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ABSTRACT

The structure of certain axially symmetric circulations in a stably stratified, differentially heated, rotating
Boussinesq fluid on a sphere is analyzed. A simple approximate theory [similar to that introduced by
Schneider (1977)] is developed for the case in which the fluid is sufficiently inviscid that the poleward
flow in the Hadley cell is nearly angular momentum conserving. The theory predicts the width of the
Hadley cell, the total poleward heat flux, the latitude of the upper level jet in the zonal wind, and the
distribution of surface easterlies and westerlies. Fundamental differences between such nearly inviscid
circulations and the more commonly studied viscous axisymmetric flows are emphasized. The theory
is checked against numerical solutions to the model equations.

1. Introduction

The importance of mixing induced by large-scale
baroclinic or barotropic instabilities for the general
circulation of the atmosphere can best be appreciated
by artificially suppressing these instabilities and
examining the circulation which develops in their
absence. This is most easily accomplished in the
idealized case for which radiative forcing and the
lower boundary condition are both axially symmetric
(independent of longitude). The flow of interest in
this case is the large-scale axisymmetric flow
consistent with radiative forcing and whatever small-
scale mixing is still present in the atmosphere
after the large-scale instabilities have been suppressed.

Such axisymmetric circulations have not received
as much attention in the meteorological literature
as one might expect, given what would appear to be
their natural position as first approximations to the
general circulation. Reasons for this neglect are not
hard to find. It is the accepted wisdom that large-
scale zonally asymmetric baroclinic instabilities are
the prime determinant of the structure of the
tropospheric circulation. If this view is correct and
there is, in fact, little resemblance between the
axisymmetric circulation remaining after these
eddies have been suppressed and the observed
zonally averaged flow, then the study of such
circulations cannot be expected to arouse much
interest in the meteorological community. Further-
more, in the linear viscous models often utilized
in studies of axisymmetric flows in rapidly rotating
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atmospheres (e.g., Dickinson, 1971; Leovy, 1964),
the meridional circulation is effectively determined
by the parameterized small-scale frictional stresses
in the zonal momentum equation. Detailed analyses
of such models do not promise to be very fruitful
as long as theories for small-scale momentum mixing
are themselves not very well developed.

Schneider and Lindzen have recently computed
some axisymmetric flows forced by small-scale
fluxes of heat and momentum that do bear some
resemblance to the observed circulation (Schneider
and Lindzen, 1977; Schneider, 1977). Using simple
theories for moist convective as well as boundary
and radiative fluxes, Schneider obtains a Hadley
cell which terminates abruptly at more or less the
right latitude, a very strong subtropical jet at the
poleward boundary of the Hadley cell, strong trade
winds in the tropics, and a shallow Ferrel cell and
surface westerlies poleward of the trades. Nakamura
(1978) describes an effectively axisymmetric calcula-
tion (with heating and frictional formulations differ-
ing considerably from Schneider’s) which also yields
a Hadley cell of well-defined meridional extent.
Evidently, certain features of the tropospheric
circulation, notably the width of the Hadley cell
and the position of the subtropical jet, can be
understood in some crude first approximation within
an axisymmetric framework.

Schneider (1977) also argues that the meridional
extent and the heat transported by the Hadley
cell become independent of the small-scale vertical
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mixing of momentum when this mixing is sufficiently
small, in contradistinction to results from linear
viscous models. To the extent that this nonlinear
nearly inviscid limit is the relevant one, certain
features of the circulation are not sensitive to one’s
necessarily tentative and uncertain frictional formu-
lation. Analysis of this limiting case, therefore, is of
particular interest.

In this work we analyze an axisymmetric model
with highly idealized diabatic heating and frictional
forcing. Our goal is to clarify which parameters
control the width and strength of the Hadley cell,
the location and strength of the subtropical jet and
surface winds, and the presence or absence of a
Ferrel cell in such a simplified axisymmetric
model, particularly in the nonlinear, nearly inviscid
limit. We restrict ourselves in this paper to flows
which are symmetric with respect to the equator,
in which, therefore, there is no cross-equatorial flow.

Our model equations are presented in Section 2.
Some comments on the limited range of validity of
certain linear, viscous approximate solutions are
included in Section 3. A qualitative discussion of
the nonlinear, nearly inviscid limit, from which one
can derive approximate expressions for the Hadley
cell’s width, its heat and momentum transports, and
the latitudinal profile of the surface wind stress, is
provided in Section 4. In Section 5 numerical
solutions to the model equations are described which
illustrate how the transition from a linear viscous
to nonlinear, nearly inviscid balance occurs as the
small-scale, linear diffusive vertical mixing of
momentum diminishes in importance. A brief
attempt is made in Section 6 to argue that the
behavior of moist axisymmetric model atmospheres
should be similar in certain respects to that of the
highly simplified dry stably stratified axisymmetric
model analyzed in this paper.

2. The model equations

We consider the primitive equations for a dry
Boussinesq fluid on a hemisphere, confined between
the surface and a rigid lid at height H above the
surface. The flow is forced by radiative heating
‘proportional to the difference between the fiuid
temperature and a specified ‘‘radiative equilibrium™’
temperature. Linear vertical diffusion of heat and
momentum (with Prandtl number unity, unless
otherwise noted) is the only small-scale mixing in the
fluid interior. The diffusivity is chosen to be a
constant, independent of height and latitude. A zero
stress boundary condition is imposed at the top
surface, and the stress at the ground is taken to be
proportional to surface wind. Zero vertical heat
flux is imposed at both upper and lower boundaries.

The equations for steady flow are
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Here v = (v,w) is the velocity and V = [(a cosf)™?
X 0(cosd )/d6, 0/0z] the gradient operator in the
meridional-vertical plane. 7 is a constant radiative
damping time, and C a constant drag coefficient.
g0/0, is the buoyancy in the Boussinesq approxi-
mation. The notation is otherwise standard. ® is
given the form ’
®E(972) 2 . ‘ Z 1

o = 1 = 5 AuPutsing) + A?(H 2) . @
where @, is the global mean of ®,, A, and A, are
both nondimensional constants, and P, is the second
Legendre polynomial P,(x) = 2(3x% — 1). Ay and
A, are, respectively, the fractional change in potential
temperature from equator to pole and from the top to
the bottom of the fluid in radiative equilibrium.
We restrict consideration to the case of statically
stable radiative equilibrium, A, > 0, thereby re-
moving the burden of maintaining the stability of
the atmosphere from the large-scale circulation. One
could try to justify this choice by arguing that moist
convection would maintain a statically stable profile
in the absence of large-scale flow, but it is not
legitimate to think of a fixed function ©®z(6,z) as
incorporating the effects of moist convection, since
water vapor is transported. and latent heating
modified by the circulation. The question of the
extent to which the behavior of the system (1) with
A, > 0is similar to the behavior of moist atmospheres
is addressed in Section 6.
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When » = 0, Eq. (1) has an exact solution: a
flow with no meridional circulation (v = w = 0),
temperatures in radiative equilibrium (® = 0,), and
a balanced zonal wind (denoted by u;) satisfying

-8B
a®, 06

From the zonal momentum and continuity equations
_and the stress boundary conditions, it follows that

1 9 H
————-—(00529 f uvdz) =
a cos?(0) a6 o

If v = 0 the zonal wind must therefore be identically
zero at the ground, and
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The solution to this equation for whichu(z = 0) = Ois
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where
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IfR < 1, then ug/Qa = R cos(§)z/H. In this limit R
can be thought of as a thermal Rossby number. Note
that this inviscid solution has westerly winds at the
equator.

It is tempting to look for solutions to (1) for small
but nonzero v by perturbing this inviscid solution.
But this procedure cannot work since the solution
to (1), in fact, does not approach this inviscid
solution as v — 0. This can easily be demonstrated
after rewriting the zonal momentum equation as
VM) + ﬂ(vﬂ) ,

0z 0z

0= @)

where
M = Qa? cos?0 + ua cosf

is the fluid’s angular momentum per unit mass. From
the well-known argument for conservation equations
of the form (7), M cannot have a local maximum in
the interior of the fluid. (For those unfamiliar with
the argument: if there were a local maximum in the
interior, with M = M,, say, then for sufficiently
small € one could draw a closed curve surrounding
this point, on which M = M, — €; the advective flux
out of the region within this curve is identically zero,
by conservation of mass, and cannot balance the
nonzero outward diffusive flux; therefore such a
point cannot exist.) Using the stress boundary
conditions at z = 0 and z = H, one can easily show
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that M must, in fact, attain its maximum value at
a point on the lower boundary where u < 0. Only at
such a point can the surface stress opposing the
easterlies balance the diffusive loss of westerly
momentum into the interior. It follows that M must
be less than or equal to Qa? everywhere in the fluid
and that ¥ must be everywhere less than or equal to

uy = Qa sin?()/cos(h). 8

In particular, the winds at the equator cannot be
westerly and the solution cannot approach the
inviscid solution described above as v — 0. Hide
(1969) has emphasized the importance of this
constraint on axisymmetric flows forced by down-
gradient angular momentum fluxes.

IfR < 1, then ug(6,H) = QaR close to the equator,
whereas uy,(0) =~ Qa@?. Thus, uy is larger than u,, for
0 < R'2, More generally, ug(6,H) > uy(8) if 0
< tan~Y{[(1 + 2R)¥? — 1]'2}. No matter what the
values of the other parameters in the problem, a
circulation must exist at feast within this region in
order to maintain winds and an associated temperature
field consistent with angular momentum conserva-
tion. If one estimates the equator-to-pole temperature
difference on the earth when forced with annual
mean solar fluxes as ~100 K, then A, = 4. Using
H = 1.5 X 10* m as the height of the poleward flow
in the Hadley cell, one finds R = 0.2, and, therefore,
ug(H) > uy for 6 < 27°. It is of interest that this
region, within which this model is constrained to
depart from radiative equilibrium, corresponds
roughly to the region occupied by the earth’s
Hadley cell.

3. Approximate linear viscous solutions

Linear viscous models of axisymmetric flows in
rapidly rotating atmospheres are often obtained by
ignoring the advection of relative angular momentum,

62
fo= -

—y—,
0z®

and assuming thermal wind balance except, perhaps,

for viscous drag

ou
e

(9a)

g 00 v
—_—t v —.
a®0 06 8z3

If one now sets ® = O (e.g., as in Charney, 1973),
one obtains perhaps the simplest model of a
‘““Hadley cell,”” a direct circulation confined to two
Ekman layers at the top and bottom boundaries,
each with a mass flux proportional to the viscous
stress in the interior. (The stress at the surface must
be zero since the horizontal advection of angular
momentum has been neglected.) As v — 0 this
Hadley cell disappears. Because of the angular
momentum constraint, we know that this cannot be
an adequate description of this limit for the system (1).

(9b)
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A linear model of more interest in low latitudes
is obtained if one allows temperatures to change by
approximating the thermodynamic equation by

3
w22 _ (0 - 0y
Oz

(¢c)
and assuming that 80®/9z is a constant, independent
of the flow. Schneider and Lindzen (1976) discuss
the resulting set of equations in some detail. Defining

a meridional streamfunction by
1 8 \
S B
a cosf a0

cosf 9z
the set (9a)—(9c) reduces to

o L, 5] Oy
E? Frd + sin*6y — R* cosf Fe—(cos‘le —5‘3)

= R* sinf cos?0, (10)
for
lil —y TA,
. (ZaHAH) ’
where
H
E = w208, R*E( i )(g )A
4H? )\ Qfa?

and
: {=1z/H.

For sufficiently small Ekman number £, Eq. (10)
predicts that temperatures will be modified sig-
nificantly only within an equatorial boundary layer
extending from 6 = 0 to 8 = (R*)"4. The width of
this equatorial boundary layer shrinks to zero as
v — 0. Since temperatures and zonal winds in the
true solution to (1) must be modified by the
circulation out to at least 8 = RY? (restricting
consideration to the limit R < 1 for simplicity), this
approximate set of equations cannot be adequate
unless (R*)Y4 = RY2 i.e., unless
H? gH Ay
V= Vy E—
T Q% A,

Leovy (1964) and Dickinson (1971) consider very
similar axisymmetric models of the upper atmosphere
and tropical troposphere, respectively. Vertical
momentum diffusion is replaced with linear drag in
the zonal momentum equation (fv = «ku) and ignored
in the meridional momentum equation. Essentially
the same equatorial boundary layer appears for these
equations, of width

(1n

1/4
~ (K’T gH AD) R
0%a?

- although both Dickinson and Leovy choose values of
« sufficiently large that their solutions do not, in
fact, have a boundary-layer character. [See, how-
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ever, Schoeberl and Strobel (1978), who display in
their Fig. 4 solutions to a modified version of
Leovy’s model for successively smaller. values of
x.) Pedlosky (1969) describes a similar equatorial
boundary layer in a model in which vertical con-
duction of heat, rather than radiation, balances
adiabatic heating or cooling in the interior.

The key terms neglected in such linear models
when » (or ) is small are those responsible for the
advection of relative angular momentum. In these
linear solutions, u(6,H) rises from zero at the
equator to ~uy outside of the equatorial boundary
layer. If the width of this layer is <R'Z, ¥ must
increase faster than u,, with increasing latitude. The
approximation of retaining fv = V-(vu, cosf)/cosé
while neglecting :

tanf
V-(vi) - uv tan

= V-(vu cosé)/cosh

is then clearly inappropriate.. Angular momentum
conservation, not surprisingly, is the key to the
character of the solution as v — 0.

4. The inviscid limit
a. Description of circulation

If the exact inviscid solution described in Section 2
is not the limiting solution, and if the linear models
described in Section 3 also fail in this limit, then
what does happen as » — 0? One can gain some
insight into this limit with an argument based on
potential temperature and angular momentum con-
servation. The essence of the argument is due to
Schneider (1977). The region of the model’s parameter
space within which the required approximations are
self-consistent is most easily determined a posteriori.
The question of self-consistency is therefore post-
poned until Section 4b. Some comments on the
symmetric instability of the circulation in this limit
are included in Section 4c.

A steady Hadley cell is assumed to exist near the
equator, with fluid rising in the neighborhood of the
equator and spreading poleward just beneath the
upper boundary. It is further assumed that viscous
stresses are small enough in the interior that angular
momentum is nearly conserved within this poleward
flow, so that u(6,H) = u,/(6) but that surface drag
is sufficiently strong that «(6,0) =~ 0.

This momentum conserving flow clearly cannot
continue to the pole. It is assumed, therefore, that
it continues only up to some latitude 8. Poleward
of 9, the meridional circulation is assumed to be
identically zero, so that ® = ®g and ¥ = uy. 65 can
be determined by requiring continuity of temperature
at & = 04 and assuming a balanced zonal wind:
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Evaluating this expression atz = 0 and z = H, and
using the vertically integrated hydrostatic equation,
one obtains

FLuCH) ~ u(©)] + 303‘3 WP(H) — u*(0)]

gH 980
a®() 06

where an overbar denotes a vertical average. Sub-
stituting u(H) = uy and u(0) = 0 and integrating,
one finds

0(0) — 6() _ Q%a® sin'6

’

. (12)
0, gH 2 cos?d
Continuity of potential temperature requires
O(6y) = Ox(by), (13a)

while conservation of potential temperature requires

[GH
1]

After substituting from (2) and (12) for ®, and @,
Eqgs. (13a)~(13b) may be regarded as two equations
in the two unknowns ©(0) and 6. An ‘‘equal-area”
geometric construction equivalent to solving these
simultaneous equations is illustrated in Fig. 1.

If the small-angle approximation is permissible,
then

(77}

® cosfdé = J @ coshdo. (13b)

0

® ™ 2,2

S _89 1o« (142)
@0 @9 2 gH

Or _ 050)

—_= — Ay 2. 14b
o, o, H (14b)

Substituting into (13a) and (13b), one finds that

80) 6z0 5

— = —" " — __RA,, 15
O Q 18 " (13

6 = (BR)Y2, (16)

R being defined by (6). If R < 1 then 6, is also
much less than unity and the small-angle approxima-
tion is, in fact, appropriate. The width of the
Hadley cell in this limit is directly proportional to the
square root of the horizontal temperature gradient,
directly proportional to the square root of the height
of the cell, inversely proportional to the rotation
rate and independent of static stability. [These
parameter dependencies are different from those
obtained by Schneider (1977), who analyzes a
model with fixed surface temperature and requires
the atmosphere to adjust its static stability in order
to achieve balance between radiative cooling and a
given heating distribution. The result is a Hadley
cell width dependent on static stability.]
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© (FROM EQ. 12))

VERTICALLY AVERAGED
POTENTIAL TEMPERATURE
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FiG. 1. The equal-area geometric construction equivalent to the
argument of Section 4a. The two shaded areas are equal.

In the general case, Eqs. (12) and (13a,b) reduce to

Y _ 3 v’
B4R — Dy = T
- H
|+
—yH+1/2ln( y”):o a7
1 -yy

for y; = sinfy. The solution to this equation as a
function of R is compared with the small-angle
approximation (%3R)'? in Fig. 2.

Since ®; — O is determined by (14) and (15) within
our idealized Hadley cell, one can. compute the
vertically integrated flux of potential temperature
from the thermodynamic equation

! JH ! 9 (v® cosh)dz = (O, — O)r!
— — (v z = - .
H ), a cosf 06 # T

In the limit R < 1, one finds

H 1/2
_1__ [ v@dz = i(i) _Iia_éiRslz
®0 0 18 3 T

3 5
16 G ]
01-1 01-1 0}1
For the sake of obtaining a qualitative estimate

of momentum fluxes, suppose that the profiles of
u and O are self-similar in the sense that

u(z) — u(0) - 0(z) — 60(0)
u(H) — u(0) O(H) — 0(0)

Suppose further that the static stability is not af-
fected appreciably by either the meridional circula-
tion or by the vertical diffusion of heat, so that
[®(H) — 0(0))/0, = A, and
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1.2
SOLUTION TO EQ. 17}
10—
~ 8k
<
N
e
~
q s
= =4
o
1l
o
b
2
0 1 1 1 i L 1
.1 2 3 4 5 6 7 8
yu= SING)

FiG. 2. The poleward boundary of the Hadley cell as given by (17) and
the approximate solution ®,*> = %R for R < 1.

u(H) — u(0)
O(H) - 0(0)

Qav* 1 (#
=~ af _— J v0dz.
AU 00 0

[One obtains the same result without the self-
similarity assumption if, instead, one assumes that
the meridional circulation is confined to boundary
layersatz = Qand z = H, in addition to assuming that
u(H) = up, u(0) = 0, and O(H) — 0(0) = 0,A,.]
Using (4) one obtains the following expression
for the surface stress:
_1076\*
5 (e

25 QaHAy |, [( 6 )2
7/ 60\¢
— — . 19
+3(&)J 1)

18 1A, Ou

Surface easterlies are predicted for 6 < (3/7)%6y
and surface westerlies for (3/7)'?6, < 6 < 04. The
magnitude of the stress is proportional to the cube
of the imposed horizontal temperature gradient.
Plots of u(0), u(H), and the heat and momentum
fluxes are displayed in Fig. 3. The analogous
expressions when R is not small are easily obtained.

Ignoring the advective terms near the ground and
integrating through the surface stress boundary
layer, one finds

H
vudz =~ J v0dz

0

L"

Cu(0) ~ -

0
fVe = Cu® ~ v = ,

Z |5

(20)

where Vi = [§ vdz, & being the depth of this

boundary layer. If the interior is sufficiently inviscid,
therefore, one expects poleward flow near the ground

" in the region of surface westerlies. The associated

indirect or Ferrel cell cannot be expected to penetrate
to the top of the atmosphere; by interrupting the
poleward flow near z = H it would destroy the
momentum transport responsible for its own existence.

Eqgs. (19) and (20) predict that the mass flux in the
surface boundary layer is of the order

fﬁ Aﬁ R32,
T A

One obtains the same scaling for the mass flux in
the circulation as a whole if one divides the
vertically averaged heat flux [Eq. (18)] by A,.
If the regions of upward and downward motion are
of comparable size, the magnitude of the vertical
velocities must be ~HA4R/7A,. (The same estimate
for vertical velocities results from setting

0= —wg—G2 + (0 - B!
az

and utilizing (15).] The time required for the flow to
traverse the distance H therefore, is ~mp =7/
(RA4/A,). We refer to 1, as the dynamic or over-
turning time scale; it plays a central role in the
discussion of self-consistency which follows.

b. Discussion of approximations

Inspection of the set of equations (1) ‘and the
boundary conditions (1a) reveals that the solutions
are determined by the values of five nondimensional
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parameters. The following choice of independent
parameters proves to be convenient:

R,

7, = H?*/vis a diffusive relaxation time and 7, = H/C
a time scale determined by the surface drag
coefficient. We consider only the special case
R < 1. In this limit, the following conditions seem
to be required for self-consistency:

i) mplr.> 1
@) 7/, <1
(iii) RYQrp, > 1
@iv) mpir>1

Each of these inequalities is discussed in turn below.

TolTe, TplTy, Q7p and  Tp/T.

@1

(i) The inequality /7, > 1isrequired in order that
u(0) be much less than u(H) =~ Qa#, as assumed
in the derivation of (12). If the assumptions leading
to the estimate (19) for the surface winds are adequate,
then u(0) < u(H) for all 6 < 6 if

i.e., if

Te =

< 7/(RA4/A,) = 7p.

c
According to (19) the maximum strength of the
surface wind is =0.2 in units of QaHALR?(C7A,),
while u(H) rises to % in units of QaR. u(0) will
therefore be considerably less than u(H) throughout
most of the cell even when 7,/7, = 1.

(ii)) The inequality 7,/r, < 1 is identical to the
condition v < v,, under which the linear equation
(10) produces a solution inconsistent with the angular
momentum constraint, u < u,. The same inequality
is evidently required for the assumption u = u,, to
be self-consistent, as can be seen with the following
qualitative argument.

Assuming that the poleward flow is concentrated
near z = H and integrating the momentum equation
over this layer of concentrated flow, one finds

oM

z=H

z=H-8

where V is the mass flux in this layer and & the
depth of the layer. Using the stress-free upper
boundary condition and estimating

oM

—_— = u(0,H)a/H,
0z

R=H-8

the result for the angular momentum gradient is

1 oM
— e = yu((),H)a/V(B)H-
a 06
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Or

F16. 3. Zonal wind, heat and momentum fluxes according to the
theory for R < 1, with u(z = H) normalized by QaR, u(z = 0)
normalized by QaHA,R*(CtA,), the heat flux Oy '[{v®dz
normalized by HaAyzR*%r, and the momentum flux [{oudz

normalized by Qa*HA4R%%/(1A,).

The scaling for V is discussed in Section 4a. For
the sake of definiteness, we let V have the same
meridional structure as the estimated heat flux:

3 5
V(6) ~ .‘ﬂAﬂRm{i - 2(£> + (_0_) ] .
T Av 0].1 01-1 0]1

Setting u(0,H) = uy, one can check for consistency
by computing the fractional error in zonal wind at
latitude 6:
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8 oM
| 5
Qa® — u - _ o 8§ _ T 1 (22)
Qa @ - Qa® 7, 1 —(0/6y)*

Since V — 0 at 8 = 8 in the inviscid limit, one
expects the viscosity, no matter how small, to play
some role in the vicinity of 6;. However, the loss
of angular momentum due to viscous stresses should
be negligible over the bulk of the cell if 7p/7, < 1.

If one sets du/dz |, ~ uy/H in Eq. (20), one finds
that the internal stresses are negligible compared
with the surface drag if, once again, 7,/7, < 1. Thus,
one doesn’t expect the Ferrel cell to appear above
the surface westerlies until the poleward flow in the
Hadley cell is nearly momentum conserving.

(iii) The third assumption used in deriving (12)
is that the terms

vl
[V (vo) — v 822]
‘are negligible compared with fu(H). This will not be
true in the immediate vicinity of the equator, but it
is sufficient for our purposes if it holds over the bulk
of the Hadley cell. Estimating the magnitude of these
terms presents a problem, since the arguments of
Section 4a provide estimates of the mass flux V but
not of the actual strength of the meridional flow.
One can try to sidestep this problem by examining
the linear model, Eq. (10). This equation predicts
that for sufficiently small v, the thickness of the
boundary layers in the tropics is

S = (W f V2 = (¥/2Q86,)"?,
[+ being the Coriolis parameter at the latitude 6,., and

1/4
0, = (—"- RZ) :

Vm

0

The maximum mass flux within this boundary layer
is proportional to

aH AH(R2 1)3/4.

Vmax = —
Vm

T A,

The transition to the nonlinear regime occurs when
v = p,, and at this transition \

& = v, /QR = H*(QrpRY?) (23)
and
Q 2
|omax|? = |87 Vinax|? ~ —— R¥"2.
D

Close to the equator, the magnitude of the meridi-
onal flow should be roughly

v = |Unax|(6/65)
so that

Qa? ]
2~ _—— RY20? if v =y,
T
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Near the equator the ratios
v
Ju(H):V-(vv):v —
0z%
therefore, are of the order
Q2a02 : _(l_q_RIIZ . (_(E Rl/Z)llZQRIIZ
Tp Tp
or
0 2
<__) : (QTDRIIZ)——I : (QTDR”Z)_Iﬂ.
Oy
If

QR > |

and v = p,, the terms

(24)

0%
Vivo) + v —
(vo) P

will be negligible compared with fu(H) at most
latitudes. If (24) is satisfied by a very wide margin,
one can argue that there should be a wide range of
v smaller than v, for which the assumptions that
the flow is balanced and that u(H) = u, throughout
the bulk of the cell are simultaneously appropriate.
We can say no more than this without more
information about the circulation in the nonlinear
regime.

Using (23), one sees that the condition Q7pR'Y? > 1
insures that the meridional flow will have a boundary-
layer character at the nonlinear transition.

(iv) A key assumption utilized in the preceding
discussion is that neither the circulation nor diffusion
change the mean static stability appreciably. Although
this assumption is not directly required in deriving
the inviscid limit of the heat flux and the Hadley
cell width, it is required for our estimates of the
surface stress and the mass flux, and, therefore, is
central to the self-consistency analysis of this section.

The inequality 7, > v must be satisfied if the

effects of the circulation of the static stability are to

be negligible. In the region of rising motion near the
equator, in particular, if 7 is much larger than 7,
the flow will force the static stability close to neutral,
since ® will be nearly conserved as the rising parcel
traverses the distance H. If 7, > 7, on the other
hand, the radiative equilibrium static stability has
time to assert itself and one expects changes in
stability due to vertical mixing to be negligible.
The time required for a fluid particle to travel
from 8 = 0 to 6 = 0y within the boundary layers at
z =0 and z = H is generally much smaller than
7p. However, in the absence of substantial vertical
mixing, meridional mixing in these layers can only
change the potential temperature by an amount
comparable to the temperature drop from the
equator to 6y, approximately RAy in the inviscid
limit. The resulting changes in stability will be neg-
ligible provided once again that RA,/A, = 1/7p < 1. .
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T = 7p thus seems to mark the transition from flows
in which the effects of the circulation on the tempera-
ture field in the inviscid limit are minimal to flows
in which the temperature field is distorted in possibly
complex ways.

When R <€ 1, 7,/7 is the Richardson’s number for
the exact inviscid solution described in Section 2
since N2 = g A /H and 9u/dz = QaR/H imply N?¥
(0u/8z)? = A,/RA,. We have, therefore, not only
restricted consideration to the case of gravitationally
stable radiative equilibria, but also to the case of
radiative equilibria for which the balanced zonal
wind produces a large Richardson’s number.

From the preceding arguments, we conclude that
no thermal boundary layers with temperature
drops of the order of A, will be produced by the
circulation if 7, > 7. The vertical diffusion will,
therefore, have an insignificant effect on the static
stability if H%/v > 7, a condition already guaranteed
by the inequalities (ii) and (iv).

Even if the inequalities (i)—(iv) are satisfied, there
is still one remaining problem with the analysis of
Section4a. Ifu = 0throughout the surface boundary
layer, then the flow rising out of this layer at latitude
¢ will have the angular momentum Qa?(1 — 6%). The
average angular momentum of the rising branch of
the Hadley cell will therefore be Qa%(1 — 6g?), where
0r can be thought of as the effective half-width of
this rising ranch. If the rising fluid is then channelled
into a thin boundary layer near z = H, and if this
boundary layer thins progressively as v — 0 so that
the momentum on the bounding streamline at z = H
is always well mixed with the rest of the momentum
in this layer, then one expects the zonal wind at
z = H to be bounded by Qa(6* — 6;?) poleward
of the rising motion. Predictions resulting from the
assumption that u = Qa6? should therefore be
considered as limiting cases which are likely to be
closely approached only if the rising branch of the
Hadley cell is sufficiently well localized at the
equator. If # does not achieve the momentum
conserving limit, then vertical shears and horizontal
temperature gradients will be smaller, the Hadley
cell will be wider and the heat flux larger than
predicted in Section 4a, as one can easily demon-
strate by modifying Fig. 1 appropriately.

c.-Symmetric instabilities

Solutions to Eq. (1) will develop regions of negative
potential vorticity as v — 0. Air leaving the equator
near z = H and conserving its angular momentum
eventually enters a region of radiative cooling. In
such a region ©® decreases moving poleward along
a line of constant M. Since one expects OM/0z to
be positive, it follows that the potential vorticity

1 (BM 00 oM 6@) 1 oM 00

K 0z 00 00 0z a 0z 480

a M=constant
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is negative in such a region, the condition for
symmetric instability in an inviscid, adiabatic
balanced flow.

As long as one restricts oneself to the problem
of finding steady solutions to the set (1), the fact
that the solution is unstable to symmetric disturbances
is of no more concern than its undoubted in-
stability to asymmetric disturbances. The problem
of symmetric instabilities must be faced, however,
if one tries to find these steady solutions numerically
by marching forward in time. Also, if one addresses
the question of determining the circulation when
the large-scale asymmetric barotropic and baroclinic
instabilities are artificially suppressed, one should
face the problem of estimating the mixing due to
zonally symmetric transience. Of particular concern
is the question of whether or not the time-averaged
circulation produced by the time-dependent version
of (1) resembles the steady circulation described in
Section 4a.

Rather than determining the zonal wind profile
at the upper boundary of the Hadley cell by setting
dM /860 = 0, one can, as an exercise, determine this
profile by setting ¢ = 0 and estimating

__8 00 foM__ fulH)
a®, 9460 a 0z H

just beneath the upper boundary layer. We again
restrict the discussion to the case R < 1. In this limit

oM oM 36 /06
09 0z 06/ o0z
implies that
1 du fu?
fo—m
a 060 gHA,
Substituting 4 = Qaé® on the right-hand sidé, one
finds
2,42
—61 xZQaO(l - Ya 0“)
9 gHA,
or
u znam(l _ Bu 94) .
3RA,

The fractional error one makes in setting # = Qa6?,
therefore, is =RA4/A, at 6 = 05 =~ R'V2, Whether
or not mixing induced by symmetric instabilities
results in a state with g everywhere non-negative,
we suspect that when the circulation can be
stabilized by making small changes in the zonal flow
and temperature fields, then mixing of angular
momentum and potential temperature due to these
instabilities will also be small. We suspect, there-
fore, that symmetric instabilities will have little
effect on the gross features of the zonal wind and
temperature fields when RA4/A, = 7/tp <€ 1, an
inequality we have already required for self-con-
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Fi1G. 4a. Calculated meridional streamfunctlons and zonal wind fields in the standard case. In the
left part of the figure, the streamfunction y is given for v = 25, 10 and 5 m? s™!, with a contour
interval of 0.1 Y. The value of Y., (m? s7?) is marked by a pointer. The right part of each figure
is the corresponding zonal wind field, with contour intervals of 5 m s™'. The shaded area indicates the

region of easterlies.

sistency in Section 4b. Furthermore, according to
the criterion g < 0, the exact inviscid radiative
equilibrium solution is itself symmetrically unstable
if its Richardson’s number A,/RAy, = 7p/7 is less
than unity. By assuming 75/7 > 1, we have also
required this inviscid radiative equilibrium solution
to be stable everywhere, thus preventing symmetric
instability from developing outside of the Hadley
circulation.

We have, admittedly, oversimplified this discussion
of symmetric instabilities by using the inviscid
criterion g < 0. As discussed by MclIntyre (1970a),
diffusion and/or radiative damping can destabilize a
zonal flow with positive q. We have chosen the
Prandtl number equal to unity to minimize this effect
in the time-dependent calculations described below,

but Newtonian radiative damping can still de-
stabilize the flow, at least according to the simplest
instability calculation analogous to Mclintyre’s,
ignoring boundaries, inhomogeneities in the angular
momentum and potential temperature gradients, and
the meridional circulation. It is conceivable that
some of the structure in the circulations described
below can be thought of as resulting from equilibrated
finite amplitude instabilities (see Mclntyre, 1970b;

Williams 1970) but this is an aspect of the problem
we have not pursued.

5. Numerical solutions

We obtain approximaie solutions to the set (1) by
finite-differencing the time-dependent version of
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FiG. 4b. Calculated meridional streamfunctions and zonal wind fields as described in Fig. 4a. The
shaded region in the ¥ field corresponds to a Ferrel cell, ¢ < 0.

these equations and integrating forward in time until
a steady state is achieved. The numerical model
utilized is standard in all respects. The second-
order spatial finite-differencing on a staggered grid
is a straightforward extension to multiple levels of
the scheme utilized by Held and Suarez (1978) in
atwo-level model. The time integration is performed
using Matsuno’s (1966) explicit *‘simulated backward
difference’’ method. The results described below
are obtained using 50 grid points in the vertical and
90 points from equator to pole.

Considered as one of a number of possible iteration
schemes for solving the boundary value problem,
time marching has certain disadvantages. In par-
ticular, when our time-dependent model fails to
achieve a steady state it is difficult to determine
whether the failure is due to an instability of the
differential equations or to numerical instability,
since we invariably find that the transients which

develop in such cases are not well resolved by our *
grid. When time marching does yield a steady
solution, however, we immediately learn that this
solution is stable to those perturbations resolved
by the numerics. It is still possible that the steady
solution is unstable to axisymmetric modes unresolved
by the spatial finite-differencing, or to weakly
unstable axisymmetric modes that do not grow due
to the dissipative character of the Matsuno step.

We begin by describing the steady states obtained
for a series of values of v = 25, 10, 5, 2.5, 1 and
0.5 m?%s~!, with the other model parameters fixed at
the following values:

QO =27/(8.64 x 10¢s) A, =14

a=64x10°m A, =% 25)
g =98m?s! C =0.005ms™!
H=80x10m 7 = 20 days

At a lower value of » (0.25 m? s7!) a steady state is
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F1G. 5. Zonal winds at z = H inthe standard case for three values
of v, compared with the theoretical prediction for v — 0.

not obtained. The corresponding nondimensional
parameters are

R=0.121, 7p/r=3.12
Tol7e = 3.37, QR = 136

and 7p/7, = viv, = 2.1, 0.84, 0.42, 0.21, 0.084 and
0.042. These parameters have been chosen to be
reasonably earthlike but with the inequalities (21) in
mind. The values given in (25) shall be referred to
as the ‘‘standard case.”” The steady meridional
. circulations and zonal wind distributions are displayed
in Figs. 4a and 4b. In order to emphasize changes in
the structure of the tropical circulation, the con-
touring interval for the streamfunction is chosen to
be one-tenth of the maximum streamfunction value
in each case. There is always a weak direct
circulation in the extratropics, with the meridional
fluxes confined to Ekman layers, but it is too weak
to be visible in the contoured field for small ».

In the more viscous cases the Hadley cell has the
general appearance expected from linear viscous
" models; the direct cell gradually decays poleward,
with meridional mass transports occurring in broad
boundary layers. As the viscosity is reduced the
cell begins to develop a well-defined meridional
extent as well as significant tilt in the subtropics.
This tilt presages the appearance of the Ferrel cell
above the region of the surface westerlies. The
Ferrel cell appears when v = 1 m? s7!, at which
point the drag associated with the westerlies finally
overcomes the internal stresses. At these low values
of v the circulation has the same qualitative appearance
as that computed by Schneider (1977) and depicted
schematically by Eliassen (1952). The steady-state
flow continues to evolve as v is decreased further,
however. In the least viscous steady state obtained,
v = 0.5 m? s™!, most of the flow recirculates in the
upper third of the domain.

The transition from a smooth zonal wind structure
to a very sharp shear zone on the poleward boundary

I
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of the Hadley cell is also evident in Fig. 4. For
v = 0.5 m? s7! the zonal wind drops in strength by
more than 60 m s~ within 200 km (two grid points)
at 25°. Our meridional resolution is evidently
insufficient for examining the detailed structure of
this subtropical boundary layer. At these small
values of v a secondary maximum in zonal wind
appears poleward of this shear zone, due to weak
divergence above the rising motion in the Ferrel
cell; the transport by the equatorward flow south
of this rising motion depresses the zonal winds,
while the poleward flow north of this point enhances
the winds. Some grid point noise is also evident
in the zonal winds at these smaller values of ».

Fig. 5 compares the zonal winds at z = H in three
experiments (v = 25, 5 and 1 m? s~!) with the wind
profile predicted as in Section 4a, but without
making the approximation R < 1. In the least viscous
case shown (as well as in the case v = 0.5 m? s™! not
shown) the maximum wind is located 2° latitude
poleward of the predicted position. A major de-
ficiency of the theory is evidently its oversimplified
description of the transition at this latitude from
the momentum-conserving wind to the radiative-
equilibrium wind. The oscillations in # poleward of
the subtropical boundary of the Hadley cell do not
disappear as v — 0, but rather become more
pronounced as the Ferrel cell strengthens.

The latitudinal momentum profiles in the poleward
flow within the Hadley cell are displayed in more
detail in Fig. 6, a plot of Qa sin?0 — u cosfatz = H
for each case. The zonal wind approaches its
momentum-conserving limit more or less uniformly
in this region, until » = 1 m? s™!. For v = 1.0 and
0.5 m? s7! the flow is very nearly momentum con-
serving poleward of 15°, but there is still significant
mixing equatorward of 10° between lower momentum
air and the air on the bounding streamline at z = H.
The substantial width of the rising branch of the
Hadley cell evident in Fig. 4 seems to be at least

[ v=26m?/sec S
10 !
60 A
7
: A
40 : /.
8 . /
{ S -
13
20 ]
0
1 A —_— 1 1.
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FI1G. 6. Qa sin%(6) “u cos(§) at z = H for various values of v
in the standard case.
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F1G. 7. Calculated meridional heat fluxes in the standard case for various
values of v and the theoretical prediction for v — 0.

partly responsible for the failure of the winds to
approach even closer to their momentum conserving
limit.

Fig. 7 depicts the vertically averaged horizontal
flux of potential temperature in each of these
circulations, as well as the predicted inviscid limit.
The approach of this flux to its predicted limit is
broadly similar to that of the zonal winds at z = H,
the approach being more or less uniform until
vy = 1 m?2s~!. In fact, one can show by direct
calculation that of the three assumptions required
in Section 4a to obtain the theoretical heat flux
curve—u(H) = u,;, u(0) = 0, and a balanced zonal
flow—it is the violation of the first of these which
results in almost all of the disagreement in Fig. 7.
The effects of the Ferrel cell are again evident near
the subtropical boundary of the Hadley cell in the
sharp minimum and secondary weak maximum in
the heat flux. Further poleward, the flux quickly
asymptotes to that produced by simple Ekman
boundary layers at z = 0 and z = H, vugA,/fH*.

Surface winds in three of these circulations are
plotted in Fig. 8, once again accompanied by the
predicted inviscid limit. The prediction in this case
depends either on the assumption of similarity in the
vertical profiles of M and O, or on the assumption
that the meridional circulation is confined to thin
boundary layers at z = 0 and H. Since M is nearly
conserved following the flow while © is not (because
of radiative damping), one does not expect the
similarity assumption to the particularly good. There
is, in addition, considerable meridional flow in the
interior of the fluid at the smaller values of v,
particularly above the region of surface westerlies.

The predictions for the strength of the winds and
for the location of the boundary between surface
easterlies and westerlies still seem to retain some
qualitative validity, however.

Contours of M and ® equatorward of 30° in the
least viscous steady state obtained (v = 0.5 m® s7)
are displayed in Fig. 9. Within the shaded region
the orientation of the contours is such that the Ertel
potential vorticity g is negative. g is near zero in
the striped region near z = H, but a small amount
of grid-point noise in M causes g to change sign from
point to point. (The stripes are meant only to be
suggestive of these changes in sign.) This region of .
near zero g corresponds roughly to the region of
strong recirculating flow. g is definitely negative in
the region centered at ~12° and z = H/2.
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F1G. 8. Calculated surface wind in the standard case for various
values of v and the theoretical prediction for v — 0.
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! Fi16. 9. Contours of constant M (broken line) and constant ®/0, (solid line) for oo
v = 0.5 m? 5! in the standard case. The potential vorticity is approximately zero
in the striped region and negative in the shaded region. The contour interval
for M/a is 2.5 m s~1, and that for ®/@, is 0.01.

After viewing Fig. 9, it is not surprising that
steady circulations for still smaller values of v could
not be found by time-marching. Fig. 10 is a plot of
the meridional streamfunction obtained after 1000
days of integration in a calculation with v = 0.25
m?2 s~1. The flow is still evolving at this time, and
has developed sufficient grid-point noise in the zonal
winds to force abandonment of the integration.
Presumably a steady solution of these equations

does exist for this value of v. We suspect that

vertical structure of the sort depicted in Fig. 10 is
present in this steady state.

A variety of other calculations have been performed
varying the model parameters. Figs. 11 and 12
summarize a number of these calculations. The
vertically averaged horizontal fluxes of potential

H 4

0

30° 45°

LATITUDE

Fi1G6. 10. Meridional streamfunction for v = 0.25 m? s~ after
1000 days of time integration in the standard case. The con-
touring interval is 0.1 times the maximum streamfunction value.

0° 15° 60°

temperature are displayed in Fig. 11. Fig. 12 compares
the position of the maximum zonal wind at z = H
in each circulation with the position predicted by
(17). The cases presented are (a) larger static
stability A, = 2A,,; (b) larger rotationrate Q = v2€),;
(c) larger vertical scale, H = 2H,; with A, = 2A,,
so that 80/9z in radiative equilibrium remains un-
altered; and (d) smaller rotation rate, Q = /2.
The subscript zero refers to the parameter values
listed in (25). For each case we compute a series of
steady circulations, decreasing » until a steady flow
cannot be found with this numerical model.

The value of R increases as H increases and as
Q) decreases, but is unaffected by the value of
A,. The width of the Hadley cell and the latitude
of the subtropical jet should, therefore, decrease
in case (b), increase in (c¢) and (d), and remain
unchanged in (a). This is precisely the behavior
observed in these solutions. Fig. 12 shows that for the
least viscous circulation in each series the jet is
typically only ~2° poleward of its predicted position.

Compared with the standard case, the value of
v = (H?*7)(RAgL/A,) is smaller by a factor of 2 in
cases (a) and (b), larger by a factor of 4 in (¢), and
larger by a factor of 2 in (d). One therefore expects
smaller values of » to be required in (a) and (b) than
in the standard case in order to approach the
inviscid limit, and larger values to be sufficient in
(c) and (d). This is the qualitative behavior ob-
served in the figures. One complication is that in
case (d) the least viscous steady solution obtained
is not quite inviscid enough for the flux to be
insensitive to v. This may be related to the fact that
(d) is the only case for which 7,/7, the radiative
equilibrium Richardson’s number, is smaller than in
the standard case. The smaller 7,/7, the further the
nearly inviscid circulation from a state with non-
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F1G. 12. Position of the maximum zonal wind at z = H at
different values of A,, H and (), and the predicted position
according to (17).

negative potential vorticity, according to Section 4c.
v/v,, for the least viscous solution is roughly a factor
of two larger in this case than for the least viscous
solutions in the other cases, and in this sense, at
least, instability does set on further from the
inviscid limit in (d). In cases (a), (b) and (c), closer
approach to the predicted limit seems to be prevented
once again by the substantial width of the rising
branch of the Hadley cell.

Calculations. have also been performed varying
the Prandtl number. Attempts at finding a steady
circulation with the diffusion of heat, v”, set equal
to zero proved unsuccessful. A number of steady
.circulations were obtained with v = 0.25 ¥, how-
ever, and the qualitative structure of the circulations
remains unchanged from that with unit Prandtl
number. For example, in the case with 1 = 1 m? s~!
and with the other parameters as in (25), the maximum
heat flux increases ~3% and the jet decreases in
strength by 4.5 m s~! without changing its latitude.
The static stability increases slightly when the
diffusion of heat is reduced. As a result, a weaker
circulation is needed to transport the same amount
of heat, and therefore, viscous stresses have more
time to act on a fluid parcel before it traverses
the cell. The heat flux must increase slightly to
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be consistent with the resulting decrease in the
vertical shears. We feel confident that the steady
solutions with v = 0 are also qualitatively similar
to those described here.

6. Summary and discussion

The Hadley cell in a dry, stably stratified axisym-

" metric flow in a Boussinesq fluid is strongly con-

strained by conservation of angular momentum
and potential temperature. The assumptions that the
zonal wind is balanced, equal to Qa sin®6/cosé near
the top of the cell, and equal to zero near the ground
determine the meridional profile of the vertically
averaged potential temperature within the cell. If the
flow is forced by linear, radiative damping back to
a specified radiative equilibrium temperature, then
conservation of potential temperature and continuity
of potential temperature at the polar boundary of the
cell lead to an expression for the latitude of the
polar boundary and for the vertically averaged heat
transport by the cell (as illustrated in Fig. 1). For
the simple radiative equilibrium temperature profile
given by Eq. (2) characterized by the parameters
Ay, the fractional change in potential temperature
from equator to pole, and A, the fractional change
from the top to the bottom of the fluid, one finds
that the latitude of the poleward boundary of the
cell, 8y, is (3R)Y*> when R = gHA,/Q%? < 1 and
that the vertically averaged heat flux is proportional
to (aAy/T)R32. The additional assumptions that the
static stability is unaffected by the circulation and
that the vertical profiles of # and © are similar result
in a surface stress proportional to QaHAyR?/7A,,
with surface easterlies (westerlies) equatorward
(poleward) of (3/7)'26.

Qualitative arguments limiting the domain in the
model’s parameter space within which the resulting
circulation is self-consistent have been presented
in Section 4b. It is not clear that these qualitative
arguments are entirely adequate. In particular, it is
not clear what form the circulation takes for values
of the viscosity smaller than those for which we were
able to obtain steady numerical solutions. As seen in
Fig. 11, the approach of the heat flux to its predicted
inviscid limit ceases at small values of ». We have
interpreted this behavior in terms of the sub-
stantial width of the rising branch of the Hadley
cell. It may be the case, however, that for still
smaller values of » the heat fluxes being to depart
further from the predicted limit. In any case, we
conclude from the numerical results that the simple
arguments of Section 4a are of qualitative, and in
some cases, at least, of quantitative, value in
interpreting the nearly inviscid solutions to (1).

But ‘what does one learn from these arguments
or from this set of equations about axisymmetric
circulations in more realistic model atmospheres?
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It is evident, in particular, that latent heat release
is crucially important for the structure of the Hadley
cell and that the distribution of latent heating is
controlied in part by the large-scale flow. No such
effect is included in (1).

To address this question, we retain the Boussinesq,
Newtonian cooling framework for the moment, and
consider a ‘‘moist’’ model in which the circulation is
allowed to alter the heating distribution @ in some
complex manner, without altering the giobal mean
®;. More precisely, in a ‘‘moist”” mode! one can
divide the heating, ®, = ©,* + L, into the vertically
averaged convergence of the latent heat flux L and
the remainder, @;*, the global integral of L being
zero. Even though L may be dependent on the
circulation and may be of such a form that ®; has
a very sharp maximum at the equator, these argu-

ments still apply if the circulation still has the basic

form postulated in Section 4a. The meridional
temperature profile within the Hadley cell will once
again be given by (12). If the circulation is confined
to the region 6 < 6y, then ©z-(0y) = O(Hy) and

On

(7%
J Oz cos(6)do = J O% cos(0)do.

0 0

The form and magnitude of L are irrelevant to the
argument; the value of 04, determined as before
by continuity of ® at 65 and conservation of @,
remains unchanged. The only effect of the circulation
dependent heating is on the strength of the circulation
itself. If ®@; increases in the region of low-level
convergence, crudely accounting for the effects of
latent heating, then the flow will certainly be stronger
than its ‘‘dry’’ (fixed ®;) analogue, and the region
of rising motion will undoubtedly be more localized,
but there should be little effect on the width of the
Hadley cell or on the strength of the jet if the flow
is sufficiently inviscid. The most significant effect
might just be a closer approach to the predicted
inviscid limit due to the more localized rising motion.
If substantial internal viscous stresses are present,
however, a more intense circulation will leave the
stresses less time to act, causing the zonal winds
to increase and the cell to contract.

This is not to say that moist processes would have
no other effects on the Hadley cell in a more realistic
model. In particular, moist convection can alter the
height of the momentum conserving flow by altering
the height of the tropical tropopause, thereby altering
R and the width of the cell. Also, momentum mixing
due to moist convection can lead to a fairly viscous
circulation with a structure determined, at least in
part, by this ‘““‘cumulus friction’’. However, to the
extent that the circulation is successful in localizing

convective activity in a thin convergence zone, the .

stresses associated with the convection will also be
limited to this zone, leaving a fairly inviscid interior
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in the rest of the Hadley cell. A nonlinear, nearly
inviscid analysis would then be applicable to this
moist model atmosphere.

The problem of the earth’s Hadley cell is also
complicated by the presence of large heat fluxes
across the lJower boundary into the ocean. To take
this effect into account, one need only incorporate
this flux F into the function O, i.e.,

(::')ET_l i @ET_I — F.

If F happens to be non-negligible only in the region
0 < 0y, then one can easily show that an increase in
the oceanic heat flux o, [F = (a cos)~'d(o cos6)/00
in a steady state)] will be compensated for exactly
by a decrease in the atmospheric flux and will have
no effect on the width of the cell, the strength of
the jet, or on the atmospheric mean temperatures —
as long as the flow is sufficiently inviscid and as long
as the various assumptions utilized in the analysis
remain valid. However, if the oceanic flux forces
the rising branch of the Hadley cell off the equator,
then the total atmospheric plus oceanic flux can
change, a point we hope to return to in a forth-
coming paper.

More serious problems arise when one tries to
relax the Boussinesq and Newtonian cooling approxi-
mations. One can still argue that the flow in the
inviscid limit is constrained to some extent if the
vertical structure of the atmosphere is itself strongly
constrained by processes other than the large-scale
flow. To see this, it is convenient to examine the
vertically integrated atmospheric energy balance. In
a steady state

0=35() — F(6) — L©6) ~ H(0), (26)

where S(0) is the net incoming solar flux and F(6)
the heat flux into the ocean, both of which are
assumed known. L(0) is the outgoing longwave
flux at the top of the atmosphere and H(f) the
divergence of the atmospheric latent plus sensible
heat transport. If a simple Hadley cell exists with
nearly momentum-conserving flow aloft and relatively
small surface winds, then geostrophic balance in a
compressible atmosphere still provides information
about the meridional structure of some weighted
vertical average of the temperature. In the simplest
case, in which the poleward flow is at constant
pressure p; and the surface pressure pp is constant,
one has

LmMz—Roég{n,

where
by

{nzhgm

R, being the gas constant. One therefore obtains a
formula analogous to (12) for {T}.
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The outgoing longwave flux can be thought of as a
second weighted average of atmospheric and surface
temperatures, the weighting being a function of the
atmospheric composition. If the vertical structure of
the atmosphere is strongly controlled by small-scale
mixing in a manner not affected by the large-scale
flow, then these two weighted averages might be
sufficiently closely linked in practice that L could be
thought of as a fixed function of {T}. If this is a
legitimate approximation, then the assumptions that
H(0y) = 0 and the constraint

8n
0=J
0

Oy
- J [S(6) — F(8) — LUT(O)})] cosdde
0

H(6) cos(8)do

result in precisely the same geometric construction
for the width of the Hadley cell as illustrated in
Fig. 1. The meridional profile of the total heat flux
by the atmosphere is thereby determined. The details
of the moist convective heating, besides controlling
the height of the poleward flow, control the parti-
tioning of this transport between latent and sensible
fluxes.

‘The factor which is most likely to upset this line
of argument is cloudiness. The cloud distribution is
controlled to a great extent by the circulation and
does certainly affect the outgoing longwave flux and
the shortwave heating. To the extent that these two
effects do not compensate, one must develop a
theory for the circulation-dependent cloudiness and
couple it to the sort of argument presented above
in order to determine the gross structure of the celil.

Based on these considerations, we would argue
that the applicability of the analysis of Section 4 is
not confined to the particular system of equations
treated in this paper. As long as the atmosphere is
nearly inviscid, these arguments can be modified
appropriately to show that the Hadley cell is strongly
constrained by geostrophy and conservation of heat
and momentum. The crucial requirement is that the
internal momentum mixing be small. Should viscous
stresses in the interior be sufficiently large that
ou/dy < f, the momentum balance in the poleward
branch of the Hadley cell would be (i) fv = divergence
of stresses rather than (ii) (f — du/dy) = 0. If (i)
holds, then the meridional circulation is determined
by the stresses, and the thermodynamic equation
determines the temperature field consistent with this
circulation. If (ii) holds, then this momentum equation
effectively determines the mean atmospheric tem-
perature profile, as we have seen, and the thermo-
dynamics determines the 01rculat10n consistent with
these temperatures.

The response to a perturbation in diabatic heating
[or oceanic heat flux in (26)] must be dramatically
different in these two limiting cases. In the linear
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viscous flow the circulation remains unchanged to
the extent that the stresses remain unchanged, and
the atmospheric temperatures must adjust until the
radiative deficit balances the heating perturbation.
In the nearly inviscid flow these arguments suggest
that temperatures remain more or less unchanged,
leaving the heating anomaly to be balanced by
adiabatic cooling.

In low latitudes, the earth’s atmosphere is inter-
mediate between these two extremes. Stress of
various kinds are far from negligible, but neither
is du/dy negligible compared with f. An under-
standing of nearly inviscid as well as viscous
axisymmetric flows should be of value in the study of
the Hadley circulation.

Acknowledgments. We thank R. S. Lindzen for
stimulating our interest in axisymmetric flows.
Conversations with Prof. Lindzen and Drs. E.
Schneider, E. Sarachik and S. Manabe helped clarify
the material in the paper. Preliminary calculations
were performed at the National Center for Atmos-
pheric Research; we thank Maurice Blackmon and
the staff of the Advanced Studies Program for their
hospitality during our stay. The final calculations
were performed at the Geophysical Fluid Dynamics
Laboratory; David Linder’s assistance with these
calculations is gratefully acknowledged. The Scientific
Illustration Group at GFDL assisted with the figures,
and Joyce Kennedy did a very able job of typing
the manuscript. One of the authors (AYH) was
supported by NASA Grant NGL-22-007-228 at
Harvard. Before joining GFDL, the other author
(IMH) was supported by National Science Founda-
tion Contract ATM 15-20156 at Harvard.

REFERENCES

Charney, J., 1973: Planetary fluid dynamics. Dynamic Meteorology,
P. Morel, Ed., D. Reidel, 97-351.

Dickinson, R. E., 1971: Analytic model for zonal winds in the
tropics. 1. Details of the model and simulation of gross
features of the zonal mean troposphere. Mon. Wea. Rev.,
99, 501-510.

Eliassen, A: 1951: Slow thermally or frictionally controlled
meridional circulation in a circular vortex. Astrophys. Norv.,
5, 19-60.

Held, 1., and M. Suarez, 1978: A two-level primitive equation
atmospheric model designed for climatic sensitivity experi-
ments. J. Atmos. Sci., 35, 205-229.

Hide, R., 1969: Dynamics of the atmospheres of the major

«'planets with an appendix on the viscous boundary layer at
the rigid boundary surface of an electrically conducting
rotating fluid in the presence of a magnetic field. J. Atmos.
Sci., 26, 841-853.

Leovy, C., 1964: Simple models of thermally driven mesospheric
circulation. J. Atmos. Sci.,-21, 327~341.

Matsuno, T., 1966: Numerical integrations of primitive equations
by use of a simulated backward difference method J.
Meteor. Soc. Japan, 44, 76-84.

Mclntyre, M. E., 1970a: Drffusrve destabilization of the baro-
clinic circular vortex. Geophys. Fluid Dyn., 1, 19-57.

——, 1970b: Role of diffusive overturning in nonlinear axisym-



MARCH 1980

metric convection in a differentially heating rotating annulus.
Geophys. Fluid. Dyn., 1, 59-89.

Nakamura, H., 1978: Dynamical effects of mountains on the
general circulation of the atmosphere. III. Effects on the
general circulation of the baroclinic atmosphere. J. Meteor.
Soc. Japan, 56, 353-366.

Pedlosky, J., 1969: Axially symmetric motion of stratified
rotating fluid in a spherical annulus of narrow gap. J. Fluid
Mech., 36, 401-415.

Schneider, E. K., 1977: Axially symmetric steady-state models of
the basic state for instability and climate studies. Part II:
Nonlinear calculations. J. Atmos. Sci., 34, 280-~297.

ISAAC M. HELD AND ARTHUR Y. HOU

533

—,and R. S. Lindzen, 1976: The influence of stable stratification
on the thermally driven tropical boundary layer. J. Atmos.
Sci., 33, 1301-1307.

——, and ——, 1977: Axially symmetric steady-state models of
the basic state for instability and climate studies. Part I:
Linearized calculations. J. Atmos. Sci., 34, 263-279.

Schoeberi, M. R., and D. F. Strobel, 1978: The zonally
averaged circulation of the middle atmosphere. J. Atmos.
Sci., 35, 577-591.

Williams, G., 1970: Axisymmetric annulus convection at unit
Prandtl number. Geophys. Fluid Dyn., 1, 357-369.



