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ABSTRACT

Some results due to Kuo concerning momentum fluxes in barotropic flows are generalized so as to apply
to quasi-geostrophic flows on a beta-plane. It is shown that linear, amplifying waves on an arbitrary
zonal flow cause a net transport of westerly momentum out of that part of the fluid in which Raleigh’s
stability criterion (as generalized by Charney and Stern, and by Pedlosky) is satisfied locally. Also, it is
shown that if quasi-geostrophic eddies are introduced by some “external” agent into a region in which
the zonal flow satisfies the stability criterion, then westerly momentum will flow into this region.

i. Introduction

The momentum fluxes in an inviscid barotropic fluid
on a beta-plane have been analyzed by Kuo (1951).
One basic result is that linear amplifying waves on a
zonal flow, % (y), transport westerly momentum out of
the region where 8—3%2/3y* is positive and into the
region where 8—9%/8? is negative. There is a simple
extension of this result to baroclinic flows. This exten-
sion is discussed in the context of Phillips’ 2-level model
of a baroclinic fluid in Section 2, and with the full
equations for quasi-geostrophic flow on a beta-plane
in Section 3. Although the analysis is essentially identi-
cal to that used by Charney and Stern (1962) and
Pedlosky (1964), the information which such an analy-
sis yields about momentum transports has not, ap-
parently, been emphasized in the literature.

In an analogous fashion (that is, by inspection of the
mean square eddy potential vorticity balance) the
momentum transports due to quasi-geostrophic eddies
introduced into a stable zonal flow by a localized
stirring mechanism are analyzed in Section 4. The
stirring may be thought of as due to either ageostrophic
motions (for example, convective activity) or to a
truly external mechanical agent. Momentum fluxes
generated in this way may be of importance in the
maintenance of the solar and Jovian equatorial jets.

2. Momentum fluxes in a 2-level model

The equations of motion for an inviscid, adiabatic,
quasi-geostrophic, 2-level model (Phillips, 1951) can be

written in the form
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The subscripts 1 and 2 refer to the upper and lower
layers respectively; ¢: is the potential vorticity and ¥,
the streamfunction in the sth layer. J is the hori-
zontal Jacobian, V2 the horizontal Laplacian, and X the
Rossby radius of deformation. The basic state about
which the equations are linearized is taken to be a
time-independent zonal flow. Zonal means are denoted
by an overbar and deviations from zonal means by a
prime.

Let « and v be the eastward and northward velocities
respectively, i.e.,

ui=—8y:/dy, vi=ay./ox.
The linearized equations become
8qi’/0t=—u:9q'/dx —v,' 83/ 3y, (2)
where
31/ dy=B— 3%t/ 3y*+ (i1 —11a) /2N,
G2/ 8y =B— 0%a/ 32— (G —1ia) /2\2.
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From (2) we have

14 _ —94:
= —(¢)*= —qv/—. (3)
2t dy

Assuming a solution to (2) of the form

(Zi, = Reqieik(z—ct)’
Eq. (3) yields

ker 1@‘1262’"’”
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where ¢; is the imaginary part of the complex phase
speed ¢. For an amplifying wave, therefore, the eddy
potential vorticity flux must be directed down the
mean potential vorticity gradient.

From the definitions (1) it also follows that

ql’v1’= -6M1/ay-—H,

Q2'7)2, = - aMz/ay+H,

where M. =u/v/ is the northward momentum flux per
unit mass in the ith layer, and

H=uvy' (s =)/ 2N =10y’ (Y1 — ')/ 2N?

is proportional to the northward eddy flux of heat.
Therefore,
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where M ror=M1+ M. Since
gi= N aq1/ay7
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one can also write
Meor kery a2 [a ]2
=—( dG1/ 9y+ dga/ Oy Jehert,
dy 2 \|g1—c|? | e —c|?
(5b)

It is assumed that o’ vanishes at the northern and south-
ern boundaries, so that the eddy flux of momentum
into or out of the region is zero. Pedlosky’s necessary
condition for instability, that the mean flow potential
vorticity gradient take both positive and negative values
somewhere in the fluid, then follows from (5), since
dM ror/8y cannot be of the same sign everywhere.
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A basic result easily obtained from (5) is that
dMror/dy for an amplifying wave will be positive
(negative) wherever both 8g1/dy and 8g>/dy are posi-
tive (negative).

To discuss the implications of this result, consider
first a basic state in which 8§1/9y>0 everywhere in the
fluid. Let ® denote the region in which 8g./dy<0.
(There must be such a region for an unstable wave to
exist.) We also assume that there are regions in which
8ge/dy>0 since otherwise no simple conclusions can be
drawn. Then, for an amplifying wave, dMqor/dy is
positive outside of ® and, by conservation of momen-
tum, there is a net flux of westerly momentum into ®.
Further, if ® is contained within the interval v, <y <y,
then M1or<0 at y=1y, and M1or>0 at y=v. There
is, in other words, a net flux of westerly momentum
into ® at both its northern and southern limits.

If B3>3%1,/8y* then ®, in the case above, is a region
of large positive vertical shear. To consider instead a
flow which is unstable due to large negative vertical
shear, let 8g./dy be positive everywhere in the fluid.
An unstable wave in such a zonal flow will transport
westerly momentum out of regions in which 84./9y>0
(if such regions exist) and, therefore, into that part of
the fluid in which 8g:/9y<0. If 8>>8%7,/8y* this implies
that westerly momentum will be transported into
regions of large negative vertical shear.

A flow which is unstable due to large, localized,
negative vertical shear occurs, for example, in the
numerical integrations by Lin (1974) of a 2-level
(primitive equation) model of a rectangular ocean. In
response to an applied wind stress, a northern boundary
current forms with a westward counter-current on its
southern flank. This latter current becomes baroclini-
cally unstable, and, although the picture is somewhat
obscured by the lateral boundaries, the net effect of the
baroclinic waves is to decrease the vertically-integrated
transport by this current, as one would expect from the
above argument.

Useful information about eddy heat transports can
also be obtained from this analysis if dM,/9,<KH. In
this case, from (4), heat transport will be equatorward
(poleward) in regions where 9g./dy is positive (nega-
tive). Stone (1974) has observed this property in par-
ticular solutions and has used it in developing a pa-
rameterization of eddy heat transports. To obtain his
solutions, Stone assumes that the radius of deformation
is much smaller than the meridional scale of the zonal
flow. The aforementioned property of H does not, how-
ever, depend on this assumption; it is sufficient that
momentum fluxes in the lower layer be small.

3. Momentum fluxes in a continuous baroclinic
fluid

For simplicity, consider a Boussinesq fluid confined
between two rigid horizontal surfaces. Analogous re-
sults can be obtained for an unbounded, compressible
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atmosphere if suitable conditions are imposed as z — .
The equation of motion for inviscid, adiabatic, quasi-
geostrophic motion on a beta-plane is

34/3t= —](‘/’59),
where

- 2L ¥ 6
0= VyHoy+ | — — (6)

Jois the Coriolis parameter at a standard latitude, and
N the Brunt-Viisild frequency. At the rigid horizontal
surfaces we require that

d 0
( ¢>_~](‘I/: l): Z==O, D. (7)
N9z 9z

Following the procedure in Section 2, we linearize,
form the mean square eddy potential vorticity equa-
tion, and assume a solution of the form

q’ — Re'g"gz'k (z—ct)
‘//: Rex[/e““”“”‘) } ’

with the result that
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But from (6),
o'q = —3M/dy+oH/dz,

where
fo oy’
o =4v and H=——7.
N? oz

This formula has been discussed by Green (1970),
among others.

Therefore,
OMzor PoM  ker b 1g1® b
= ——dz=—e”“”/ ——ds+H
dy o 9y 2 o 907/3y 0
From the boundary conditions (7),
Lo\ oF o oy v om
( ) =—v— — —=v——, 3=0,D,
2 ot 0z dy 0z 0z 0z
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Using the linearized equations of motion and boundary
conditions, this formula can be rewritten

Mror ke[ (P |]* 9
e
dy 2LJo la—c|®ay
R o1z 9@ P
+{_0_ N/' j :Iemn. (8b)
N2 la—c|? azl,

The special case of an internal jet, in which the
boundary term in (8) is zero (or negligible), is of
particular interest. The necessary condition for in-
stability in this case follows from (8)—dg/dy must
change sign somewhere in the fluid, as discussed by
Charney and Stern (1962). From (8) it is also evident,
for an amplifying wave, that dMror/dy will have the
same sign as a positively weighted vertical average of
dg/dy. In the simplest case, dG/dy is positive every-
where except in the vicinity of an unstable jet. There
must, in this case, be a net flux of westerly momentum
into the latitudinal zone containing that part of the
fluid in which 8¢/dy is negative. 87/dy can be either
positive or negative a'g the center of an unstable
westerly jet, depending on the relative importance of
the horizontal and vertical shears. However, 9g/dy
will generally be negative at the center of an unstable
easterly jet since the hor’iizontal and vertical shear con-
tributions are both negative at such a point.

Burpee (1972) has analyzed the momentum fluxes
due to “African waves]’ which apparently form as
instabilities on an easterly jet in the lower troposphere
south of the Sahara in Northern Hemisphere summer.
The data, though sparse, suggests that these waves
transport westerly momentum into the jet, as expected
from the discussion above.

The usefulness of (8) is considerably reduced when
the heat flux at the lower {or upper) boundary is not
negligible. Many unstable flows of interest have 9/
dy>0 in the interior and d4%/9z>0 at the lower bound-
ary, so that the integral and the lower boundary term
in (8) will be of oppositeisign. If there do exist regions
of the fluid in which 1) 4g/dy>0 throughout a vertical
column, and in which 2); 94/9z is non-positive at the
lower boundary and non-negative at the upper bound-
ary, then westerly momentum flows out from these
regions and into the rest !of the fluid.

!
4. Momentum transport by forced quasi-geostro-
phic eddies in a stable zonal flow

Consider a zonal flow, with 3G/dy>0 everywhere, in
an infinite Boussinesq fluid on a beta-plane. We intro-
duce a quasi-geostrophic¢ disturbance localized in a

|
§
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latitudinal span, y1<y<ys, and then allow the flow to
evolve. If the disturbance is sufficiently small, the
linearized equations are valid, so that

o R
SB@1=—vd20/0s. 2

Outside of the interval y;<y<y., there will, in general,
be some response to the disturbance introduced within
the interval: (¢)?, initially zero, will be positive at any
later time ¢. Integrating (9) over time from 0 to {, one
finds that the time-averaged value of 'q” outside of the
interval y:<y<y, will be negative, and, therefore,
dMror/dy will be positive. Thus, there is a net flux of
westerly momentum into the region in which the dis-
turbance is introduced.

The barotropic analogue of this result has been
discussed by Kuo (1951) and is mentioned by Green
(1970), who, in turn, attributes it to Eady.

Alternatively, one can consider a localized, statisti-
cally steady source in a fluid with some unspecified
form of dissipation. If one again assumes that the linear
equations are sufficiently accurate, then

0=—{v'¢’'}og/3y+1{Q} —{D},

where Q is the source and D the sink of mean square
eddy potential vorticity (and braces denote a time

average). In a region in which {Q} =0, one has the
balance

Presumably, {D}>0, and the conclusion again is that
momentum flows into the region of forcing.

NOTES AND CORRESPONDENCE

1497

These arguments suggest the following explanation
for the equatorial jets in the atmospheres of Jupiter
and the Sun: small-scale convective motions, most in-
tense near the equator, force geostrophic eddies which
transport the momentum necessary to maintain the jet.
A less speculative explanation would require some un-
derstanding of how large-scale geostrophic eddies are
forced in these atmospheres.
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