SepTEMBER 1981 ISAAC M. HELD, DAVID I.

LINDER AND MAX J.

SUAREZ 1911

Albedo Feedback, the Meridional Structure of the Effective Heat Diffusivity, and
Chimatic Sensitivity: Results from Dynamic and Diffusive Models

Isaac M. HELD AND DaviD I. LINDER

Geophysical Fluid Dynamics LaboratoryINOAA, Princeton University, Princeton, NJ 08540

Max J. SUAREZ

Department of Atmospheric Sciences, University of California, Los Angeles 90024

(Manuscript received 9 February 1981, in final form 20 April 1981)

ABSTRACT

The sensitivity of a two-level primitive equation atmospheric model to solar constant perturbations is
examined in the presence of surface albedo feedback. The model is simplified to the point that a large
number of numerical experiments can be performed and statistically steady states defined with relative
ease. Exceptionally sensitive equilibrium states are found that are unrelated to the large and small ice-cap
instabilities obtained in the simplest diffusive energy balance models. Similar results are produced in a
two-level diffusive model closely patterned after the dynamic model, and in a more highly idealized one-
level model, by choosing a diffusivity with pronounced meridional structure resembling that of the effective
diffusivity of the dynamic model. Sensitive states occur in the diffusive models when the albedo gradient
enters the region equatorward of 60° in which the effective heat diffusivity of the atmosphere increases with

increasing latitude.

1. Introduction

Energy balance considerations suggest that cli-
matic sensitivity to perturbations in the solar con-
stant (or to other radiative perturbations) is signif-
icantly enhanced by the positive feedback between
temperature changes and albedo changes due to
modification of ice and snow cover. Energy balance
models predict further that the strength of this posi-
tive feedback increases as the solar constant de-
creases, to the point that the feedback becomes suf-
ficiently strong to overcome all restoring forces and
produces unstable growth of the ice and snow. Much
of the interest in energy balance models resulis from
the startling proximity in these models of the present
climate to this ‘‘large ice-cap instability.”’ Estimates
of the decrease in the solar constant required for
instability vary considerably from model to model,
however, ranging from less than 2% in the original
calculations of Budyko (1969) and Sellers (1969) to
10% or more in several recent calculations (Oerle-
mans and van den Dool, 1978; Hartmann and Short,
1979, Wang and Stone, 1980).

The growing importance of albedo feedback for
climatic sensitivity as the climate cools is also clearly
seen in the results obtained by Wetherald and Manabe
(1975) using an atmospheric general circulation
medel. Because of the computational requirements
of their model, these authors did not examine the
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character of the large ice-cap instability in any de-
tail, but their Fig. 5 indicates that albedo feedback
is rapidly increasing in strength when the solar con-
stant is lowered to 1.92 ly min™! (1340 W m™2).
Wetherald (personal communication) found that at
1.88 ly min~! (1310 W m™?) the ice cap slowly con-
tinued to expand for as long as it was praciical to
continue the numerical integration. These calcula-
tions seem to confirm the qualitative behavior found
in the simpler models: over the range of solar con-
stants considered, at least, sensitivity increases
monotonically as the solar constant is lowered.
We describe here the response of a two-level prim-
itive equation model on a sphere to solar constant
variations. The computational requirements of the
model are sufficiently small that climatic statistics
are relatively easy to define and a large number of
statistically steady states can be obtained. We uti-
lize this model to study the large ice-cap instability
and other effects of albedo variations on climatic
responses. A detailed description of the model, along
with our rationale for the various approximations
made and a discussion of the model’s limitations,
can be found in Held and Suarez (1978, hereafter
referred to as I). The sensitivity of this model to
solar constant variations when the surface albedos
are fixed has been analyzed in Held (1978, referred
to as II). We now simply set the surface albedos
equal to a particular function of surface temperature
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designed to approximate the effects of ice and snow
cover, and reexamine the model’s responses. The
quantitative results described below depend on our
crude radiative parameterization and are undoubtedly
distorted somewhat by the two-level approximation
and severe spectral truncation, as well as by the

more obvious approximations of fixed cloudiness, -

no seasonal variation and no oceanic heat transport.
We believe that these results are of interest, how-
ever, because the qualitative behavior of the model
as the solar constant is varied is unlike that found
in the diffusive energy balance models described in
the literature. When the solar constant is decreased
a few percent, pushing the albedo gradient at the
ice:cap boundary equatorward of 60°, the model
climate becomes extremely sensitive to the value of
the solar constant, but this sensitivity is not a sign
that the large ice-cap instability is close at hand.
Instead, as the solar constant is lowered further,
the model climate becomes less rather than more
sensitive. These relatively stable large ice-cap states
exist for a range of ~5% of the solar constant. For
still lower values of the solar constant the large ice
cap becomes unstable and covers the planet.

The simple ‘‘Hadley adjustment’’ model of Lindzen
and Farrell (1977) is capable of producing similar
non-monotonic changes in sensitivity as the solar
constant is lowered. However, the non-monotonic
changes in sensitivity in our model do not seem to
be related to the Hadley cell. Rather, they are closely
related to the meridional structure of the poleward
‘heat flux in middle and high latitudes. This becomes
clear when we mimic the primitive equation calcula-
tions with an energy balance model. As described
in Section 4, this simple model produces very sensi-
tive climates when the ice-cap boundary penetrates
into the region (60-40° latitude) in which the effec-
tive meridional heat diffusivity of the atmosphere
increases rapidly with increasing latitude. After the
ice cap passes through this region, the sensitivity
of the model decreases. When the latitudinal struc-
ture of the diffusivity is removed from the energy
balance model, the sensitive region disappears and
one is left with a simple monotonic increase in sen-
sitivity with decreasing solar constant, except for a
very weak remnant of the small ice-cap instability
which is sensitive to the structure of the diffusivity
near the pole.

2. The primitive equation model

The dynamic model utilized is a two-level primi-
tive equation model on a sphere, in which all fields
are Fourier analyzed in the zonal direction and very
severely truncated, retaining only wavenumbers 0, 3
and 6. Potential temperature is a prognostic variable
at both levels, so that the static stability of the
atmosphere is predicted. Water vapor mix/ing ratio
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is carried as a prognostic variable at the lower level
only. The lower boundary is assumed to be a swamp
-—a flat, water-saturated, zero heat capacity surface.
Insolation at the top of the atmosphere is fixed at
its annual mean value as a function of latitude. The
equations are solved by finite-differencing in the
meridional direction using a staggered 3° latitude
grid, placing the boundaries at +84° latitude, and

" integrating forward in time with a semi-implicit step.

The model’s zonally averaged temperature equa-
tions can be written in the form

ot D1
X [Q’ldw + Q?W + QCONV] + €; (1)
00, =R, + (E*_)"
at Ps
X [QFY + OF + Q%K + QU — Q°ON] 4 ¢,

Subscripts 1 and 2 refer to the upper and lower
levels, respectively. @, is the proportional tempera-
ture and R; the convergence of the large-scale (hori-
zontal and vertical) fluxes of potential temperature,
whilep, = 1000 mb,p, = 250 mb,p, = 750 mb, and
k = 2/7. Q*W and Q§W are the long-wave and short-
wave heating rates. In order to complete the descrip-
tion of the radiative calculation provided in I, and in .
order to correct several errors in Table 2 in I, the
computation of Q¥ and Q$V is described in full in
Appendix A. The computation of the sensible heat-
ing QSY, the latent heat release in the lower layer
Q™ and the heat transported upward by the con-
vective adjustment QCONV are completely described
in I. The term ¢; represents the sum of two very
small effects—a nonlinear subgrid-scale diffusion,
also described in I, and the small amount of heat
released when kinetic energy is dissipated.

The model is identical to the two-wave,m = 3-6,
moist version of the model utilized in I and II, ex-
cept for the following two changes: '

1) Most importantly, the surface albedo’y is now
chosen to be the following function of surface tem-
perature T:

0.1, M <T,
1 0.1+0.6
y= 101 @)
X (273 = T,)/20., 253 < T, <273
0.7, T, < 253.

As discussed in I, in Section 2d, the model’s surface
temperature is a function of time and latitude only.
Surface albedo variations are therefore independent
of longitude. Using the crude model described in
Appendix A, a surface albedo of 0.1 (0.7) typically
results in a planetary albedo of 0.34 (0.68). Changes
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in surface albedo have roughly the same effect on
planetary albedo at all latitudes in this model, very
likely one of its more serious deficiencies.

Our primary reason for choosing this smooth
transition from ice-free (0.1) to ice-covered (0.7) sur-
face albedos is that we want to avoid the small ice
cap instability present in discontinuous albedo mod-
els (Held and Suarez, 1974; North, 1975). Numerical
solutions to the simplest diffusive models with
smoothed rather than discontinuous albedos show
that even a modest smoothing of the ice-free to ice-
covered transition is sufficient to destroy the small
ice cap instability, whereas smoothing as substantial
as that in (2) has little effect on the large ice-cap
instability. A remnant of the small ice-cap instability
can still be discerned in the continuous albedo mod-
els, however, and a brief discussion of this point is
included in Appendix B. It is clear, in any case, that
a useful analysis of the stability of the Arctic or
Aantarctic ice caps to melting would take explicit ac-
count of the seasonally varying solar flux. The choice
of a smooth albedo-temperature relation allows us
to concentrate on the character of the large ice-cap
instability and the effects of small, relatively stable
ice caps on climatic responses.

2) In the calculations described in I and II, the
heat released on dissipation of kinetic energy is ig-
nored. Globally averaged, this source of heat
amounts in the model to less than 3 W m~2. A 10%
change in solar constant, or roughly a 25 W m™2
change in mean solar heating, results in less than
1.0 W m™2 change in dissipative heating when al-

ISAAC M. HELD, DAVID I. LINDER AND MAX J. SUAREZ 1913

bedos are fixed, so the effect of this simplification
on the climatic responses described in [1 is extremely
small. If, however, the model undergoes an abrupt

transition in which frictional dissipation increases

by a substantial fraction of itself when the solar
constant is changed by a small amount, then sig-
nificant distortion of the response can occur. Since
a transition of this sort does occur in the present
calculations, we now include this heating due to
frictional dissipation in the model. Experiments with-
out this heating term show, as expected, that its
omission does have some effect, but that the qualita-
tive character of the responses is unchanged.

3. Results

Numerical experiments at 18 values of the solar
constant are summarized in Table 1. The integra-
tions are of varying lengths, and climatic statistics
are gathered from the final 400, 800 or 1200 days of
each integration. Initial conditions are the final states
from other runs, as listed in the table. Several ex-
periments of somewhat shorter duration were per-
formed using different initial conditions to check
for non-uniqueness of the equilibrium states, but
none was found. (The model’s ice-covered earth
solution, which is undoubtedly stable over this range
of solar constants, has not been examined.) Zero
percent refers to a solar constant of 1395 W m™2,
this being the case which produces a surface temper-
ature distribution closest to the observed (see Fig.
4a). Our radiative model evidently has a small cold

TaBLE 1. Experiments performed with the dynamic model. Q = x% should be read @ = {1 + (0.01)x]1Q,, with O, = 1395 W m™2,
The ‘“‘initial condition”’ column indicates that calculation the final state of which is utilized as the initial state of the calculation
with solar constant Q. 0% f refers to the fixed albedo calculation described in II. The final three columns are the global mean surface
temperature, planetary albedo and eddy kinetic energy. The Q = —6% case is still cooling rapidly at day 1600.

Length of Averaging
integration period Initial Planetary EKE
Q (days) (days) condition T. (K) albedo (m s™1)?

+8% 800 400 +6% 296.86 0.3288 37.5
+7% 800 400 +6% 296.10 0.3295 37.6
+6% 800 400 +4% 295.37 0.3303 38.2
+5% 800 400 +4% 294.49 0.3310 37.4
+4% 800 400 0%f 293.54 0.3321 37.0
+3% 800 400 0%f 292.62 0.3339 384
+2% 1200 400 0%f 291.39 0.3363 37.8
+1% 1200 400 0%f 290.02 0.3399 384
0% 1200 400 +1% 287.47 0.3589 42.0

-0.5% 1600 ~ 0% ~ ~ - ~
-1% 2400 1200 0% 278.86 0.3904 50.8

-1.5% 2400 ~ -0.5% ~ ~ ~
-2% 2400 1200 0% 272.01 0.4234 55.6
-3% 1600 800 2% 266.33 0.4500 60.8
—4% 1600 800 —2% 260.95 0.4758 66.6
-5% 2000 800 ~4% 254.94 0.5047 69.6
-5.5% 2400 800 —-5% 251.37 0.5229 71.6

—6% 1600 ~ —5.5% 233.00 at ~ ~

day 1600
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Fig. 1. The latitude of the ice-cap boundary is rela-
tively insensitive to the value of the solar constant
Q for Q > +1%, extremely sensitive in the range
+1% > Q > —2%, and then somewhat less sensi-
tive once again for —2% > Q > -5.5%. At Q
= —6% the ice cap advances unstably until it covers
the planet.
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Fi1G. 1. Surface albedo as a function of latitude for different values of the solar constant.
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Fig. 2 depicts the time evolution of the global
mean potential temperature for the calculations with
+4% > Q > —3%, spanning the region of excep-
tional sensitivity. Smoothing by eye has eliminated
a small amount of high-frequency variability. The
slow and large variation in the —0.5 and —1% cal-
culations and the slow relaxation and decidedly non-
exponential character of this relaxation in the —1.5

2%

[ I |

15 ] |
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Fic. 2. Time evolution of the global mean potential temperature in several of the calculations, defined as the average over
latitude of ¥4(0, + ©,). [The potential temperature at 500 mb obtained by linearly interpolating in In(p) between the two

model levels is typically 10 K warmer than ¥2(0, + ©,).]



SEPTEMBER 1981

and —2% calculations are particularly striking. For
—2% one gets a strong impression that near day 600
the system passes from a region of slow relaxation
and weak restoring forces into a region of relative
stability. The lengths of the —0.5, —1 and —1.5%
calculations clearly are insufficient for the adequate
definition of statistically steady states. However, for
the sake of continuity in the presentation of resuits,
statistics for Q@ = —1% have been computed from
the final 1200 days of the integration.

Changes in global mean surface temperature per
percent change in solar constant, computed from
neighboring values in Table 1, are plotted in Fig. 3.
Also shown for comparison are the corresponding
results obtained in the fixed albedo calculations
described in II. The behavior of the sensitivity for
Q > —1% is similar to that found in most energy
balance models described in the literature, tempera-
tures becoming more sensitive as the ice cap ad-
vances and albedo feedback strengthens. The sen-
sitivity decreases as Q falls below —1%, however,
and then rises again near the onset of the large ice-
cap instability. The integrations are not of sufficient
length to define the sensitivity near —1% very pre-
cisely. Because the —1.5 and —2% cases produce
temperatures so similar in Fig. 2, we suspect, in
particular, that the dip in sensitivity on the cold
side of the sensitivity maximum may be more pro-
nounced than indicated in Fig. 3.

Fig. 4a is a plot of the surface temperature as a
function of latitude in the various calculations. Ob-
served annual mean Northern Hemisphere atmos-

LARGE ICE CAP INSTABILITY
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pheric temperatures at 1000 mb (from Oort and Ras-
mussen, 1971) are also indicated. Temperature
changes per percent change in solar constant, com-
puted using the +8, +6, +4, +2, 0, —2 and —4%
calculations, are plotted in Fig. 5a. The sensitivity
of the fixed albedo model (computed using the +10
and 0% cases) is once again shown for comparison.
Even when surface albedos are fixed, variations in
static stability result in the model’s surface tempera-
tures being twice as sensitive in high as in low lati-
tudes, as noted in II. Albedo variations amplify this
tendency, as expected. In the 0 to —2% transition
shown in the figure, the temperature response at 60°
is six times larger than the response at the equator.
These surface temperature results give the impres-
sion that the tropics are reasonably well insulated
from the dramatic events in high and middle lati-
tudes. However, similar plots of mean atmospheric
temperatures in Figs. 4b and 5b demonstrate that
this impression is misleading: the model’s mean at-
mospheric temperatures in high and low latitudes are
very strongly coupled. Changes in mean atmospheric
temperature gradients are much smaller than changes
in surface temperature gradients, implying pro-
nounced changes in static stability.

The static stability variations are shown explicitly

.in Fig. 6, a plot of 1(®, — 8,). The decrease in

static stability in low latitudes with decreasing in-
solation follows from the decrease in the stability
of a moist adiabat with decreasing temperature. The
point marking the boundary between latitudes at
which the stability decreases and latitudes at which

—

VARIABLE ALBEDO

) I T N N |

-4% -2%

0%

SOLAR CONSTANT (Q)

Fi1G. 3. The sensitivity of global mean surface temperature to perturbations in
solar constant Q, plotted against Q. Fixed albedo results computed from the Q
= —10, 0 and +10% experiments described in II are shown for comparison. The
temperature sensitivity is normalized to correspond to a change in Q of 0.01Q,.

(Qp = 1395 Wm™2)
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Fig. 4. (a) Surface temperature and (b) vertical mean atmospheric temperature, 0.5{(p,/p )@, + (p2/p,) ;] as
functions of latitude for different values of Q. The observed surface temperatures are indicated by asterisks.

itincreases moves equatorward as temperatures de-
crease, since the region within which moist convec-
tion is of importance shrinks toward the equator.
The apparent insulation of the tropical surface from
the events in higher latitudes is simply a result of
“these changes in stability.

The vertically averaged poleward energy flux (per
unit length latitude circle) in a number of these cal-
culations is displayed in Figs. 7a and 7b. The fluxes
in the warmer cases (Fig. 7a) are sufficiently close
to each other that the vertical scale has been am-
plified and only the region 30° < 8 < 65° is shown.
As described in I1, the total poleward flux decreases
with decreasing solar constant when surface albedos
are fixed, the bulk of the decrease being in the eddy
latent heat flux. The same behavior is seen in the
warmer cases in Fig. 7a. However, as the ice cap
grows the meridional radiation gradient increases,

'

driving larger eddies and larger sensible heat
flux. In the range —2% < Q < +2%, the total en-
ergy flux increases with decreasing Q. Therefore,
one can select two values of Q, on either side of
+2%, for which differences in sensible and latent
heat fluxes of opposite sign nearly cancel, leaving
the total flux unaffected (+6 and + 1% are the best
choice). This behavior is similar to that described
by Wetherald and Manabe (1975) in their Fig. 14, If
these authors had compared two warmer equilibrium
states, one expects on the basis of Fig. 7 that the
latent heat effect would have dominated and the total
flux would have increased as the solar constant was
raised. The flux responses in the CO, calculations
by Manabe and Wetherald (1980, Fig. 5) confirm
this expectation.

Fig. 7 indicates that a fairly small ice cap, ex-
tending only to 60° for Q = +1%, can have a sub-
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stantial effect on the total heat flux response through-
outi the hemisphere. Other dynamic responses of the
model change qualitatively near @ = +1%. One ex-
ample is displayed in Table 1: the globally averaged
eddy kinetic energy changes very little with decreas-
ing @ for Q@ > +2%, but increases sharply for Q
< + 1%. {Based on the resulis in I, we expect
HEKE)/Q =~ 0.5 [(m s™Y)? per 1% change] when
albedo feedback is negligible, but these small changes
are apparently hidden by sampling errors in the
warmei cases.}

The large changes in the model’s total flux near
the sensitivity maximum at @ = —1% are examined
in more detail in Fig. 8. The total fluxes in the 0
and —2% calculations are split into three parts: the
eddy sensible heat flux, the eddy latent heat flux,
and the mean sensible plus latent heat flux. These
fluxes are defined precisely as in II, p. 2094. As the
system cools from 0 to —2%, the eddy sensible heat
filux increases dramatically equatorward of 55° and
decreases slightly poleward of 55°. The latter effect
may in part be a consequence of the large increase
in high-latitude static stability (Fig. 6) and the result-
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F1G. 6. Static stability 2(8; + ©,) as a function of latitude
" for various values of Q.
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ing weakening of the baroclinic instability of the
flow. The eddy latent heat flux also decreases in
high latitudes, but increases slightly equatorward of
45°. Evidently, the pronounced increase in eddy
activity more than compensates for the decrease in
temperature in the latter region (globally averaged
eddy kinetic energy increases =30% in the transition
from 0 to —2%). The most significant change in the
* heat flux due to the zonal mean flow is an increase
in the equatorward flux in the Ferrel cell, centered
near 40° in these calculations. There also is some
increase in the flux in the polar direct cell, but the
Hadley cell flux changes hardly at all. If one com-
pares the vertically averaged atmospheric heating or
cooling rates obtained from the convergences of these
fluxes, one finds a large increase in cooling rate due
to the eddy sensible flux in the —2% case (~0.4 K
day™') at 35°, immediately in front of the advancing
ice cap. However, roughly two-thirds of this in-
creased cooling is compensated by the increase in
the convergence of the Ferrel cell energy fluxes.
The mean meridional circulation seems to be playing
an important stabilizing role, counteracting the de-
stabilizing effect of the increased eddy flux across
the ice-cap boundary.
In any case, the largest changes in the heat trans-
port by the mean circulation are well outside of the
tropics, in regions in which one can obtain a good

estimate of the model’s zonal-mean meridional flow
by dividing the convergence of the eddy momentum
flux in the upper layer by the Coriolis parameter -
(since the upper layer’s zonal acceleration by the
Coriolis force is approximately balanced by this flux
convergence—see Fig. 11 in I). If the atmosphere
were dry, this balance would result in the sum of
the eddy and mean meridional heat fluxes being pro-
portional to the eddy potential vorticity flux in the
upper layer (see I1, p. 2088). In the analysis of this
statistically steady flow, just as in a number of wave-
mean flow interaction problems, the division of the
total heat flux into eddy and zonal mean parts can
be misleading.

4. Diffusive energy balance models
a. Two-level models

One can define an effective diffusivity for the dy-
namic model by dividing the total poleward energy
flux per unit length of latitude circle F by the ver-
tical mean atmospheric temperature gradient and
by the heat capacity of an atmospheric column of

unit cross section:
7\ —1
-—F( 1000 mb ¢, BT) .

3
g a 06 )
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The values of D(6) obtained for a number of cal-
culations near the —1% sensitivity maximum are
shown in Fig. 9. For Q > —1%, the diffusivity in-
creases from very small values near the polar bound-
ary to a maximum near 60°, and then decreases to a
minimum in the subtropics. The very small values of
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FiG. 9. The effective diffusivity as a function of latitude for five
values of Q. Also plotted is the surface albedo distribution for
Q = —1%.

D near the pole are presumably in part a conse-
quence of the absence of wavenumbers 1 and 2 from
the model. The values of D in the tropics are not
shown since they fluctuate wildly because of the
small temperature gradients. After the system cools
through the —1% transition, much of the latitudinal
structure in D disappears. The time-averaged sur-
face albedo in the —1% calculation is superimposed
on Fig. 9 to show that the increase in sensitivity
occurs when the sharp albedo gradient enters the
region in which 8 D/64 is large and positive.

To confirm the impression one receives from Fig. 9
that this sensitivity maximum is related to the gra-
dient of the effective diffusivity, we construct an
energy balance model that closely resembles the dy-
namic model. The two potential temperature equa-
tions (1) are the only prognostic equations in the
diffusive model. The dynamic heating, R; + ¢, is
simply replaced by :

——1—— __6_ [cos(8)D(6)00,/86],

a? cos(6) 96
(a = 6.4 x 10° m) using the same diffusion coef-
ficient in both layers. This diffusive model therefore
ignores the large-scale vertical flux of potential tem-
perature present in the dynamic model. Calculations
with a very similar diffusive model in Suarez and
Held (1979) indicate that the moist convective ad-
justment and horizontal diffusion are jointly capable
of maintaining reasonable static stabilities in a two-
level model in the absence of the large-scale vertical
flux, although the resulting model naturally under-

@
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FiG. 10. Global mean surface temperatures (a) and surface
temperature sensitivities to solar constant perturbations (b) as
functions of Q, for the dynamic model and for several diffusive
models with latitudinally uniform diffusivities. As in Fig. 3, tem-
perature sensitivity is §Q(07T/0Q) with §Q = 0.01Q,.

estimates the midlatitude stability somewhat. Since
the vertical flux term changes in rather complex
ways as the ice cap advances, and since we are
already making substantial errors in the vertical dis-
tribution of the dynamic heating by using the same
diffusion coefficient in both layers, we have chosen
to omit the large-scale vertical flux in these diffusive
calculations. .
The sensible heat flux A and evaporation E from
the surface are computed from
H=oT, -T,)
L ‘ , 5
LE = %X (hn(T) — Ty ©)
Cp
where T, is the atmospheric temperature at the
ground (obtained by interpolating linearly in In(p)
from the two atmospheric temperatures); 2, = 0.80
s the relative humidity in the atmosphere at the
ground; r(7T) is the saturation mixing ratio from
Clausius-Clapyron, ¢, = 10®J (kg °C)™%, L = 2.5
x 108J kg7 and o = 7T W (m2°C)~L. T, is deter-
mined from the balance

S,~H ~LE =0, (6)
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where S is the net downward radiative flux com-
puted as in Appendix A. The sensible and latent
heating of the lower layer are then determined from

(g8, Q') = (H, LE)/c, @
where ' '

¢ = ¢, (500 mbylg = 5 x 10° [J (m? K)™'].

Thus all evaporated water is condensed in the lower
layer and at that latitude at which it evaporates. (By
choosing D to fit the results for the total energy
transport in the dynamic model, one is implicitly
including latent heat transport in the diffusive term.)
A convective adjustment does not allow 0, — 0,

‘to drop below OF2 — OF2, @12 being the 250 and

750 mb potential temperatures on that moist adiabat
with the same mean temperature, i.e.,

Val(p1/p )01 + (P2/p ) 0,],

as the atmosphere being adjusted (see Fig. 3 in I).
Surface albedos are again determined from (2).

All of these calculations are identical to those in
the dynamic model except that in the latter model
the coefficient « is dependent on lower layer wind
speed, the relative humidity 4, is predicted by the
model, and convective adjustment occurs only when
the lower layer is saturated and is therefore sporadic.
(In the steady state of the diffusive model, convec-
tive adjustment occurs continuously at a given lati-
tude or it does not occur at all.) Also, in the dynamic
model time-mean surface temperatures and albedos
do not quite satisfy (2) because of variability in time;
however, the difference only amounts to a slight
rounding of the corners in the albedo-temperature
curve. Similar slight differences resulting from time
variability in the dynamic model occur in the radia-
tive heating and boundary-layer calculations. All of
these differences are minor, however, compared to
the distortion of the vertical distribution of the dy-
namic heating in the diffusive model resulting from
the absence of the large-scale vertical flux of poten-
tial temperature and from the choice of equal dif-
fusivities in the two layers.

Figs. 10a and 11a compare the global-mean sur-
face temperatures predicted by various versions of
the diffusive model with those predicted by the dy-
namic model; Figs. 10b and 11b compare the changes
in global mean surface temperature per percent
change in solar constant. The results from diffusive
models with latitude-independent diffusivities—2.0,
3.0 and 4.0 x 10° m? s~'—are plotted in Fig. 10.
All of these constant-diffusivity models possess a
large ice-cap instability near Q = —8%. One evi-
dently can associate the dynamic model’s instability
near —6% with this large ice-cap instability in the
diffusive models. Thus, one should not think of the
sensitive region near —1% as an incipient large ice-
cap instability thwarted by the mean meridional cir-
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culation, as Lindzen and Farrel (1977) have sug-
gested. It is the sensitivity of the states near —1%,
and not the relative insensitivity of the larger ice cap
states, that requires explanation. The results for D
= 4.0 x 10° further demonstrate that it is not simply
the strength of the diffusivity in midlatitudes that
results in the destabilization near —1%, since this
value of D is larger than any produced by the dy-
namic model.

Fig. 10b emphasizes that sensitivity in these con-
stant diffusivity models increases monotonically with
decreasing Q, except for slight hitches in the sensi-
tivity curves that have barely visible consequences
in Fig. 10a. These small hitches occur when surface
albedos of 0.7 first make their appearance as the
system is cooled, and can be shown to be remnants
of the small ice-cap instability present in discontinu-
ous albedo models. Calculations with various al-
bedo-temperature relations in a one-level model
designed to clarify this point are presented in Ap-
pendix B. These small hitches are evidently too small
to explain the enhanced sensitivity near —1% in the
dynamic model.

In Fig. 11 the diffusivity is given latitudinal
dependence of the form

300
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Do =1.9x108
270~
D, 31.5x10%

DYNAMIC MODEL

GLOBAL ¥EAN SURFACE TERPERATURE (X)

240 | l 1 i | | 1

8% -6% -4% -2% 0% 2% 4% 6% 8%
120~ -? —
(b) rn
i
10 I Do =1.5%10° ~
'
= DYNAMIC i 0, =1.9x10%
= i
= | ) |/
2 8 i -1
o) \ |
&S 1 i
& \ \
> K 1
= \
6 A —
E iy D, =3.5%10°
& A '
E N
w 40— " \\\‘ —
= ARRN
= DN
=2 S
< s -
] o -
0 1 | 1 1 1 | {
-8% -6% -4% -2% 0% 2% 4% 6% 8%

SOLAR CONSTANT (Q)

F16. 11. As in Fig. 10, but for diffusive models with latitudinally
varying diffusivities. D, is the subtropical diffusivity [see Eq. (8)].
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Fi1G. 12. The latitudinal structure of the effective diffusivity
utilized in the calculations described in Fig. 11. The structures
resulting from three different choices of D, are shown (dotted
lines). Also shown are the effective diffusivity of the dynamic
model at Q = 0% (solid line) and the diffusivity computed from
observed Northern Hemisphere annual mean energy fluxes and
500 mb temperature gradients.

D,, 6 <6,
D@ = { D, sin[3(86 — w/6)], 6.<6<6, (8
D,, 9, <6
where
9, = /6 + Y5 sin"{(D,/Dy),

0, = w/2 — V4 sin"(D,/D,,).

The diffusivity D, near the pole is set equal to 1.0
X 10¢ m? s, and the maximum diffusivity D,, to 3.5
x 10% m? s=!. The subtropical diffusivity is given

' three different values—D, = 1.5, 1.9 and 3.5 x 108

m? s, This form for the diffusivity is compared
with the effective diffusivity of the 0% dynamic cal-
culation in Fig. 12, and also with the observed ef-
fective diffusivity of the atmosphere computed from
the annual mean atmospheric energy transport and
500 mb temperature gradient in the Northern Hemi-
sphere.! (The diffusivities produced by the dynamic
model for @ > 0% are very similar to those for 0%.)
The choice of D, = 1.9 X 10% provides a reasonable
fit to these dynamic model results. As the figure

! Oort, A. H., 1981: Global Atmospheric Circulation Statistics,
1958-1973. NOAA Prof. Pap., U.S. Govt. Printing Office, Wash-
ington, D.C. (in preparation).
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indicates, this choice of D, does capture the sensi-
tive region near —1%. We conclude that these sensi-
tive equilibrium states can be interpreted as being
a consequence of the structure of the effective dif-
fusivity. A comparison of the D, = 1.5 x 10® and
1.9 x 108 cases in Fig. 11 emphasizes how strongly
dependent the sensitivity curves are to this structure.

The diffusive models all underestimate the dynamic
model’s sensitivity for Q < —1%. This disagreement
is not surprising, since the diffusivity changes sig-
nificantly as the system cools through the — 1% tran-
sition (as Fig. 9 indicates), and D (8) has been chosen
to correspond to the warmer cases. However, further
calculations show that the agreement between dif-
fusive and dynamic models cannot be improved ap-
preciably by changing the effective diffusivity ap-
propriately as Q changes, unless the errors being
made in the vertical distribution of the dynamic heat-
ing are simultaneously corrected. Surface cooling
due to increased vertical heat flux seems to be pri-
marily responsible for the sensitivity of the large
ice-cap states. .

The D, = 3.5 x 10¢ case produces a monotoni-
cally increasing sensitivity with decreasing solar con-
stant, emphasizing that the structure of the diffusiv-
ity equatorward of 60° is responsible for the enhance-
ment near Q = —1%, and not the structure of the
diffusivity near the pole. Also, this version of the
model does not produce the small peaks in sensitiv-
ity seen in the constant diffusivity models (Fig. 10).
These small peaks are sensitive to the structure of
the diffusivity near the pole, just as is the small
ice-cap instability to which they are related.

The qualitative effect of the diffusivity gradient
on sensitivity can be understood by expanding the
diffusive heating term

1 .
—a—(cos(e)D E—-OH—)
cos(6) 06 00
. i(cos(o) @) LD
cos(6) 060 00 80 06

As Q decreases and the ice cap advances into mid-
latitudes, the magnitude of the meridional tempera-
ture gradient in midlatitudes increases (i.e., 90/96
decreases). As the result, the term proportional to
dD/d0 in (9) decreases sharply between 60 and 40°,
where 9D /36 is large and positive. This cooling is
compensated in the global mean by the other term in
(9); however, if the albedo gradient lies within the
region in which the cooling effect is large, then al-
bedo feedback is strengthened. By the same argu-
ment, the ice cap should be stabilized when located
poleward of 60°, where dD/36 < 0; however, the
ice cap is then too small for albedo feedback to be
of much consequence for the global mean sensitiv-
ities in Fig. 11. )
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b. One-level model

If one is not concerned with closely mimicing the
dynamic model, the diffusive model can be simplified
drastically and still retain essentially the same be-
havior. Consider the familiar one-level model with
all terms in the energy balance dependent only on
‘‘surface temperature’’:

0= %S(O)a(T(G)) - (A + BT)

7

c 0 oT
m%(cos(e)D %) . (10

where ¢’ = ¢, (1000 mb/g) = 1 X 107 J (m? K)71,
s(0) is the distribution of the annual mean solar flux,
normalized so that its global average is unity; a(7T)
is the planetary co-albedo; and A and B are constants
defining the temperature dependence of the outgoing
infrared flux. The simplest case is obtained by choos-
ing a discontinuous diffusivity (D = D, for 6 > 6,
and D = D, < D, for 6§ < 6,) and a discontinuous
albedo (a = B for T > T, and a = « for T < T,).
The resulting global mean sensitivities are shown in
Fig. 13 for the following choice of parameters: A
=2033Wm? and B =2.09 W (m%K)! (from
North and Coakley, 1979); 6,, = 45°;D,, = 2.5 X 108
m?s™; D, =20X%x 108m?*s™'; a=04; 8=0.7
and T, = —10°C, :

The discontinuous albedo produces a small ice-
cap instability, reflected in the existence of two pos-
sible equilibrium states for —8.5% < Q < —7.3%.
The large ice-cap instability occurs at —11.7%. Re-
sults for the ice-covered solutions are not shown.
(One can easily increase the values of Q for which
stable’ice caps exist by decreasing 7). The sensitiv-
ity enhancement for —10% < Q < —9% is due to
the change in diffusivity and reaches its peak when
the ice-cap boundary is located precisely at 6,. Pa-
rameters have been chosen so that this enhancement
is clearly distinguished from both the large and small
ice-cap instabilities.

The sensitivity enhancement is more prominent
when the ice cap is poleward, rather than equator-
ward, of 6,. The simple explanation for this be-
havior is evident from Fig. 14. When the ice cap
boundary is poleward of 6,, the magnitude of the
temperature gradient at 6, increases as the ice cap
advances, producing the changes in poleward heat
flux shown. These, in turn, result in cooling in the
vicinity of 6, and destabilization of the cap. If the
ice cap boundary is further equatorward than 6,
the magnitude of the temperature gradient at 6, de-
creases as the ice cap advances, resulting in warming
and stabilization. Equivalently, in response to a per-
turbation in Q, the contribution of changes in the
term (8 D/86)(8T/86) in (9) to the perturbation global
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F1G. 13. Sensitivity of global mean temperature to perturbations in Q for the
one-level model with discontinuous albedo and discontinuous diffusivity. Sen-

- sitivity is defined as in Fig. 10.

energy balance switches sign as the ice cap passes
through 6,,.

We hope to have demonstrated with the sequence
of energy balance calculations described above that
the mechanism pictured in an idealized fashion in
Fig. 14 also is responsible for the destabilization
in the dynamic model. Of course, the effective dif-
fusivity of the dynamic model does change signif-
icantly as Q varies (see Fig. 9), and no claim is
being made that the transport is diffusive in any
fundamental sense. However, in the absence of a
satisfying theory for the poleward heat flux, a lati-
tudinally varying diffusivity does seem to be a con-
venient way of capturing the characteristic flux re-
sponses that result in the peculiar sensitivity curves
seen in the dynamic model. There are undoubtedly
other ways of capturing this behavior in simple
models, a variant of Budyko’s model of the sort dis-

cussed by Lindzen and Farrell (1977, Section 4)
being one possibility.

[It should be noted that the use in a one-level
model for surface temperature of a diffusivity ap-
proximating that obtained by dividing the atmospheric
energy fluxes by the 500 mb temperature gradient
is inconsistent. Actually, we feel that all such one-
level models should be reinterpreted as models of
the mean or mid-tropospheric temperature. Ina typi-
cal diffusive one-level energy balance model, the dif-
fusivity is sufficiently large that surface temperatures
at different latitudes are strongly coupled to each
other, and temperature responses to perturbations
in Q have only weak latitudinal dependence. How-
ever, in both our two-level model and in the Manabe
and Wetherald CO, (1975, 1980) and solar constant
(1975) siudies, it is mid-tropospheric temperatures
which appear to be strongly coupled and have little

D (e ) /— HEAT FLUXES
<_—:::<:_—_:
o
=
. INCREASED
ICECAP —\ COOLING
7/
POLE LATITUDE EQUATOR

Fi1G. 14. Schematic of the changes in heat fluxes resulting from an advance of
the ice cap, and the resulting cooling in the vicinity of the diffusivity jump.
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latitudinal structure in their responses, while surface
temperature responses have a great deal of latitudinal
structure. The reinterpretation of one-level models
as models of mid-tropospheric temperatures requires
some modification in the radiative parameterization,
but the form A + BT for the outgoing infrared flux,
in fact, is a much better approximation if 7 is taken
to be 500 mb rather than surface temperature, as is
clear in Fig. 8 of Held and Suarez (1974)].

5. Concluding remarksb .

The two-level primitive equation atmospheric
model described in I and II responds in an intriguing
fashion to perturbations in solar constant when al-
bedos are chosen so as to mimic the effects of ice
and snow cover. As the system is cooled, but before
the large ice cap instability analogous to that found
in constant diffusivity energy balance models de-
velops, the system experiences destabilization of
another sort. Another still caused by an interplay
of albedo feedback and meridional heat transport,
the meridional structure of the heat transport (or of
the effective diffusivity D) is the key, destabiliza-
tion occurring when the ice cap boundary enters the
region within which dD/89 is positive. Very similar
behavior is captured in a two-layer diffusive model
closely patterned after the dynamic model. If the
latitudinally varying diffusivity in this model is re-
placed with a latitudinally uniform diffusivity, this
destabilization disappears and one is left with a
monotonic increase in sensitivity up to the large
ice cap instability, except for a weak remnant of the
small ice-cap instability. Qualitatively similar be-
havior also is found in a simple one-level energy
balance model.

Whether or not the response of multi-level GCM’s
is similar to that of this two-level model is an open
question. Wetherald (personal communication) in-
dicates that his calculations with Manabe give no

" sign of producing stable states with the ice cap bound-
ary further equatorward than 40°. Our impression
is that if one attempts to mimic these GCM results
with a diffusive energy balance model, one will find
that the meridional structure of the diffusivity is
crucial for the observed destabilization, but that the
resulting sensitive states may very well merge con-
tinuously into the large ice-cap instability. (Merging
of the sensitive states associated with the diffusivity
gradient with the large ice-cap instability also ex-
plains why calculations in which D(6) is chosen
proportional to the local temperature gradient (Held
and Suarez, 1974; Lin, 1978) do not produce behavior
of the sort described here; the diffusivity maxima
in these models are located too far equatorward for
the diffusivity gradient effects to be significant be-
fore the large ice caps become unstable.) Attempts
to improve the fit between diffusive and dynamic
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models described in Fig. 11 suggest that the stability
of the large ice-cap states is very sensitive to the
details of the response of the horizontal and vertical
heat fluxes to the passage of the ice cap boundary
through the midlatitude maximum in baroclinic
activity.

The stability of large ice-cap states is certainly
dependent on the response of oceanic as well as
atmospheric heat fluxes. If one recomputes the ob-
served effective diffusivity plotted in Fig. 12 using
estimates of total oceanic plus atmeospheric (rather
than only atmospheric) fluxes, one still finds a maxi-
mum near 60°N, but the decrease in diffusivity from
60 to 40°N is reduced by a factor of 2. If the oceanic
flux behaved at all similarly to diffusion, one could
argue on this basis that the oceans would tend to
destroy the sensitivity maximum associated with the
diffusivity gradient. However, one is tempted to
draw the opposite conclusion based on the two-level
model’s surface wind responses (not shown). The
model predicts a modest increase in strength of the
surface westerlies equatorward of the ice-cap bound-
ary as the ice cap expands. One therefore expects a
stronger equatorward Ekman drift of warm surface
waters in this region, resulting in cooling at the
boundary of the advancing ice cap and an associated
increase in sensitivity if this is the dominant effect.
Thus, the possibility exists for either significant
stabilization or destabilization by the oceanic flux
response.

It is tempting to speculate on the paleoclimatic
significance of the existence of sensitive states not
associated with the large ice-cap instability. Any
effect which significantly increases climatic sensitiv-
ity as the system is cooled without requiring one
to be perched on the brink of the large ice-cap in-
stability is certainly of potential significance for ice
age theories, but plausible arguments relating
the ice ages to these sensitive states must await
calculations with more convincing climate models.
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APPENDIX A
The Radiative Flux Computation

The calculations on which the following algorithms
are based are described in I. The upward flux L, of
infrared radiation at the top of the atmosphere, the
net upward flux L, at 500 mb and the downward flux
L, at the surface are computed from

L, =a;(®) + b(0)O + c(®AT, i=1,3. (Al
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TABLE Al. Values of the parameters required for the infrared
flux computation. The units of a;, b; and ¢; are Wm™3,
W (m? K)~tand W (m? K)~!, respectively.

®)

°C) a, by (5 as by Co as by
-30 1090 -1.10 1.00 121.3 -2.18 1.26 1043 ~—1.72
-25 1180 -1.16 1.01 131.0 -229 1.25 119.1 -2.06
-20 1274 -1.22 1.01 140.8 238 1.25 1347 -2.37
-15 1369 -1.26 1.01 150.6 -2.47 125 1509 -—2.65
-10 1468 -1.30 1.01 1600 -2.52 126 167.8 -2.91
-5 1568 —134 1.01 1683 -2.55 1.26 1857 -3.17
0 1672 -137 101 1764 -2.60 1.26 2049 -3.44
5§ 1776 —1.40 1.01 1837 -2.64 125 2257 -3.74
10 1883 -142 099 1906 —2.68 1.24 2481 —4.06
15 199.2 —-143 097 1970 -272 121 2719 —4.40
20 2100 -—-1.44 095 2028 -2.74 1.18 297.1 -—4.74
25 2210 -1.44 092 208.1 -2.75 1.15 3236 —5.08
30 2321 -143 0.88 2131 -276 1.10 3518 -—5.45
35 2432 -141 083 2176 -275 104 3824 585
40 2542 —-1.39 0.77 2217 =273 0.96 4157 -6.32
45 2650 -135 0.68 2250 -2.69 0.85 452.0 -6.85
50 2756 -—1.30 0.59 2278 -2.65 0.74 4914 -7.43
55 2861 —1.24 048 2302 -2.60 0.61 5337 -8.04
60 2962 -1.16 039 2319 -2.53 048 5783 -—8.66
65 3060 —1.08 030 233.0 -245 037 6247 =925
70 3156 —0.98 024 2336 -236 0.29 6722 -9.79

The functionsa,, b;, c;, dependent only on & = 14(®,
+ ®,), are obtained by linearly interpolating on
Table Al (except for c3, which is identically zero).
In (A1), ® = %(®, — 6,;) and AT =T, — T,, the
latter being the temperature jump at the ground.
(There are several errors in the corresponding table
in 1. The values actually used for the computations
described in I are those listed here in Table Al).
The longwave heating of the upper and lower layers
is then given by

W = (L, — L,)IC ]
OV = (6Tt — Ly — L)/IC |’

where C is defined as in (7).

If § is the incident solar flux at the top of the at-
mosphere, the flux Ss, is reflected to space by mo-
lecular scattering; Ss, is reflected to space by clouds
in the upper layer; Ss, is transmitted through the
upper layers, reaching 500 mb; Ss; is reflected from
clouds in the lower layer; and Ss, reaches the ground.
If y is the surface albedo, ySs, is reflected by the
surface, while ySs; is that part of this reflected flux
escaping to space, the remainder being absorbed in
the lower layer (the absorption of refiected radiation
in the upper layer being neglected). These relations
are depicted in Fig. Al. The s; are determined from
expressions linear in & and ®:

si=d; + (B — 300 K)e; + 8f,, i=2-5, (A3)

where d,, e; and f; are functions only of Z, the cosine
of the zenith angle, as listed in Table A2. s, + s,
is simply set egual to 0.10. The incident fiux is given

(A2)
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FiGg. Al. Schematic of the radiative flux computation.

its annual mean values as a function of latitude,
0.250s(8). A plot of s(6) for the obliguity used
(23.5°) can be found in Held and Suarez (1974). The
effective annual mean cosine of the zenith angle is
approximated by averaging its instantaneous value,
weighted by the instantaneous insolation, over the
diurnal and annual cycles; it ranges from 0.3 at the
pole to 0.6 at the equator. The solar heating of the
upper and lower layers is given by

TaBLE A2. Values of the parameters required for the solar
heating computation. Z is the cosine of the zenith angle. The
units of e; and f; are 1072 K7; 4, is dimensionless.

z i=2 i=3 i=4 i=35
0.1 d; 0.821 0.182 0.481 0.477
€; -1.13 —-0.45 -1.62 -1.62
fi 0.08 0.18 1.41 1.44
0.2 d; 0.835 0.186 0.497 0.490
e; -0.96 -0.42 -1.56 —1.59
fi 0.07 0.16 1.28 1.34
0.3 d; 0.842 0.188 0.506 0.497
e; —0.86 —-0.40 -1.52 -1.56
fi 0.06 0.15 1.20 1.28
0.4 d; 0.847 0.189 0.513 0.502
e; -0.80 -0.39 —1.49 -1.54
fi 0.05 0.15 1.04 1.24
0.5 d; 0.851 0.190 0.518 0.505
e; -0.76 —0.38 —1.46 ~1.53
fi 0.05 0.14 1.09 1.22
0.6 d; 0.853 0.191 0.522 0.506
e; -0.72 -0.37 -1.43 -1.52
fi 0.05 0.14 1.05 1.20
0.7 d; 0.856 0.192 0.525 0.509
e; -0.69 -0.37 —1.41 —1.51
Ji 0.05 0.14 1.02 1.18
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5% = 140s(6)(1 — 5o — 8, — 52)/C
ng LaQs(0)(sy — 53 — s4(1 _7)_735)/C

- while the net radiative flux at the ground needed in
the surface energy balance is

] , (A4)

sy =Lz — ol * + Y4 Qs(0)s,(1 — v), (AS)
0.7,
a(T) = 0.55+ 0.30(T — T,)/AT,
0.4,

As AT — 0, this reduces to the model possessing
a small ice cap instability considered in Held and
Suarez (1974) and North (1975). The sensitivities
for AT = 2.5,5.0and 10.0 K, are plotted in Fig. B1.

A rather small amount of smoothing is sufficient
to eliminate the small ice-cap instability and the
associated non-uniqueness of equilibrium states.
- The case AT = 2.51is very close to the point at which
the instability disappears, as is evident in the very
small range of Q for which two equilibrium states
exist. The instability has been eliminated in the AT
= 5.0 case, but there remains a peak in sensitivity
near the value of @ at which instability occurs for
smaller AT. For the still larger value AT = 10.0,
there remains only a trace of the global mean sen-
sitivity enhancement associated with this instability.

MEAN SURFACE TEMPERATURE SENSITIVITY

] ] I ] | |
-12% -10% -8% -6% -4% -2% 0%

SOLAR CONSTANT (Q)

FiG. B1. Sensitivity of global mean temperature to changes in
0, as a function of Q, for one-level uniform diffusivity models
with different amounts of albedo smoothing. AT is defined in (B1).
Sensitivity is defined as in Fig. 10.
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APPENDIX B
Albedo Smoothing and the Small Ice-Cap Instability

Consider the simplest one-level energy balance
model (10) with a uniform diffusivity D = 2.0 x 108
m? s~!, with the same radiative parameters A and B
as in Section 4b, but with an albedo-temperature
relation of the form

T > T, + 0.5AT
(BD)

The case AT = 5.0 most closely resembles the re-
sults in Fig. 10 for the two-layer uniform diffusivity
models with AT = 10.0 K. Variable static stability
evidently enhances the small ice-cap instability, the
increase in static stability with decreasing solar con-
stant increasing the sensitivity of high latitude sur-
face temperatures.

We have not displayed the results obtained by
decreasing AT in the two-layer diffusive model be-
cause these calculations introduce yet another con-
fusing aspect of albedo-feedback models that is not
directly related to the questions addressed in this
paper. The two-layer model actually possesses a
continuum of possible equilibrium states at a given
Q if AT is sufficiently small. This peculiar property
is a simple consequence of the fact that the model
can support a discontinuity in surface temperature
at a surface albedo discontinuity, although atmos-
pheric temperatures are necessarily continuous. The
size of the surface discontinuity is dependent on
the strength of the coupling between surface and
atmospheric temperatures. The proof that such a dis-
continuity results in a continuum of equilibrium
states is identical to that given for Budyko’s model
in Held and Suarez (1974). While we believe that this
direct consequence of the sharp surface temperature
gradients associated with sharp albedo gradients is
of some physical interest, we have chosen to omit a
discussion of this point here.
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