupiter’s atmosphere of the solitary vortices favored at scales intermediate to
those of the quasi-geostrophic (QG) and planetary-geostrophic motions. Horizontal divergence plays a crucial
role in the intermediate-geostrophic (IG) dynamics and leads to asymmetries in vortex behavior; in particular,
anticyclonic vortices are generally more stable than cyclonic vortices when the mean flow is weak or westerly.
The IG vortices always propagate westward at close to the planetary long-wave speed, regardless of the mean
zonal flow. Meridional shear influences only secondary aspects of vortex behavior. Although governed by a
form of the Korteweg-deVries (KdV) equation, vortex encounters produce coalescence not soliton behavior.

Jupiter’s Great Red Spot and Large Ovals appear to be in, or close to, an IG balance while the Small Ovals
lie in a QG balance. The stability of anticyclonic IG vortices may explain why most of Jupiter’s super-eddies
prefer anticyclonic spin. Solutions to the shallow water (SW) equations, using Jovian parameters, show that
an IG vortex with the scale and environment of the Great Red Spot has great longevity and that such a vortex
may originate in a weak barotropic instability of the zonal currents. Strong barotropic instability on the IG
scale differs from its counterpart on the QG scale and produces multiple, steep, isolated vortices resembling
the Large Ovals.

Equations are derived for all forms of geostrophic balance (three basic classes, ten subsets) to investigate the
uniqueness of the IG system. Numerical studies use the IG 8-plane equation to examine basic modal properties
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and the full SW equations to examine the Jovian eddies.

1. Intreduction

Jupiter’s atmosphere displays many forms of motion,
some coherent and long-lived, others irregular and
transient. The ubiquitous waves and turbulence occur
on the smaller scale, the sieady zonal currents on the
larger scale, while the Great Red Spot (GRS), the Large
QOvals, the tropical plumes and the late South Tropical
Disturbance (1901-39) occur on the intermediate scale.
Because of their vasily different sizes, the various eddies
probably lie in different dynamical regimes.? As with
oceanic eddies, motions at the intermediate scale are
the least understood.

Jovian motions are believed to have much in com-
mon with those of the ocean: a strong energy conver-
sion by the small eddies, activity over a wide range of
scales, a weak dissipation, coherent and turbulent
structuring, and similar nondimensional parameter
ranges (Williams, 1978). Differences occur not so much
in the basic modes of motion but rather in their forcing

' Permanent affiliation: Research Institute for Applied Mechanics,
Kyushu University, 87, Kasuga 816, Japan.

2 See Section 3 for a detailed scale analysis and Hunt and Moore
(1981) for a convenient description of the various Jovian phenomena.

mechanisms and boundary conditions. The efficacy of
the ocean-Jupiter analog in understanding the Jovian
planetary circulation and turbulence suggests that it
might also be useful to look for correspondences be-
tween the coherent eddy forms of the two systems.

Three classes of ocean dynamics are known: the
quasi-geostrophic (QG), the planetary-geostrophic®
(PG) and the recently discovered intermediate geo-
strophic (IG) (Charney and Flierl, 1981; Yamagata,
1982). They govern the small, large and medium scales
of motion, respectively. These regimes are more distinct
in the ocean and in Jupiter’s atmosphere than in Earth’s
atmosphere, because a greater scale separation exists
in those systems. The Jovian QG modes have been
discussed with respect to the problems of the generation
of muitiple jets by baroclinic eddies (Williams 1979a;
Williams and Holloway, 1982) and the generation of
planetary solitons by zonal wind shear (Maxworthy
and Redekopp, 1976).

The only IG processes known at present are those
associated with a class of remarkably stable solitary
vortices that are the intrinsic modes of the shallow

3 Called Geostrophy of Type 2 by Phillips (1963).
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water (SW) equations in a certain parameter range.
These vortices were developed for oceanic models and
applied to tropical coastal eddies (Matsuura and Ya-
magata, 1982). Our purpose in this paper is to see if
they have some bearing on the structure and stability
of Jupiter’s Great Red Spot and Large Ovals. Other
vortex theories have been applied to the various Jovian
eddies but have encountered the difficulties noted
below. ‘ A

The Rossby shear-soliton theory (Maxworthy and
Redekopp, 1976) and the singular vortex model (In-
gersoll and Cuong, 1981) are both based on approx-
imations to the QG equations. Thus, their solutions
relate to eddies of only the smallest planetary scale—
no greater than that of the Small Ovals* (see Section
3)—and their vortices must compete and coexist with
other QG processes. The turbulent nature of the smaller
Jovian eddies probably prevents solitons or singular
vortices from existing in their range of scales.

The non-oval shape and the 40 m s™! westward drift
of Rossby shear-solitons are features that are not seen
for any Jovian eddy (Beaumont, 1980). There is also
some question as to whether the QG approximation
remains valid for nonlinear phenomena, such as so-
litons, whose longitudinal scale greatly exceeds their
latitudinal one (Yamagata, 1980, 1982). Doubts have
also arisen as to how stable and significant the *“‘steady-
ing” vortex found by Ingersoll and Cuong really is,
since: 1) it is generated at a large Froude number, even
though the QG equations are only valid for values near
unity, 2) it is nearly as large as the computational
domain and may be relaxing toward a normal mode
of the type discussed by Kuo (1959), 3) it is a restricted
quasilinear vortex—because of the use of a linear in-
tegration function—and may be composed of per-
manent linear waves of the type discussed by Thomp-
son (1948). This model also depends crucially on the
assumption that the vertical scale of the eddies is much
smaller than that of the mean flow. This hypothesis
is based on the belief that the steadiness of Jupiter’s
jets implies vertically shallow eddies. However, steady
jets can occur whenever the eddies are horizontally
small, so vertical complexity is not required for, nor
justified by, the form of the planetary circulation.

In the following sections, we discuss a form of solitary
vortex that is a highly stable fundamental nonlinear
mode, that is strongly isolated (both parametrically
and spatially) and can exist in almost any mean flow
in a simple model atmosphere. Unlike the Rossby
shear-soliton it can exist without any meridional shear.
We begin, in Section 2, with the derivation and dis-

cussion of the -various dynamical regimes and their

equations; this reveals the uniqueness of the IG system.
Then, in Section 3, we examine the parametric range

“ The Great Red Spot is much too large to be a Rossby shear-
soliton. For a further critique of these theories, see Flierl ez al. (1983).
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of the various Jovian eddies and try to categorize them.
In Section 4, the IG equations are solved numerically,
to illustrate the basic properties of solitary vortices on
a S-plane. In Section 5, we solve the full SW equations,
on a sphere, to see whether the IG solitary vortex ‘can
exist and remain stable when other dynamical modes
(e.g., QG) also occur. These calculations are made with
Jovian parameter values to determine whether stable
IG vortices with the characteristics of the GRS and
Large Ovals can be generated under “planetary” con-
ditions. We also try to create IG vortices ab initio, by
perturbing barotropically unstable zonal jets, to test
ideas about the origin of the Great Red Spot and Large
Ovals.

2. Geostrophic regimés and the intermediate-geo-
strophic equations

. a. Basic model

The shallow water equations give the simplest rep-
resentation of stratified planetary-scale motions. This
model can be interpreted either as a single layer acting
under external gravity or as two layers, one of which .
is much deeper, acting under a reduced (or internal)
gravity. On a $-plane, the equations are

D
o~ U+ By = ~gn,

D
5% + (o + BYu=—gn,

Dy s (2.1)
—I)—t+(H+n)fux+vy)=0
D) _ '

o= dul kol )y

where 1 measures the displacement of the surface from
the mean layer thickness H, g is the internal or external
gravity and x = a\ cosby, y = a(f — 6,) are the S-plane
coordinates based on the longitude and central latitude -
(A, 6;) and (u, v) the corresponding velocity compo-
nents. The Coriolis terms fy = 2Q sinfy, 8 = 2Q cosfy/
a are for a planet of radius a and rotation rate £2.

b. Nondimensional equations

For planetary motions, the appropriate scale factors®
for the u, x, ¢, n variables are U, L, L/BLg%, LUf/g,
where Lg = c./fy is the deformation radius and
¢, = (gH)"” the internal or external gravity long-wave
speed. Inserting these into (2.1) gives the nondimen-
sional equations

5 We assume that processes are essentially isotropic in x and y.
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where 8 = BL/fy, € = U/Lfy, § = Lg?/L? are the non-

dimensional sphericity, Rossby and stratification pa-

rameters. These equations can be combined into an

expression for the conservation of potential vorticity:
b

Dt
O=(+8y+ e/l + & ')

/

=0
(2.3)

where
{=0x— U,

¢. Dynamical regimes

The types of motion exhibited by this model depend
on the parameter range in question. There are three
basic classes of motion: the QG, PG and IG (cf. Gent
and McWilliams, 1983). The best known balances oc-
cur at the smallest planetary scales (L ~ Lg < a),
where ¢ ~ f < 1 and § ~ 1 reduce Egs. (2.2) and
(2.3) to the quasi-geostrophic system and at the largest
planetary scales (L ~ a » Lg), where ¢ ~ § < 1 and
B — 1 give the planetary-geostropmc system.® We are
particularly interested in the motions that lie between
those two extremes, motions that involve both the QG
wave dispersion and the PG nonlinear divergence ef-
fects At these scales (Lg < L < a), the parameters
¢, §, 8 are all small (but to a different degree), and the
motions are governed by the IG equation (Charney
and Flierl, 1981; Yamagaia, 1982).

To derive the IG equation, the major nonlinear
terms in Eq. (2.2) must be included. These terms be-
come important, with respect to lmear wave effects,
whenever some of the factors ¢, ¢/8, ¢/§8 approach
unity. At the intermediate scales, this occurs when the
parameters have the following related degrees of small-
ness:

B<1, e=EB, §=8S8B, (2.4)
where E, § are numbers of O(1). If we use this rela-
tionship to expand (2.2) and (2.3) in powers of §, we
obtain the IG equation (see Section 2d for details).

¢ The B-plane approximation is not strictly valid for the largest
planetary scales. However, our analysis and use of the constraint
f < 1 yields a S-plane representation of these modes, one that captures
the essence of their behavior.
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The reduction in parametric freedom introduced by
Eq. (2.4) occurs because we are defining balances be-
tween various processes, not the processes themselves,
and parameter ratios determine these. Physical rela-
tionships such as that implied by (2.4) must be selected
to make the basic equations tractable; we cannot ex-
pand in powers of all three basic parameters. For our
planetary problems, 8 is the basic parameter because
linear planetary wave dispersion is the main mecha-
nism against which the nonlinear effects are measured. 7

If we assume a more general parametric relationship
of the form ¢ = EB", SB™, the complete set of
dynamical systems (in the geostrophic regime) can be
determined on taking #» = 1-4 and m = 0-3 (see Table
1). The equation derivations resemble that for the IG
system in Section 2d. From Table 1 we see that the
geostrophic regime consists basically of QG, PG and
IG regions, with three QG and six PG parametric sub-
ranges—the most important of which lie in the top
left corner. We classify a region as QG if dispersion
dominates, as PG if nonlinear® divergence dominates,
and as IG if both dispersion and nonlinear divergence
are present. As Table 1 clearly illustrates, there is only
one parametric region where all the processes are active;
this gives the unique IG system. At higher powers of
8, the same equations reappear so the tabulation is
complete.

The following highlights of the different subranges
of Table 1 should be noted.

1) QGgy: This is the classical quasi-geostrophic sys-
tem. It is strongly nonlinear (advective) and dispersive
and governs such phenomena as cyclones, MODE ed-
dies, modons and Small Ovals.

2) QG;: This is the traditional linear quasi-geo-
strophic system (with divergence) used for the analysis
of Rossby waves. ’

3) QG,: The linear divergence effect, not vorticity,
defines this dispersive Rossby wave regime. The me-
ridional twisting term distorts the waves.

4) PGy: This is the B-plane representation of the
classical planetary-geostrophic (Burger®) system. It is
strongly nonlinear (from divergence) and nondisper-
sive. A long planetary wave or Sverdrup balance can
occur when E’ < 1.

5) PG,: This is the basic nonlinear (divergence) PG
balance. Unlike PG,, waves do not occur.

'6) PG,: This is similar to PG, with modifications
by the nonlinear advection terms; strong velocities are
present. Gulf Stream Rings may be in this subrange
during their decay stage.

7 This analysis does not apply to f-plane motions.

8 PG; is a degenerate, linear case.

® Not to be confused with J. Burgers’ turbulence model, even
though the equations are similar. Note also that, although 8 ~ 1 in
the original Burger analysis, a large value of this parameter is not
necessary for the nonlinear divergence to be important.
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7) PGs;: This is similar to PG, but with modifica-
tions by nonlinear advection terms.

8) PG,: This is similar to PGy, with nondispersive
waves modified by a weak nonlinear (divergence)
steepening and a weak meridional twisting.

9) PGs;: This is similar to PG, but without the non-
linear term. It is a degenerate form.

10) IG: This is the one and only intermediate-geo-
strophic region. The basic balance is between a weak
nonlinear (divergence) steepening and a weak wave
dispersion, with modifications by the nonlinear ad-
vection and the meridional twisting. Possible examples
are the Costa Rican gyres, the Great Red Spot and the
Large Ovals.

Although separate QG, PG and IG forms of motion
can occcur simultaneously in a system whose energy is
spread over a wide range of scales, it is unlikely that
scale discretization and isolation is sufficient to give
motions in more than one of the various subranges of
the QG and PG regimes. The special properties of the
IG system—its distinct scales, its iniermediate para-
metric location and its fundamental (solitary vortex)
modes—give it a high chance of occurring in multiscale
motions.

d. Intermediate equations

To derive the IG equations, we must first extract

the geostrophic balance
vE =+, (2.5)

from Egs. (2.2). The ageostrophic velocities u* = u
— wf then satisfy

ut = Ny,

) Dv . D)
+ a= 3§~ — 4
(1 + By Bs D Byu

(1 + By = Bf%t‘- —Bwe . (2.6)

" An ~.Dn
( en)( y) B Dt

For the IG parameter relationships of Eq. (2.4), Eqgs.
(2.6) and (2.3) approximate to

u® = —Byuf + 0(8?

~Byve + O(B?)

1+ By — ES™'n)

+ BHEL — ES~'yn + E2S72%) + O(5?)

,Da

.27
- 2.7

I

Substituting (2.5) and (2.7) into (2.3) gives to
OB):

7= =0, (2.8)

the equation for nondispersive planetary eddies. So-

lutions exist in the form n = (X, y, T) where X = x

+ ¢ denotes a coordinate traveling westward with the
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planetary long-wave speed, and where 7" = §¢ denotes
the strained (slow) time coordinate that describes long-
term evolution. At this level of approximation, no in-
teraction occurs between the mean zonal flow and the
eddies,'® which always move westward (cf. White,
1977).

The O(3?) terms in (2.3) give the prediction equation
for the slow changes:

nr ~ ES 'gmx — SVnx + 2ynx + EJ(V?n, 1) = 0,
(i) (i) (iii) (@iv) )
2.9)

where J(4, B) = AxB, — ABx, V() = ( )xx
+ ( ),y The local vorticity time change {7 does not
appear in this equation as it is negligible compared to
term (i) when L » Lg. [The same is true for the QG
potential vorticity (VZq — §™'9); the second term dom-
inates when § < 1.] Term (ii) describes the ageostrophic
divergence and stems from the last two terms of II in
Eq. (2.7); the nonlinearity measures the finite ampli-
tude changes in thickness (cf. Anderson and Kilworth,
1979). Term (iii) is the planetary wave dispersion, term
(iv) the meridional twisting of the long waves (cf. Mey-
ers, 1979) and term (v), the geostrophic advection of
vorticity.

The divergence term (ii) and, to a lesser extent, term
(iv) make Eq. (2.9) asymmetric with respect to cyclonic
and anticyclonic eddies. For anticyclones, the nonlinear
steepening of term (ii) can balance the wave dispersion
of term (iii), especially in the absence of mean flows,
and allow long-lived vortices. This nonlinear steepening
is due to the movement of the surface and not to the
advection of momentum—the steepening process in-
volved in QG solitons. For cyclones, terms (ii) and
(iii) are the same sign and must be balanced by term
(i), leading to the dispersion of the vortex. Term (v)
is small, except during vortex collisions, and term (iv)
is small except when the eddies are of domain size.

For the IG and PG approximations, only one qua-
dratic quantity (n?), the potential energy, obeys a con-
servation equation, whereas the basic equations and
the QG approximation conserve both total energy and
potential enstrophy. Thus, the two-dimensional and
QG forms of turbulent cascade cannot occur at the
IG and PG scales.

e. Mean flow effects

To examine the asymmetric behavior of (2.9) when
zonal currents u%(y) are present, we define the new
dependent variable

g=n+ | wonay, 2.10)

191f they have the same vertical structure.
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and substitute it into (2.9). This gives

tr— ES~'8x — (S + Eu®)V2Ex + [Zy + Eud,
+ ES_'I J;y u°(y’)dy’]£x + EJ(V? £) = 0. (2.\1 1)

Three types of solution can occur depending on the
sign of the third term:

e S + Eu® > 0. Eddies behave as for u° = 0 (see
Section 2d); only anticyclones are long-lived, with the
dispersive effect (third term) balancing the nonlinear
steepening (second term).

e S+ Eu® < 0. Only cyclonic eddies are long-lived.
The balance is the same as in the first solution.

e S+ Eu®=0. Both cyclonic and anticyclonic eddies
are long-lived when #° has this unique value. Critical
layers surround the vortex and contain its energy. A
weak nonlinear steepening now balances a weak non-
linear advection (last term). '

f Nu}nerical methods

We carry out two sets of numerical studies. First,
we solve the IG S-plane equation (2.9) using standard
centered differencing and the Arakawa (1966) scheme
for the Jacobian term, even though energy and en-
strophy constraints are not needed. The method for
the nonlinear term (ii) conserves n and #°. To avoid
boundary effects, we chose a channel that is wide in
both X and y, setting y = £10, X = +10. Boundary
conditions are periodic in X and freeslip in y. The
resolution is 64 X 64. Time smoothing by the restart
method (every 20 steps) controls computational modes.

Second, we solve the full shallow water equations
on a sphere:

w+V-Vu—(f+ ga“ tanf v

=— _(§1Qx_ + i(uJ - )+ V%, (2.12)
acosd 71
v,+ V:-Vo+ (f+ ua™" tanf)u
@Y ey 213
a 7
h,+ V-V(h — hg) = vV?h, (2.14)

where V is the horizontal divergence operator, h = H
+ n and hp is the height of any surface topography
(used in Section 5g only). Weak dissipative terms and
a weak time filter are added for computational control.
The Newtonian term is added to generate or maintain
particular zonal flow velocities u,(¢) against an equil-
ibrating drag on a time scale 7. These equations are
solved using a potential enstrophy conserving scheme
on a latitude-longitude grid (Sadourney, 1975). Cal-
culations are made for a channel extending from 6
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=0 to 40° and A = -90° to +90°; this wide domain
buffers the main vortex region (f = 15 to 25°) from
the boundaries. A resolution of A§ = 1° and A\ = 2°
was found to be sufficient. Geometric parameters for
Jupiter are @ = 71400 km, © = 1.763 X 107% 571,
H =10 km and g; = 2640 cm s~2, Only the parameter
combination gH is of dynamical significance, so each
solution also holds for ga™' and aH, where a is any
number. All solutions are shown in a Northern Hemi-
spheric framework.

3. Jovian vortex parameters

a. Cloud level observation

The properties of the GRS at cloud level are well-
known (e.g., Mitchell et al., 1981): it is a singular vortex
of great age; it extends (at 21°S) over 12° of latitude
and 25° of longitude; at.its edge, winds exceed 100 m

™! both zonally and meridionally; it drifts slowly west-

ward (at present) at speeds of 1 to 5 m s™! relative to
the System III reference frame (the rotation of the
magnetosphere).

The Large Ovals are widely spaced, noncolliding,
multiple vortices (3 or 4 in number, at 35°S) that have
existed in variable form since 1939. Their winds also
reach 100 m s™! at cloud level and they drift eastward
at S m s, relative to System III. The Small Ovals
(about 15 in number at 45°S) have a similar drift but
a more uncertain form and history.

The vortices of these three sets differ in number,
size, history and motion, but they do have similar
shapes and spin: all are steep anticyclonic vortices cen-
tered on anticyclonic shear zones. A complete theory
for these objects should explain this anticyclonic pref-
erence, as well as the origin, longevity, form, drift,
scale, uniqueness or multiplicity, localization and re-
lationship to the rest of the global circulation.

b. The U scale

The anticyclonic shear zones in which the GRS,
Large Ovals and Small Ovals lie are 6-8° wide and
bounded by velocity extrema of (=75, 60), (—30, 35)
and (0, 40) m s!, respectively. The location of the
vortices at latitudes where u,° is a maximum suggests
that they have more of a barotropic than baroclinic
energy supply. The barotropic instability criterion for
the SW model requires that '

u
B=8—-u,+-— 3.1
Ly
change sign for instability. On the largest scales (§
< 1), the last term in Eq. (3.1)—the divergence term—
dominates the criterion. Application of (3.1) indicates
that the cloud-level winds should be highly unstable
for almost any reasonable value or variation in Lg(6).

However, the fact that the zonal currents do not

appear to be particularly unstable implies that they

/
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must, like the ocean currents, have a significant and
stabilizing vertical variation—probably an exponential
decay with depth. As the SW model represents only
the vertically averaged winds, we must assume that
they have an amplitude of about one-third the cloud-
level values,'! to avoid excessive barotropic instability.
Such velocity levels are used in the scale analysis and
numerical solutions.

¢. The Ly scale

The primary arbitrary parameter of the SW model
is the deformation radius. If we take the most prolific
waves to be the best measure of this scale, then L
~ 1500 km. The definition L = VgH/fproduces such
values when, for example, g = g;/10 and H = 10 km
or g = g;/100 and H = 100 km. So, unless the at-
mosphere is both very deep and very stable, this value
of Ly is reasonable. The associated long-wave prop-
agation speed ¢; = —BLg* equals —10 m s™'. If Ly
were larger, ¢ would be larger and vortices would
propagate at speeds greater than 10 m s™!. As such
propagation speeds are not observed, we regard 1500
km as the upper limit for Lg.

It should be noted that for a given value of g and
H, Ly can vary considerably with latitude for a vortex
as large as the GRS because of the variation in f, Such
variations are absent in the S-plane analysis but can
be very influential in the spherical case. Thus, in some
solutions we allow g to vary as sin¢ to make Lg con-
stant and compare with the 8-plane results, In reality,
the deformation parameter could vary substantially
with latitude and height—as it does for Earth’s at-
mosphere and oceans.

The above choice for Ly is consistent with the plan-
etary view of the global circulation (Williams, 1978,
1979a) in which small baroclinic eddies drive the jets
via planetary wave propagation. If, on the other hand,
we assume that the medium or large eddies are a better
measure of Lg, then we are left without an explanation
of the (ageostrophic) small waves and turbulence and
without a consistent view of the global circulation.

d. The L scale

The limitations of scale analysis make it impossible
to apply the IG theory directly to the Jovian eddies.
For the GRS, for example, it is not clear whether the
length scale L should be based on the latitudinal radius
of 6000 km or on the longitudinal diameter of 26 000
km. The choice can lead to vastly different conclusions.

To illustrate the problem in detail, Table 2 lists the
basic SW parameters for three values of L and U,
chosen to represent the range of measures of the Jovian

! Similar problems and assumptions arise when the SW model
is used for studies of Earth’s atmosphere and oceans.
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TABLE 2. The basic dimensional and nondimensional dynamical
parameters (and the nonlinear factors) for three distinct scales of
vortex, located at the latitudes of the major coherent eddy forms on
Jupiter—the GRS, Large Ovals and Small Ovals. The observed
vortex propagation speed cops refers to the drift of these objects rela-
tive to System 1II, where Lz = 1500 km, ¢; = —BL#%, € = U/Lj,
8 = BLIf, § = Lg/L% E = ¢/§* and S = §/8.

Big Medium Small
vortex vortex vortex Units |

L 18 000. 6000. 2000. km
U 50. 30. 10. ms™!
h 13x10%  20x10* 25x10* s
B 46X 10° 40X 10 35%X10° km's™!
o —21° —35° —45° deg
Cons -3 : +5. +8. m s™!
cs —10. —9. —8. ms™!
€ 0.02 0.02 0.02
I 0.60 0.12 0.03
K 0.01 0.06 0.60
E 0.05 2.0 25.
S 0.01 0.5 20.
b7/ 0.3 0.2 0.7
s 3.0 0.4 0.04
/65 5.0 3.0 1.0
Balance PG IG QG

eddies and lying nominally in each of the three basic
dynamical regimes.

e. The dynamical regimes

If we interpret L in Table 2 as the longitudinal di- -
ameter of an eddy, then the GRS could be a big vortex
and obey PG dynamics. But if we interpret L as the
latitudinal radius, the GRS could be a medium IG
vortex. Similarly, the Large Ovals could be either IG
or QG vortices but the Small Ovals appear to be ines-
capably of QG form.

For the GRS to exist as a PG vortex, it must be
forced by a source of diveérgence such as a topographic
or thermal anomaly in the lower atmosphere. We ex-
plore this alternative view of the GRS in Section 5g.
Numerical solutions can be used to overcome the
vagueness of scale analysis and reveal in which regimes
the various vortices lie. These solutions are dealt with
in the next two sections.

4. Evolution of monopole IG eddies in shear flows

To see how a solitary IG vortex might behave in
the shear zones'? of Jupiter’s atmosphere, we solve the
IG equation (2.9) using the parameter values of a me-

_dium-sized Jovian vortex (E =2, 5 =0.5, U =30 m

12 The behavior of IG vortices in uniform flow for ocean parameters
has been discussed elsewhere (Matsuura and Yamagata, 1982).
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s7! L = 6000 km, Lg = 1500 km)—see Table 2. Jovian
vortices and mean flows seem to have shears of com-
parable strength, with divergence effects preventing
barotropic instability at these scales. The sign of the
vortex and shear are varied to examine different con-
figurations. Gaussian forms of vortex are used to ensure
full nonlinearity and generality and collisions are used
as an extreme test of stability.

The solutions are shown in a Northern Hemispheric
framework, with the (X, y) coordinates propagating
westward at the long-wave speed (—9 m s™!). At y

TIME
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= 1, the dimensional « and y have values of 30 m s™!
and 6000 km.
a. Anticyclonic vortex in anticyclonic shear (A:A)
An initial condition of the form
n=+1.0e" — 0.5y 4.1)

creates a solitary anticyclonic Gaussian vortex in a
uniform anticyclonic shear, where r = (X2 + y?)'/2,
The streamfunction, history plot and spectrum describe

TIME

TIME

TIME

FIG. 1. History plots (time-longitude) of the free surface variable (X, T) at y = O for the four basic solutions to the IG
equation (2.9). (a) (A:A). Anticyclonic vortex in anticyclonic shear; (b) (C:C). Cyclonic vortex in cyclonic shear; (c) (A + A:A)..
Two colliding anticyclonic vortices in anticyclonic shear; (d) (C + C:C). Two colliding cyclonic vortices in cyclonic shear. The
contour interval in (a), (b) is 0.1 plus the +0.05 values and in (c), (d) it is 0.2 plus the +0.1 values; no 0.0 values are shown.
Domain propagates westward at the long-wave speed. Time is nondimensional; 7 = 1 corresponds to 64 days.
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the evolution of this vortex over a time interval AT
= 5 (Figs. la, 2a and 3). The real time, AT/(f,562),
extends to 320 days. .

The vortex remains at its original latitude—where
u%(y) = 0—Dbut drifts eastward relative to the moving
frame due to the meridional asymmetry of the yn,
term in Eq. (2.9); see Fig. 1a. Wave propagation creates
secondary disturbances to the south, even though a
critical layer exists at y = —0.25; this occurs because
the vortex extends beyond this latitude. A turning point
at y = +0.25 eliminates waves to the north of the
vortex. Except for determining the position of the crit-
ical layer and the turning point and producing a slight
longitudinal stretching, the meridional shear has little
effect on the vortex behavior—mainly because SE™!
> |u° near the vortex. Unlike the QG soliton, the
vortex can exist without shear.

This vortex is said to be robust, or strongly stable,
as its identity and integrity are easily maintained by
a balance between the dispersion and nonlinear steep-
ening terms. Little energy disperses at any wavenumber
(Fig. 2a). The durability aiso depends to some extent
on the values of E and S, factors whose relative mag-

ENERGY

{a)

T
24 32
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nitude control the slow time scale. When E = 0.4,
S = 0.6, for example, a vortex disperses more rapidly.

b. Cyclonic vortex in cyclonic shear (C:C)

The initial condition

n=—10e"" + 0.5y° 4.2)

creates a cyclonic vortex in a cyclonic shear. The eddy

initially moves northward (due to self-induction) and

relatively eastward (due mainly to the ES™ !9z, term),
before settling at the long-wave speed as its decay pro-

gresses (Figs. 1b and 4). The weak eddies emitted from

the original vortex continue to show a weak but sys-

tematic relative-eastward propagation because their

lateral scale is small (Fig. 1b).

The collapse of the vortex occurs at all scales (Fig.
2b), but mainly on its southern side because S + Eu°
> 0 there. This prevents a balance between the dis-
persion and the nonlinear steepening. A critical layer
at y = +0.25 prevents wave propagation and collapse
on the northern side (where S + Eu® < 0). An example

ENERGY

ENERGY

WAVE NUMBER

ENERGY

WAVE NUMBER

FIG. 2. As in Fig. | (a)-(d), but for kinetic energy spectra in terms of the zonal wavenumber,
with mean flow component subtracted.
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T=00 o
2. : L = J

1=30

)
0
0

-2. r T 1
-10. ' 0 X : 10.

FiG. 3. IG Solution (A:A). Evolution of the free surface variable n(X, y, T) for an
anticyclonic Gaussian vortex in an anticyclonic shear. The contour interval is 0.2 and
the time interval AT = 1.0 corresponds to 64 days. Domain propagates westward at
the long-wave speed. Only the central part y = +2 of a computational domain of
y = =10 is shown. At y = +2, the dimensional u, y values are 60 m s* and -
+12 000 km. .

of a robust cyclonic vortex in an S + Eu® = 0 flow is  creates two anticyclonic voﬁices traveling westward at
given by Matsuura and Yamagata (1982). different speeds (due to their different intensities) in
' an anticyclonic shear zone (Figs. 1c and 5). The stron-

¢. Collision of two anticyclonic ertices in anticyclonic &€t €ddy moves more rapidly, catching up with the

shear (A + A:A) weaker one and absorbing it. (Vortices of equal in-
) o ; : ' tensity and size travel at the same speed and never
The initial condition ’ . collide.) The collision changes the eddy propagation

= _ 2 2 from relative-westward to relative-eastward (Fig. 1c)
n=10exp =~ [(X +1.56) + ] and transfers energy to the larger scale (Fig. 2c; cf.
+ 2.0 exp{— [(X — 3.13)> + »*]} — 0.5y* (4.3) curvesfor T = 1and T = 3).
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7=40

-10.

FiG. 4. As in Fig. 3, but for IG Solution (C:C). Evolution of the free surface variable
(X, y, T) for a cyclonic Gaussian vortex in a cyclonic shear.

The coalescing of eddies is normal behavior for two-
dimensional fluids both for deterministic (Winant and
Browand, 1974) and statistical (Batchelor, 1959, p.
187) systems. Merging also occurs for quasi-geostrophic
motions, for a singular vortex (cf. Ingersoll and Cuong,
1981) and for turbulence (Rhines, 1977). The nonlinear
advection Jacobian controls the coalescence in all these
systems. In IG dynamics, however, the Jacobian is
only active during collisions. The Jacobian term of
(2.9) is zero for a circular vortex and becomes signif-
icant only when strong deviations from circular motion
occur—such as during collisions. Only in the absence

of collisions do the vortices obey a form of one-di-
mensional Korteweg-deVries (KdV) equation. Soliton
behavior, in which vortices pass through each other
with only a phase shift as a remnant of collision, is
abnormal and peculiar to motions obeying the pure
KdV equation (cf. Miles, 1980); however, recent studies
have shown that certain QG modons also exhibit so-
liton behavior (McWilliams and Zabusky, 1982).
We cannot argue that a large IG solitary vortex can
sustain itself by absorbing smaller IG vortices, because
at some point we would have to explain how a smaller
IG eddy sustains itself by interaction with the QG scale



. 464

=00

JOURNAL OF THE ATMOS?HERIC SCIENCES

VoL. 41, No. 4

1220

=30

-10.

FIG. 5. As in.Fig. 3, but for IG Solution (A + A:A). Evolution of the free surface
variable (X, y, T) for two colliding anticyclonic Gaussian vortices in an anticy-

clonic shear.

motions and, as we shall see in Section 5, such inter-
actions tend to disperse the vortex.

d. Collision of two cyclonic vortices in cyclonic shear
(C + C:C)

The initial condition
n=—2.0exp — [(X + 1.56)* + 3

~ 1.0 exp{— [(X — 3.137 + 371} + 0.5y, (4.4)

produces two cyclonic vortices of unequal intensity
traveling relatively eastward and slightly northward in B
a cyclonic shear zone (Figs. 2d and 6). They coalesce
into a larger vortex that has almost no relative motion
and which disperses in the manner of the simple cy-
clonic vortex in Section 4b. Some of the amplitude
loss seen in Fig. 1d comes from the northward dis-
placement of the vortices.

Comparing the dispersion rates of the single and
colliding cyclonic vortices, Figs. 2b and 2d, suggest
that the normal collapse of a cyclonic vortex is slightly
delayed by the absorption of a smaller vortex.
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T=00

FIG. 6. As in Fig. 3, but for IG Solution (C + C:C). Evolution of the free surface
variable n(X, y, T) for two colliding cyclonic Gaussian vortices in a cyclonic shear.

e. Anticyclonic disturbance in cyclonic shear (A:C)

To examine the stability of anticyclonic eddies fur-
ther, we place such an eddy in an opposing, cyclonic
shear via the initial condition

7= 1.0 + 0.5y% 4.5)

This produces a saddle-shaped disturbance which, after
some initial adjustment, remains intact for the rest of
the calculation (Fig. 7). The inverse configuration, a
cyclonic eddy in an anticyclonic shear, evaporates
quickly (not shown).

f. Anticyclonic vortex in multi-jet flow (A:mA)

To see what happens when the environmental shear
zone is only as wide as the vortex, we place an anti-
cyclonic vortex in the central anticyclonic region of a
multi-jet flow (Fig. 8) using the initial condition

7 = 1.0e7"” + cosy — 1.0. 4.6)
This configuration eliminates the boundary problems
associated with computing for narrow shear zones in
narrow channels.
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FIG. 7. As in Fig. 3, but for IG Solution (A:C). Evolution of the free surface variable
(X, y, T) for an anticyclonic Gaussian vortex in a cyclonic shear.

The vortex evolves much like the basic case in Sec-
tion 4a, traveling relatively eastward at its original lat-
itude and remaining robust. This similarity is to be
expected, given the weak impact of any shear on an
IG vortex. Differences occur with the secondary eddies:

propagation northward and southward is limited by )

multiple turning points and critical layers [at y ~ nw
+ (—1)**! 0.25]. The weak waves south of the vortex
propagate relatively westward since the vortex initially
extends into the region where S + Eu® < 0. Small
disturbances are observable in the various zones where
u® = 0 because the basic 5 is small there.

5. Origin and evolution of Jovian (SW) vortices

The vortices of Section 4 are constrained, by virtue
of our use of the restricted equation (2.9), to be of a
purely IG form. We now examine whether IG vortices
can exist (with and without zonal flows) in the more
general dynamical and geometrical framework of the
full spherical SW equations (2.12)-(2.14). We find that
they can, despite the possible presence of dispersive
QG modes, and that they resemble the GRS and Large
Ovals when Jovian parameters are used.

The behavior of a large anticyclonic vortex on a
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FIG. 8. As in Fig. 3 except whole domain is now shown for IG Solution (A:mA). Evolution of the free surface variable
X, y, T) for an, anticyclonic Gaussian vortex placed in the central anticyclonic shear zone of a multiple jet flow.

sphere with Jovian parameters depends mainly on the
value of the static-stability parameter g (or Ly). When
the stability is high (g > g;/5), the vortices are large
and QG, but when the stability is low (g < g,/20) they
are small and ageostrophic. When the stability is mod-
erate (g,/20 < g < g;/5), IG vortices form that retain
their identity for a long time and propagate uniformly
westward at a speed close to cz. Vortex stability is
marginal for g,/10 < g < g,/5, but can be enhanced
by the presence of a zonal flow or a variable g(8). These
values of g are obtained for vortices of GRS scale and
location and for H = 10 km. All vortices are initially
stationary and of anticyclonic Gaussian form.!?

a. Evolution when g = constant (u° = 0)

A vortex placed at # = 25° on a Jovian sphere with
g = g;/15 evolves as shown in Fig. 9. The initially
stationary vortex sheds a tail as it begins to propagate
and to adjust to an IG balance. It travels westward at
—10 m s™', a speed close to the theoretical value of ¢,
(=7 m s7') at 8 = 21°. Over the 3-year period, the
eddy decays because the relatively high static-stability

13 Cyclonic vortices disperse within 50 days and will not be pre-
sented. A day is 86 400 seconds.

imposed on the equatorial region leads to anomalously
strong wave activity in that region.

This vortex differs significantly from those on the
IG B-plane: its shape is no longer circular, its axis tilts
and it migrates slowly equatorward. These differences
are due to the stronger meridional twisting and the
significant latitudinal variations in the basic parameters
Ly and ¢; over the region of this large, vortex.

b. Evolution when Lg = constant (u° = 0)

Eddies on a sphere resemble those on the IG 8-plane
most closely when they are relatively small. However,
large circular vortices can be generated on a sphere,
and in low latitudes, by forcing g to vary as sin%6. This
makes Ly and ¢ (almost) independent of §. Writing
the pressure term as (gh), in Eq. (2.13) achieves this
without violating the consistency of the SW system.
If g varies as (1 + 8yg’) on the IG B-plane, the terms
(ii) and (iv) in (2.9) are modified by factors of (I
+ g’) and (1 — 3g’) respectively; this implies that the
stability is enhanced and the meridional twisting is
reduced by such variations. Variations in g are phys-
ically unrealistic but are a useful mathematical device
for connecting the IG $-plane and spherical analyses.

The evolution of a vortex placed at § = 21° in a
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FIG. 9. Solution SW1. Evolution of the free surface variable n(), 8) for an
anticyclonic vortex in a resting fluid, with g = g,;/15. Contour interval is 1
km. Initial vortex has a diameter of ~10°, U ~ 20 m s}, # = 25° and
X\ = 0°. Jovian -parameter values are as in Section 2f, with + = 5 X 107 s and
v = 0.01 km?s™%. ,
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FIG. 10. Solution SW2. Evolution of the free surface variable n(\, 8) for an
anticyclonic vortex in a resting fluid with constant Lg; g = %,g,G(() ), 8 > 5°.
Contour interval is 1 km. Initial vortex has a diameter of ~10°, U = 20 m
s7!, # = 21° and A = 0°. Jovian parameter values are as in Section 2f, with
7 =00 and » = 0.01 km? s™'.



470

. DAY 10

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 41, No. 4

L

LATITUDE

DAY. 20

LATITUDE

DAY 30

LATITUDE

DAY 40

LATITUDE

DAY 60

LATITUDE

DAY 80

LATITUDE

DAY 100

LATITUDE

[
k.

(g
LONGITUDE

F1G. 11. Solution SW3. Adjustment of an overly large anticyclonic vortex
to the preferred IG scale, in a resting fluid with constant Lg; g = ,—'5 2/G(6).
Contour interval of n(\, 8) is 2.5 km. Initial vortex has a diameter of ~20°,
U=~20ms™, 0 =21°and X = 0°. Jovian parameter values are as in Section
2f, with 7 = 5 X 107 s and » = 0.05 km? s,

fluid with a constant Ly is shown in Fig. 10, where g
= g*G(0), g* = g,/10 and G(6) = sinf/sin’21°. The
eddy still decays due to computational effects, but ap-
pears to be substantially' more stable than the vortex
of the previous solution. The tail shed by the initial

adjustment forms an equally stable vortex. The main
vortex drifts westward at —12 m s™' (¢ = —10 m 5™’
at f = 21°) and migrates slowly poleward. It eventually
catches up with the more slowly moving tail-vortex
and transfers much of its energy equatorward into it,
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recreating a strong singular vortex at the original lat-
itude. Such évents are unusual, but they illustrate the
coalescence mechanism of the IG system. Vortices with
the variable g remain stable for g;/20 < g* < g,;/5.
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FIG. 12. Solution SW4. Adjustment of an overly small anticyclonic vortex
to the preferred IG scale, in a resting fluid with constant Lg; g = 1 g,G(6).
Contour interval of 7(}, 6) is 0.3 km. Initial vortex has a diameter of ~10°,
U=~ 20ms™, §=21°and X = 0°. Jovian parameter values are as in Section
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2f, with 7 = 5 X 107 s and » = 0.05 km? s™*.

¢. Preferred scales
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Vortices appear to have a preferred size for a par-
ticular value of Lp and adjust their initial form to
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FIG. 13. Solution SW5. Evolution over one decade of the free-surface variable
n(A, 8) for an anticyclonic vortex in an anticyclonic shear zone (as profiled in
Fig. 16), with g = g;/8.5. Contour interval is 1 km; negative values are shaded.
Initial vortex has a diameter of ~10°, U =~ 20 m s™!, 8 = 21° and A = 0°.
Shear zone has an initial amplitude of +20 m s™' and width of 8° in latitude.
Jovian |parameter values are as in Section 2f, with r = 5 X 10’ s and » = 0.01
km?* s,
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FIG. 14, Solution SW6. Growth of a weak, localized disturbance in a weakly
(barotropically) unstable anticyclonic shear zone (as profiled in Fig. 16), with
g = g,/10. Contour interval for the free-surface variable #(), 8) is 1 km; negative
values are shaded. Initial disturbance is at § = 21° and A = 0°. Shear zone
has an initial amplitude of +25 m s™' and a width of 8° in latitude. Jovian
parameter values are as in Section 2f, with + = 10’ sand » = 0.1 km?s™".
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achieve this scale and an IG balance. For example,
the overly large eddy in Fig. 11 shrinks to the smaller
scale preferred at g* = g;/15 by shedding a large tail,
which in turn condenses into two vortices of the same
size as the main eddy. An overly small vortex expands
just until it reaches the optimum size for g* = g,/5
(Fig. 12). (Similar results are obtained with g = con-
stant.) Eddies whose initial size is close to the optimum
behave as in Figs. 9 and 10.

d. Longevity of a GRS-like vortex

The stability of an anticyclonic vortex, such as the
one in Fig. 9, is considerably enhanced when it lies in
the anticyclonic shear zone of barotropically stable
zonal currents. For the example shown in Fig. 13, only
a slight weakening of the vortex and currents occurs
over the 10-year period of integration, even though 2
X 10° time steps are involved. The zonal flow enhances
the stability of the IG vortex by blocking the devel-
opment of dispersive QG wave propagation, as dis-
cussed in Section 4a. The currents also prevent the
latitudinal migration of the vortex. The tendency of
a vortex to drift latitudinally (Figs. 9 and 10) and its
blocking by zonal currents (Fig. 13) could explain the
90-day latitudinal oscillation of the GRS (see, for ex-
ample, Hunt and Moore, 1981). The small tail shed
during the initial phase is reabsorbed approximately
seven years later.

The pattern and scale of the flow in Fig. 13 resemble
that of Jupiter’s GRS and zonal currents. The flow
amplitudes, however, are weaker than the cloud-level
observations, in anticipation of the vertical variation
in the winds. The vertical motion within the IG vortex
is upward within the western half and downward in
the eastern half, due mainly to the drift to the vortex,
ie., w ~ 5, (Fig. 15). The weakness of the vertical
motion (w < 0.5 cm s™') compared to the horizontal
motion prevents its being directly observable. There
are indirect indications of such upflows for the GRS
(R. F. Beebe, personal communication, 1983).

The vortex propagation speed is larger than that of
the GRS: —12 m s™! (=¢g at § = 21°) versus —5 m
s~! (measured relative to System III). Only smaller IG

+vortices, with Lz = 1000 km and g = g,/20, have drift
rates of —5 m s~!. Thus, if size (at cloud level) is the
best guide to its nature, the GRS may actually be prop-
agating more rapidly westward than estimates relative
to System III indicate. If this is so, the reference frame
is unsuitable and all Jovian flows may be more easterly
(by 5-10 m s7!) than it indicates. Alternatively, in a
continuously stratified atmosphere, vertical variations
in L, etc. may yield IG vortices that drift more slowly
than their SW counterparts. .

e. Genesis of a GRS-like vortex

While the above solutions, especially the one in Fig.
13, hint at why the GRS is such a stable eddy, they
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FIG. 15. Solution SW5 detailed at Day 1800. Closeup of the free-
surface, meridional velocity and vertical velocity (at z = H) variables
for the GRS-like anticyclonic vortex in the anticyclonic shear zone
of Fig. 13. Contour intervals are 1 km, 2.5 m s™' and 0.1 cm s/,
respectively. Negative values are shaded.

do not tell us how the vortex originated. There are
many possible ways, but only those that relate to ex-
isting conditions can be tested scientifically. We ex-
amine the simplest possibility, i.e., that the vortex was
created by a weak barotropic instability and is also
maintained by such against weak dissipation effects.
(Strong instabilities are excluded as they tend to create
multiple vortices.) To create a single vortex with a
strong internal balance using a weak external source
acting over a long time is computationally difficult.

Figure 14 shows what happens when a weak localized
perturbation is introduced into a marginally unstable
zonal flow (such as that profiled in Fig. 16). The dis-
turbance grows slowly to maturity over a period of
two years by extracting the excess energy from the
shear zone as it traverses the globe. The disturbance
remains singular and localized because parameter val-
ues lie in the IG range. The currents can only support
one vortex if the growth rate of the instability is com-
parable to the eddy’s traversal time, wa cos21°/cs. The
eddy in Fig. 14 weakens because the supercritical shear
was not maintained.

[ Genesis of Oval-like vortices

Strongly unstable currents produce and maintain
multiple vortices that are steep and solitary when pa-
rameters lie in the IG regime (Fig. 16); the stronger
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F1G. 16. Solution SW7 and SW8. Anticyclonic vortices produced by (a) moderately, and (b) strongly, unstable anticyclonic
shear zones. Contour interval for the free-surface variable #(), 8) is (a) 1.5 km and (b) { km; negative values are shaded. Jovian
parameter values are as in Section 2f, with (a) g = g,/12, (b) g = g,/10 and with + = 5 X 10° s and » = 0.1 km? s™'. Profiles
on the rhs give the latitudinal distribution of the zonally averaged zonal flow, with scales of (a) #50 m s™' and (b) £120 m s,

the instability, the greater the number of vortices. The
eddies in Fig. 16a resemble the Large Ovals in their
solitariness and low number but not in their direction
of propagation. Only modification of the System III
reference frame can eliminate this difference. These
solutions suggest that the Large Ovals are due to a
moderate level of instability in the zonal currents. They
also suggest that the problem of generating a singular
vortex like the GRS is essentially the computational
one of dealing with a marginal instability.

When parameters lie in the QG regime (g > g5/5),
disturbances take on the customary steady wave form
and advective drift rate, for both shear zones and jets
(Figs. 17 and 18). In the shear zone, the waves are
centered on #(f) = 0 and travel westward at —15 m
s!. In the jet flow, they are centered on the velocity
maximum and travel eastward at +10 m s™! (Fig. 19).
The eddies of the jet instability make little impression
on the height field; they are really apparent only in
the v-field and in an atmosphere which would “look
different” from the other eddies. The wavelike ar-
rangement of the Small Ovals suggests that they are
primarily of QG form.

8. Digression on topographic vortices

The instabilities in Figs. 17 and 18 are shown relative
to a large, steady singular GRS-scale vortex that is
induced by the topographic bump beneath it. This
type of vortex, related to the Taylor column, occurs
when the bump is wide enough to produce a PG bal-
anced flow, so that no wave dispersion occurs, and
when the bump is steep enough to dominate the Sver-

drup term. The latter occurs when (hz), > BHf ~! [see
Pedlosky, (1979, Section 5.13)] and the flow then obeys
the equations

h h
u=-8% 8%

f- f

u(hp)x + v(hg), =~ w =~ 0.

Thus,
(5.1)

Theories based on the Taylor column idea have
been put forward as explanations of the GRS (see Hide,
1961). They have not been accepted mainly because
it is believed that Jupiter’s atmosphere and sublayer
cannot support any structural inhomogeneities, but
also because various analyses have suggested that a
Taylor column could not be produced in the presence
of stratification and sphericity (e.g., Bannon, 1980).
However, all these studies were based on the QG equa-
tions which, our analysis suggests, are not appropriate
to the GRS problem. As the above solutions show,
Taylor columns can exist on the largest planetary scales
because dispersive effects are absent from PG balances.
Therefore, the Taylor column hypothesis for the GRS
is meteorologically tenable but, apparently, constitu-
tionally impossible.

6. Conclusions

The previous solutions show that solitary vortices
are the intrinsic mode of the divergence-dominated
IG-scale motions and that they maintain their identity
over a long period of time, especially when they are
of anticyclonic form. On the other hand, QG modes
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FIG. 17. Solutions SW9 and SW10. The free-surface variables n(}, 8) for the (a) shear zone and (b) jet forms of barotropic
instability at QG parameter values (g = g;) and 6 = 35°. Also shown is the steady singular anticyclonic vortex produced by an
elliptic, truncated Gaussian bump (a mesa) that is 5 km high, 20° long and 8° wide at # = 18°. Contour interval is 0.4 km but
heavier lines near § = 40° are spaced at (a) 0.8 km and (b) 1.6 km; negative values are shaded. Zonal velocity profiles are given

on the rhs. Jupiter parameter values are as in Section 2f, with 7 = 2 X 10° sand » = 0.1 km® 5",

are primarily wavelike or turbulent and do not display
an innate stability nor an anticyclonic over cyclonic
preference. The stability of IG vortices appears to be
due as much as to their parametric isolation from QG
‘modes as to their internal mechanics. Solutions to the
full SW equations suggest that zonal currents also help

—1

to isolate the IG vortices by blocking QG wave prop-
agation. ) '

A form of the one-dimensional KdV equation gov-
erns the longitudinal evolution of the stable IG vortices,
except during collisions when a' two-dimensional Ja-
cobian term is activated that prevents soliton forms

LATITUDE

LATITUDE

0

-90°

0° 90°

LONGITUDE

FIG. 18. Solutions SW9 and SW10. The meridional velocity variable v(A, 8) for the QG
solutions of Fig. 17 for (a) shear zone and (b) jet forms of barotropic instability and for the
topographic anomaly. Contour interval is 2.5 m s™'; negative values are shaded. .
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FI1G. 19. Solutions SW9 and SW10. The time-longitude plot of the meridional velocity variable
v(A, £) at @ = 37° over 100 days for the QG solutions of Fig. 17 for (a) shear zone and (b) jet
forms of barotropic instability. Regularity of eddy amplitude and drift is shown: (a) westward
at —15 m s~! and (b) eastward at +10 m s™'. Contour interval is (a) 2.5 m s’ and (b) S m s7';

negative values are shaded.

of interaction. The coalescence of IG vortices extends,
in a discrete and selective way, the inverse cascade of
energy that occurs at the smaller QG or two-dimen-
sionally turbulent scales.

The solutions also suggest that Jupiter’s Great Red
Spot and Large Ovals are the IG vortices produced by
weakly and moderately unstable zonal currents. The
GRS is then best defined as an IG vortex, as its internal
processes—the nonlinear divergence and wave prop-
agation—dominate its character; the sources and sinks
of energy are secondary aspects. Whether these sources
are barotropic, baroclinic or convective is a question
that relates mainly to the origin of the object. This
view of the GRS is consistent with the (shallow) plan-
etary, as opposed to (deep) solar, view of Jupiter’s
global circulation. The theory can be tested by looking
for evidence of upward (downward) motion in the
westward (eastward) half of the GRS.

A crucial question is whether the IG modes favored
by the SW model have counterparts in the continuously

stratified baroclinic model atmospheres. Preliminary
studies suggest they do, if the evolution of the vertical
structure of the initial eddy is slow enough to suppress
the lateral thermal advection (cf. Gent and Mec-
Williams, 1983). For Jupiter, the study of vertically
continuous models is needed to see if stable IG vortices
can be developed that have the same amplitude as the
GRS or Large Ovals at cloud level and to see whether
these eddies originate in barotropically or baroclinically
unstable currents (cf. Williams, 1979b). Vertical vari-
ations may also lead to slower (or faster) propagation
rates and support (or undermine) the usefulness of the
System III velocity reference frame. If IG balances
exist to any extent for the largest scales of motion in
the Earth’s atmosphere, then these modes should be
more predictable than the smaller QG motions.
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