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ABSTRACT

The direction of the vertically-integrated horizontal eddy flux of momentum in linear baroclinically un-
stable modes is investigated in a number of cases where the basic flow contains horizontal, as well as vertical,
shear. A general result is presented for slowly-growing modes on a flow with weak horizontal shear. Some
special cases are described in which standard baroclinic instabilities of finite growth rate (for an internal jet,
Eady’s model, and a two-layer model) are perturbed by weak horizontal shear, and some computations for
flows with large horizontal shear are also mentioned. A general rule emerging from these calculations is that
for flows with horizontal jet structure of broader scale than the radius of deformation, the vertically-integrated
momentum flux tends to be into the jet (or upgradient); while for jets narrower than the radius of deformation,
momentum fluxes tend to be out of the jet (downgradient), even when the contribution of horizontal
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curvature to the basic state potential vorticity gradient is negligible. However, some exceptions to this general

rule exist.

1. Introduction

In the analysis of the instability of atmospheric
zonal flows to quasi-geostrophic disturbances, one
often encounters unstable modes that are essentially
baroclinic, deriving most of their energy from the
potential energy of the basic state, but with structures
modified somewhat by horizontal shears in the zonal
wind. Among these modifications the tilt of constant
phase lines with latitude is of particular interest, this
tilt being identically zero for normal modes in a
purely baroclinic problem. Few general results have
been obtained that predict even the sign of this tilt
or, equivalently, the direction of the horizontal eddy
flux of momentum, given the form of the mean flow.

One simple result, described in Held (1975), can
be found by a straightforward manipulation of the
disturbance potential vorticity equation: if the mean
potential vorticity gradient is positive at all heights
at some latitude y, and if the vertical shear is non-
positive (non-negative) at y, on a flat lower (upper)
boundary [i.e., if the Charney-Stern (1962) sufficient
condition for stability is satisfied at this latitude}, then
an unstable wave must produce a divergence of the
vertically integrated eddy flux of westerly momentum
at 3o. As a specific example, to which we shall return
briefly in Section 4, consider the folowing westerly
internal jet on a beta-plane in a Boussinesq atmo-
sphere:
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iy, 2) = il sechz(f[) + i sech’(%) , (L1

where i, and #, are positive constants. (Our notation
is standard throughout; in particular, an overbar refers
to a zonally symmetric basic state or to a zonal average
and a prime to the disturbance.) The mean potential
vorticity gradient is, in general,

g Al o 1 du

ay b " 9y? FazNzaz°

Setting N? = constant, one finds that /3y is positive
for all z at the center of the jet (y = 0) provided that
——+—>0, (1.2)
in which case there must be a divergence of the ver-
tically integrated momentum flux at the center of the
jet; see (2.4). Furthermore, one can easily show from
symmetry that all modes have zero momentum flux
at y = 0: since # is symmetric in y, all modes must
be_symmetric or antisymmetric about y = 0 and
u'v' = —y’}, must be antisymmetric. Therefore, the
vertically integrated flux is directed out from the jet
center if (1.2) is satisfied. One obtains no information
about the direction of the momentum flux at y = 0
if (1.2) is not satisfied. For example, if the contribution
of the horizontal curvature to 33/9y is small compared
with 2f%Go/(3N*H?) — 8 > 0.
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The case when (1.2) does not hold is essentially
analogous to that which arises when a flow destabi-
lized by a temperature gradient at a boundary is per-
turbed by horizontal shears, e.g.

= Az + @ sechz(%) , z=0.

Whatever the values of #, and L, the barotropic con-
tribution to d4/dy cannot alter the fact that the suf-
ficient condition for stability is violated at all latitudes
by the vertical shear at z = 0 (assuming A > (). As
a result, no information concerning the direction of
momentum fluxes is obtained from the result de-
scribed by Held (1975) in many atmospheric appli-
cations.

When the y variation of # creates only small per-
turbations in # and 4g/dy, one can develop a formal
perturbation theory in which an unstable mode of the
pure baroclinic problem is the lowest order solution.
Mclntyre (1970) considers this theory for Eady’s prob-
lem perturbed by a zonal velocity field dependent only
ony

= Az+ uii(y), 0<z<H,

where 8 = 0, N? = constant, u < 1. When the char-
acteristic horizontal scale of the zonal wind variations
is much greater than the radius of deformation
NH/f, Mclntyre finds that the vertically integrated
flux of westerly momentum is directed countergra-
dient and, therefore, into the center of a westerly jet.
The restriction to broad jets is essential for this result.
The proof is sufficiently complex that it is unclear
(to us) under what circumstances it can be generalized
to perturbations of more general form, p#;(y, z), or
to unperturbed flows other than Eady’s.

A number of detailed studies of particular flows have
been described in the literature (e.g., Pedlosky, 1964;
Brown, 1969; Hart, 1974; Holland and Haidvogel,
1980; Conrath ef al. 1981). The variety of results em-
phasizes the difficulty of obtaining general results con-
cerning the direction of the eddy momentum fluxes.
In particular, Brown finds modes of relatively small
zonal wavelength possessing a negative barotropic
zonal-to-eddy energy conversion

- f f w'v'du/dydydz < 0,

and modes of relatively large wavelength possessing
a positive conversion, both growing on the same zonal
flow. However, the various calculations do support
the rule that eddy momentum fluxes are countergra-
dient when the jet is sufficiently broad. This rule is
further supported by multiple-scale approximations
for the eigenfunctions on broad jets, valid when %
varies more slowly with y than the phase of the mode
under consideration (Stone, 1969; Simmons, 1974;
Gent, 1975; Killworth, 1981).
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Is the rule that momentum fluxes are countergra-
dient on broad jets valid in general and does it have
a simple explanation? Is the flux countergradient when
the jet is sufficiently broad that 3%71/8y* < 8 [as sug-
gested in the concluding remarks of Pedlosky (1964)
and Simmons (1974)], or is it also necessary that the
meridional scale of the jet be larger than the appropriate
deformation radius as implied by Mclntyre (1970)?
Conversely, is it typically the case that momentum
fluxes are downgradient for jets that have meridional
scales smaller than the deformation radius but that are
sufficiently weak so that 8°7/dy? < 8? In the following,
we first present a simple theorem and then a series of
calculations for particular flows which, taken together,
may help clarify some aspects of this problem. The
theorem, described in Section 2, refers to the rather
special situation in which: 1) the growth rate is suffi-
ciently small that the meridional disturbance particle
displacement field is localized about the steering level,
and 2) the effects of horizontal shears on # and 43/dy
are small. In Section 3, calculations are performed for
internal jet, Eady, and two-layer models within a per-
turbation theory similar to Mclntyre’s for which growth
rates need not be small. In order to simplify the cal-
culations to the point that a large number can be per-
formed and summarized, we consider only the special
case in which the unperturbed baroclinic mode has
no meridional structure. In Section 4, results are de-
scribed for the particular flow given by 1), when the
effects of horizontal shears on # and dg/dy are not
small.

The results described here and in Mclntyre (1970)
and Held (1975) refer to the sign of the vertically in-
tegrated momentum flux, not to the sign of the mo-
mentum flux at a particular level. Fortunately, if one
happens to be primarily concerned with the back effect
of the amplifying disturbance on the zonal flow, then
this vertically integrated flux is a quantity of prime
interest. The acceleration of the mean zonal flow at a
particular level is non-zero even in the pure baroclinic
problem, due to the Coriolis force resulting from the
mean meridional circulation associated with the eddy
heat fluxes, but these accelerations average to zero in
the vertical. Perturbing the flow with small horizontal
shears produces small perturbations in these local ac-
celerations, but the qualitatively new feature introduced
is a non-zero vertically integrated momentum flux
convergence. The tilt of constant phase lines at a par-
ticular level may still be of interest for other reasons,
of course. For example, Hoskins and West (1979) sug-
gest that the structure of fronts formed in a finite am-
plitude disturbance is related to the direction of the
tilt of constant phase lines at the ground in the de-
veloping wave.

One might hope that results on the vertically in-
tegrated eddy momentum flux in quasi-geostrophic
instabilities would help one understand the time-av-
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eraged, zonally-averaged surface winds, since the sur-
face stresses produced by these winds must be bal-
anced by the vertically integrated momentum fluxes.
Unfortunately, the momentum fluxes averaged over
the life cycle of baroclinic eddies often bear little re-
semblance to the fluxes during the growth stage of
the disturbances (Simmons and Hoskins, 1978; Gall,
1976). Furthermore, Lau (1978) finds that the -ob-
served momentum fluxes peak further downstream
in the oceanic storm tracks than the eddy heat fluxes,
suggesting that the observed momentum fluxes arise
primarily from mature, possibly decaying distur-
bances. Therefore, it must be admitted that linear
instability analyses of the sort presented here may not
contribute a great deal to our understanding of the
climatological atmospheric momentum fluxes.

2. A result for weakly unstable jet instabilities

The discussion that follows is for the Boussinesq
case, but the proof for a compressible atmosphere is
similar.

Consider a mean zonal flow in which 9#/dz = 0
at lower and upper boundaries (if such boundaries
exist), so that the eddy heat flux also vanishes at these
boundaries. Or consider a mode that is of sufficiently
small amplitude at the boundaries that these heat
fluxes can be ignored in any case. Using the identity

9= zi(L—, ; )__—,—, .
ayqv f pe sza¢/az | vy, 2.1
(e.g., Green, 1970) one can relate the vertically in-

tegrated eddy momentum flux convergence to the
potential vorticity flux: ’

oM

= -] vqdz,
ay aaz

(2.2)
where
M= f uv'dz (2.3)

and vertical integrals are taken throughout the depth
of the fluid. If the northward particle displacement
field 7' is defined so that

a - ox )
Then g’ = —%'dG/dy for linearized disturbances in an
inviscid adiabatic fluid and
— 3G kY
M _ 5%, _ fK—" dz,  (2.4)
ay ay ay

where K(y, z, ) = '/z&?‘/&t is the rate of increase of
the north-south dispersion of a set of particles cen-
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tered on latitude y. For a linear unstable mode, 7’
= Ren(y, z)e™™*~, with zonal wavenumber k > 0 and
complex phase speed c(k) = cg(k) + ici(k), one has
KW, z, t; k) = ke/|nl>e®".

For the rest of this section we confine attention to
the special case of slowly growing modes.c; | O (cor-
responding to k — ky, say) whose steering levels lie
within the fluid. [The steering level of a mode is that
height Z(y) at which & = cg; it varies with latitude
if # does so.] It can be shown [e.g., Bretherton, 1966,
Eq. (17)] that K approaches a delta function at the
steering level as ¢; — 0 from above (and &t — kyp):

19—

357" =K = n(y, 00z = ZO)] + Olc),  2.5)

where
k 2
ny, = [ >0,
a1
azl / iV

From (2.4) and (2.5) it follows that

M w002 1y, 200 + Oc), as /0.
dy dy
The sign of the vertically integrated momentum flux
convergence is determined here by the sign of the
mean potential vorticity gradient at the steering level.
We now suppose that the horizontal shear of the
basic flow # is small, so that

(2.6)

u(y, z) = uy(z) + pi(y, 2), (2.7)
where u < 1. Likewise,

g g 0g; :

Z="2)+p=(p2. - 8

3y ay(z) “ay(yz) (2.8)

For a mode of phase speed cg(k), the steering level
height Z(y) satisfies

Wy, Zy) = a(Z(y)) + nn(y, Z(y))
i = cr(k).
We define Z, such that #(Z,) = cR(k.) and put
Zy) = Zo + Zy(). (2.10)
Substituting (2.10) in (2.9) and expanding, we obtain

2.9)

U _
2,2 (Z) + i, Z) = Ow).  (2.11)
Also expanding d4/dy(y, Z(y)) in powers of u,
' Pdo
0ydz

- o
g—g@, 200 = 3220 + w2 (22,

aq_l 7 2
T~ 42 + O .
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Here Z, can be substituted from (2.11), giving

9g 3G -

oy 0 200 =51 (20 + w-azon o, 20

.
+ a—‘i o, zo>} + 032, (2.12)

where : ,
_ a3 q_o/ ayaz
a(z) = —6120 10z (2.13)
Egs. (2.6) and (2.12) combine to yield
oM _ 0
a n(, o) ay (Zo) + un(y, 0)
X | —aZoYuy, Zo) + ay s Zo)
+ 0@ + O(c). (2.14)

Assuming that meridional velocities vanish on the
walls of a channel or for sufficiently large ||, we have
| (dM/dy)dy = 0 so that _

G _
0= a_; (Zo) f ndy — po(Zo) f niy, Zo)dy

tufn ‘Ziy (0, Zo)dy + OG3) + O(c). (2.15)

We define
f n(y)a(y)dy

N f n(y)dy

b

for arbitrary a(y), multiply (2.15) by n(y)/ f ndy and
§ubtract from (2.14); the term in d4,/dy cancels, leav-
ing

8- (3)-en-co)

3y By a(i, <u1>) 2

+ O + O(c). (2.16)

It should be noted that (k) and n(y, ) have not been
expanded in u since we want the limits ¢; | 0 and
p# — 0 to be independent. This is in contrast to the
approach used by Mclntyre (1970) and in Section 3
below.

As a simple example, suppose that N? is constant
and @,(y) = V cos(ly) so that 3G,/dy = I*V cos(ly).
Then from (2.16),

ay uniy,

oM _ -

oy = pn(l* — A ZoXtty — {d)).  (2.17)
Suppose that we know the phase speed, and therefore
a(Z,) for a particular mode. Note that n > 0 and that
(@ — {d@,)) > 0 at the maxima of #%,. Thus, for suf-
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ficiently narrow jets (/> > «), dM/dy is positive at the
maxima of #,. (Note that these down-gradient fluxes
are obtained within a perturbation theory which as-
sumes that 8%i,/dy? < B.) If a(Z) is positive, then for
sufficiently broad jets (I < «!/?) dM/dy is negative.
However, if a(Z,) is negative, dM/dy must be positive
at the wind maxima for all values of /. That this latter
situation does indeed occur is illustrated in Section
3 below. Thus, instabilities growing on purely baro-
clinic zonal flows perturbed by small horizontal
shears need not possess countergradient momentum
fluxes, even when the length scale of the y variation
of the zonal wind is made arbitrarily large.

3. Examples of momentum fluxes associated with in-
stabilities on zonal flows with small horizontal
shears

a. The perturbation theory

The result (2.16) described above unfortunately
holds only for a very restricted set of modes, namely
slowly-growing disturbances in weak horizontal shear.
It is conceivable, however, that dAf/dy behaves in a
similar way even when the derivation of (2.16) is not
strictly justified. To check on this possibility, we com-
pute the momentum fluxes in modes growing on a
particular internal jet flow for which ¢; is not small,
working with the p-perturbation theory used by
Mclintyre, which differs from that described in Sec-
tion 2 in that the disturbance streamfunction and

phase speed, as well as the basic flow parameters, are

expanded in u. We also describe analogous calcula-
tions for the Eady and two-layer models. To simplify
the analysis we consider only the case in which the
unperturbed baroclinic mode is independent of y on
an infinite beta-plane.

The equation to be solved for the complex stream-
function ¢ and phase speed ¢ is

7y, 0 )
a?  az oz
+ ¢dg/dy =0, (3.1a)

(- c)(—k%[z +

with boundary conditions
(3.1b)

on boundaries z = z for example; here «(z) = f2/
N?(z). We expand in u:
u = thy(z) + pu(y, z)
99 _ 99 94,
3y oy (2)t+np 3y o, 2)
¥ = %o(2) + mhi(y, 2)

C=C()+‘Lcl

s (3.2)
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where the O(x®) terms have been chosen to corre-
spond to a standard pure baroclinic eigenvalue prob-
lem. At O(z) we can eliminate ¢, by differentiation
with respect to y (since v, #p and dg,/dy depend only
on z) to obtain

- 24 .50, 9 Q?) 9
(o c)(k““a Taz¢az) T 0%
S0 4o L8 ‘/’0)_ *q
ay ( k%o + 6 6 Yo ay?’ (3.3a)
- _ 00 9%
(%% — co) Py ¢ Py
_ 91, d &y _
= 3y 3z + 6y8 on z=2zg, (3.3b)
where
' o0, 2) = ~‘”y— (3.4)

Since all coeflicients of ¢ in (3.3) are independent of
¥, solutions for ¢ can be found by separation of vari-
ables. For simplicity we take @#,(y, z) = U(y)g(2) (al-
though similar methods can be applied to more gen-
eral forms of #,) and Fourier transform in y:

UQ) = f_ “ Uedl, (3.5)

Inspection of (3.3) then shows that we can write

0.9 = " ik Duera,  (.6)
where ¢ satisfies
(th — co)(—[k2 + [I%)p +oe ——-) + ©3Go/dy
S R %) oy -2+ 2 E),
(3.7a)
o o
(o = co) 5~ ¢ a—“"
Z
g0 _
= ‘Po az 32 on z=zgz. (3.7b)

The momentum flux divergence can be written
d — k aﬁo)
—u'v' = *
dy ' (”’

where ¢ = exp(2kct). Expanding in g and using the
fact that dyo/dy = 0, we find
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:%}T’ = —lhyok Im(¢3 a2 ) + O(?)

= Yuok Imy$(2)

X f " Pe(z k, YUDe™dl + O (3.8)
by (3.4) and (3.6). Restricting attention to jets that
are symmetric in y, #(y, z) = @ (—y, z) [so that
U(l) is real and an even function of /] and also ob-
serving from (3.7a) that (/) = Y¢(—/), we obtain from
(2.3) and (3.8)

oM

a—y ~ po J; UDm(k, 1) cos(iy)dl,  (3.9)

where

.m(k, [y = f Im[kI%§(z; k)P(z; k, Dz, (3.10)

U cos(ly) (U = positive constant)
has westerly jets at y = 2wn/l (n = integer); the ver-
tically-integrated flux M is directed into the centers
of these jets (“upgradient” momentum transfer) if
m(k, 1) < 0, and out of the jets (“downgradient”) if
m(k, ) > 0. We now proceed to calculate m(k 1) for
baroclinically unstable waves in a variety of circum-
stances.

b. An internal jet

First consider the basic flow that varies only with

height
_ . z
i = U sechz(ﬁ) ,
» U, >0, N?= constant,
for which

oy = 1203 sr() 23]
el =) - = :
8oy 1‘ 2U) 3 sech H 2. sech il (3.12)

U=-2, \=NH/f=He""

This satisfies the Charney-Stern necessary condition
for instability if U > 1.5. Note that a(z), defined by
(2.13) is here given by

oz) = 4>\—2[3 sechz(é) —~ 1]

and thus takes either sign.
Eigenfunctions and eigenvalues for y-inclependent

(3.13)

~ modes Y,(z) that are symmetric about z = 0 are found

by a combination of integrations of the initial value
problem and an iterative shooting methocl. The as-
sumption of symmetry about z =

0 allows one to -
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FIG. 1. Growth rates (w;) and phase speeds (cg) as a function of
zonal wavenumber for the unstable mode symmetric about
z = 0 on the basic state defined in (3.11), for U = Up/(BA\?) = 3
and 6.

place the lower boundary at z = 0, while the upper
boundary is taken so high that the solutions are in-
sensitive to its location.

Growth rates and phase speeds for these modes are
shown in Fig. 1, for U = 3 and 6. Analytical symmetric
neutral solutions % oc sechz(z[H ) exist at the wave-
numbers kX = [2 = 2(1 — 3/2U))"/*]'/2, just as for the

HEIGHT

1 1

ISAAC M. HELD AND DAVID G. ANDREWS

2225

classical Bickley jet (cf., Drazin and Howard, 1966);
these correspond to the cutoff wavenumbers (kA
= 0.76, 1.85 for U = 3; kx = 0.52, 1.93 for U = 6)
at Wthh_l — 0 in Fig. 1. The vertical structure of
0 * and vjg} for one of the more unstable modes with
= 3.(kA = 1.18) is shown in Fig. 2, using the nor-
malization f (mo/N?d(z/H) = 1. ny has a reasonably
sharp peak at the steering level (z = 1.1H), but its
value at z = 0 is ~25% of the peak value. Positive
values of vyqj are confined fairly close to the steering
level, but negative values peak at z = 0. Thus, it is
not self-evident that the qualitative behavior of the
momentum fluxes obtained when this mode is per-
turbed will be similar to that described in Section 2,
in which vgqg is assumed localized about the steering
level.
We consider two different perturbations about the
flow (3.11):

1) @y, z) = U sechz(H) + uUy(y),
2) uy,2)="U sechz( H) + uUy(y) sechz( H)

These both contain weak horizontal shears, as in Sec-
tion 3a, with g(z) = 1 in 1), and g(z) = sech’(z) in
2). We calculate m(k, /) by solving (3.7), given each
previously determined yo(z) and the appropriate g(z)
and substituting in the integral (3.10). Note that
the e sign of m is mdependent of the normalization,
[ Glo/\Yed(z/H) =

The solution to (3 7) is sensitive to small errors in
the unperturbed eigenfunction y, and eigenvalue cg as
I — 0, a consequence of ¥, being an eigenfunction of

(b)

0.5 1.0

1
L5

L
-0.5

FI1G. 2. The vertical structure of (a) 7, and (b) v’_q’ for the unstable
mode symmetric about z = 0 on the basic state defined in (3.11), for

U= 3and kx = 1.18.
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the operator on the left-hand side of (3.7a) with ei-
genvalue —/ It is therefore convenient to have an
explicit expression for m(k, /) in this limit. In the Ap-
pendix we show for an internal jet that

lim mk, 1) = —ky, Imy3"
1—0

" where

v = f dziol®

Y2 = f dzy

= k%o + — ¢ 20
9o Yo 92 ¢ oz

This result has been used in drawing the figures which
follow. .

The values of m(k, /) for case 1) with U = 3 are
shown in Fig. 3a; the region where m > 0 has been
shaded. m is positive for all / when k is near the long-
wave cutoff. For larger k there exists a critical value
of I, [.i(k), such that m = O for / = [ .

The values of m(k, /) for case 2) with U = 3 are
plotted in Fig. 3b. Unlike case 1), m < 0 for sufficiently
small / at all k. Otherwise, the results are qualitatively
similar; in particular, 8/.;/9k > 0 in both cases. As a
result, for perturbation zonal winds of the form U (y)
= cos(/y), with / within a certain range [/\ < 1.67 in

2.5

e

N

NN

o
AN
NSy

2.

\ (¢

£\

0.,
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1) and 0.76 < I\ < 1.85 in 2] disturbances of shorter
zonal wavelength transport eddy momentum upgra-
dient while those of longer zonal wavelength transport
eddy momentum downgradient.

At y = 0 one has

ggzyafwwmmeﬂL
dy 0

where for prototypical westerly jets such as U;(y)
= exp[—(V/L)] or U,(y) = sech’(y/L), U(l) is positive,
nearly constant for / < L™, and nearly zero for /
> L™!, Therefore, if there exists an /. as defined above,
the vertically integrated eddy momentum flux is di-
rected out of sufficiently narrow jets (L < /}) and
into sufficiently broad jets (L » /5}). If m > 0 for all
I, as in case 1) for kA < 1.06, the momentum flux is
directed out of the jet center, regardless of L.
Figs. 4a and 4b show how [ (k) varies as U, a
measure of the vertical shear of the unperturbed wind,
isincreased from 3 to 6. In both 1) and 2) /; increases
with U, favoring upgradient over downgradient fluxes
as the flow becomes more baroclinically unstable.
At the cutoff wavenumbers of the zero-order prob-
lem, these results can be checked against those of
Section 2 (which hold in the limit ¢; | 0) for the case
i, = g(2) cos(ly). The corresponding dy,/dy is pro-
portional to cos(/y), and it can be shown that ¢; =0
for this example. At the cutoff, ¢;o6 = 0 and so ¢
= O(u?); moreover, Z, = zo + O(u?) where i%(zo)
= Cro. Thus we obtain from (2.16) -
oM {aql ' <aq.
. T Moy — \ T

dy 3y >‘“WP%%»}+om5

ay 20

. (b)

AN

[X:) 1.0

FIG. 3. m(k, 1) for the internal jet with U = 3: (a) g(z) = 1; (b) g(2) = sech®(z/H).
~ The region in which m > 0 is shaded.
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at the cutoffs, with #y a constant. (Note that if ¢,
= O(u) instead of O(u?) additional O(u) terms would
appear in dM/3y.) Since #, and d4,/dy are sinusoidal
in y,

oM

d
- 25 — —
ay =~ unoa[l

ag\ |
8z (f a_i) - “g] cos(ly); (3.15)

20
from (3.5) and (3.9) we also have v
oM

3; ~ Yagum cos(ly), (3.16)
and so 5( a
o2 (2],
m 2n0|:(l a)g Py (e 2z))., (3.17)
by comparison. Therefore,
19 ag)]
2. —1 — — ——
I [a + 20z (e az) ], (3.18)

at the cutoffs. One can find z, by using the fact that
040/0y(z;) = O [which follows by letting p — 0 in
(2.15)]; then from (3.12)
172
=
2U,

1
h2(@)=_[ i(
sec 3 1
3 1/2=1/2
1“2(7) ] ’

at the cutoff wavenumbers

ko = [2 + 2(
from which it is straightforward to calculate a(Z;)
and ;. For g(z) = 1, one finds that (A.,)? = 2[(k\)?
— 2] at the short wave cutoff, while /%, < O at the

(a}

20

2 = 20002-2)

M>0
FOR ALL £
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longwave cutoff (see Fig. 4a). This is consistent with
the result that m > 0 for all / near the long wave
cutoff. For g(z) = sech®(z/H), one finds simply that
lie = k at both short and long wave cutoffs, as illus-
trated in Fig. 4b.

¢. Eady’s model

Because of the presence of mean vertical shear (and
the associated eddy heat flux) at the lower and upper
boundaries, the argument of Section 2 cannot be di-
rectly applied to Eady’s model perturbed by weak
horizontal shear. We therefore proceed with the ex-
plicit perturbation theory to investigate whether the
behavior of the momentum fluxes for this case is qual-
itatively similar to that for the internal jet.

The results for m(k, [) for the perturbed Eady
model

1) Wy, 2)=Az+uU(y), O0<z<H

(8 = 0, N? = constant, A > 0),

are plotted in Fig. 5. The transition from upgradient
flux for / < I (k) to downgradient flux for [/ > [;(k)
is again observed. Unlike the internal jet, however,
the flux is upgradient for sufficiently small / at all k,
in agreement with Mclntyre’s resuit.

If Eady’s model is perturbed into the form
_ z 1
u(ys Z) AZ + ”‘Ul(y)(H 2) )
it is found that m(k, /) = 0. The proof uses the facts
that @, — ¢ is symmetric about z =H/2 (recall that
cro = AH/2 for the unstable Eady mode) and that

2)

L (b}

L

0.4 06 08 10 12

kA

20

04 04 08 1.0 1.2

kA

14 16 8 20

FIG. 4. I;(k) for the internal jet with U = 3 and U = 6: (a) g(z) = 1; (b) g(2) = sech®(z/H).
In case (a), (Mew)? = 2[(Ak)? — 2] at the short wave cutoff; in case (b), Ly = k at both short

and long wave cutoffs.



FiG. 5. m(k, [) for Eady’s model, with g(z) = 1.
The region in which m > 0 is shaded.

94o/3y = 0. Moreover, Y, can be normalized such
that Yo(z) = ¥§(H — z) [McIntyre, 1970, Eq. (A9)];
with g(z) = z/H — Y it then follows from (3.7) that
P(z) = P*(H — z), so that Im(y&¢¥) is antisymmetric
about z = H/2 and m(k, ) = 0 by (3.10).

The value of m(k, I) for a perturbed wind of the
form :

3) - Wy, 2) = Az + pU(V)z/H,

can be obtained by taking a linear combination of

. the results from 1) and 2), since ¥, and therefore m,
is linear in g(z) by (3.7). Thus, in this case m takes
values proportional to those in Fig. 5.

" d. The two-layer model

Calculations have also been performed for the
quasi-geostrophic two-layer model with layers of
equal mean depth, .

Say_ _, 00 awiom )
ot "ox  dx dy’ ’
! az¢' I.1 ! !
q.—w‘—k’,—ﬁ(wl—w)%,
,_ Y , L
42=W-k2\(/2—‘2§“2(\02—¢1)J
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where suffixes 1 and 2 refer to the upper and lower
layers, respectively. The unperturbed problem is that
of Phillips (1951), so that

() = Up + rUO)G }
() = —Up + pUi()g2 )’

for Uy, g, £ constants. A theory analogous to that
of Section 3a can be developed for m(k, /), and it is
convenient to consider pure “barotropic” (g, = £7)
and “baroclinic” (g; = —g,) mean flow perturbations -
separately. When 8 = 0, m vanishes identically for
a purely baroclinic perturbation, as in casz 2) of the
Eady model, while m(k, /) for a barotropic pertur-
bation, shown in Fig. 6, is similar to tha: in Fig. 5
for case 1) of Eady’s model, except near the short-
wave cutoff. The behavior of the perturbed Eady
model momentum fluxes near the short-wave cutoff
can be shown to resuit from the non-zero interior
potential vorticity gradients of the perturbed flow,
which have no analogue in the two-layer model.
Straightforward algebra yields an explicit expression
for [ in Fig. 6:

(Nere)® = V2I(882 + 9842 — ¢7,

where { = k.

- Fig. 7-shows m(k, [) for barotropic and baroclinic
perturbations, for BA\*/U, = 0.5. The barotropic jet
perturbation results in momentum fluxes analogous
to those in the internal jet of Fig. 3b, with m >.0 for

2.0 ..
7 504 %
12
/ 10

2\

AN

0.5

FIG. 6. m(k, I) for the two-layer model with 8 = 0 and g, = g,
= 1. The region in which m > 0 is shaded. The unperturbed ei-
genfunctions have been normalized so that Yalyo, + Y02l = Uoh.
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FIG. 7. m(k, I) for the two-layer model with BA%/u, = 0.5. (@) g =g = 1; (b) g = —g2 = L.

all / when k is close to the long-wave cutoff. The
purely baroclinic jet perturbation results in 7 < 0 for
all k and /, corresponding to a vertically integrated
momentum flux convergence at the latitudes of the
upper level wind maxima—a result for which we have
no simple explanation.

4. A flow with large horizontal shears

Consider once again the flow given by (1.1) on a
beta-plane in a Boussinesq atmosphere with constant
N?, choosing in particular U = to/(8\?) = 3, where X
= NH/f. From (1.2) we know for this value of U that
if L2 > B/(24,), then dg/dy > 0 for all z at y = 0,
and, therefore, dM/dy at y = 0 must also be positive.
But §/(2#,) is clearly an overestimate of the value of
L2 needed to create positive M/dy at y = 0, given
i, ; as we have seen, it is sufficient that 3g/dy be positive
at those heights where 7" is large.

Fixing U = 3, we isolate the most unstable mode
at one particular wavenumber, kX = 1.1, for various
values of #, and L by a numerical integration of the
initial value problem. Rigid walls are placed at z
= 0, 4H and y = 47, and only modes symmetric
about z = 0 are considered. The sign of this unstable
mode’s vertically integrated momentum flux at y
= 0 is displayed in Fig. 8 as a function of L™! and
,. As @, — 0, there is a critical value of L™}, AL,
=~ (.5, above which dA/dy > 0 and below which dA/
dy < 0. This result is similar to that of Section 3 (Fig.
4) despite the fact that those results are not strictly
applicable here: in Section 3 we assume that the un-

perturbed baroclinic mode has infinite meridional
scale; here the mode is confined to a channel of finite
width. As i, increases L7}, decreases, which is the
qualitative behavior one anticipates from (1.2). At
least up to i#; ~ 1.58)\2, however, (8/2i;)"? remains
a very significant overestimate of L3%. Fig. 8 empha-
sizes once again that even for jets for which §%i/9y?
< B one finds downgradient momentum fluxes when
the horizontal scalé of the jet is smaller than the de-
formation radius. '

5. Conclusions

The divergence of the vertically integrated mo-
mentum flux produced by an internal jet instability
in the limit of vanishing growth rate is of the same
sign as the mean potential vorticity gradient at the
steering level. If in addition the mean flow takes the
form

Wy, 2) = thp(2) + pit(y, 2)

with u < 1, then dM/3dy can be shown to depend on
the parameter «(Z,), where
&Go/0ydz _ i%,/92°

0lp/0z 0ity/0z
and where @#(Z,) = cg, the phase speed of the mode
in question. If #, takes the simple form sin(/y), then
the vertically integrated momentum flux is counter-
gradient if /2 < a and downgradient if /> > a. If
< 0, as it is for the jet @(z) = Uy sech?(z/H) near the
long-wave cutoff, the flux is downgradient for all .

a(z) =
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FIG. 8. The sign of the vertically integrated eddy momentum
flux divergence at y = 0 for the most unstable wave on the basic
state (1.1) with /(8N = 3 and kX = 1.1, as a function of i, and
L', There is divergence in the shaded region and convergence in
the unshaded region. The dotted line marks that value of L™' above
which 4g/dy at y = 0 is positive at all heights.

(3
o

Since « is proportional to the third derivative of i,
one expects momentum fluxes to be very sensitive to
small changes in the. vertical structure of the mean
flow.

Results from a perturbation theory in the small
parameter p indicate that the qualitative dependence
of the momentum flux on the meridional scale of the
mean flow-variations found for internal jet instabil-
ities with small growth rates remains the same when
growth rates are not small. Similar calculations for
Eady and two-layer models show several differences
in detail from the internal jet but also some common
features. In particular, if one restricts consideration
to the zonal wavenumbers corresponding to the fast-
est growing modes, then in each case there is a tran-
sition from upgradient to downgradient momentum
fluxes as the meridional scale of the mean flow de-
creases. The transition occurs even when 8%7/dy?

< B, and at a scale comparable to the relevant radius

of deformation or, equivalently, the zonal scale of the
mode. ) )

One can imagine perturbing the statistically steady
state of a baroclinically unstable flow with a barotro-
pic zonal jet. On the basis of the results described
above, we expect this jet to deform the baroclinic
instabilities present so as to produce vettically aver-
aged momentum fluxes which enhance the jet if its

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 40

meridional scale is much larger than the radius of
deformation and dissipate the jet if its scale is much
smaller than the radius of deformation.

Acknowledgments. The authors would like to thank
B. J. Hoskins for several helpful discussicns on this
topic and Y. Hayashi for a review of the manuscript.
One of the authors (DGA) acknowledges support at
Princeton University from NOAA Grant 04-7-022-
44017, and at Oxford from a Royal Society Meteo-
rological Office Research Fellowship.

APPENDIX
Calculation of m(k, I) as [ — 0

We consider the special case of an internal jet, but
the result is easily generalized to problems with
boundaries.

Write (3.7a) in the form

@ -
9 (e ‘3—) + (M - 12)<P = F, (Al)
dz\ oz o — Co '

where F is the rhs of (3.7a) divided by (it — ¢;). The
solution ¥ can be expressed in terms of a Green’s

function,

o0 = [ 6e sk DRRE  (AD)
where
o (,9G m_z_)_' -
- (e az)'+ (ﬁo L2 - PG =5z 0. (AY)
But since _
kil (e %) + (M . 12)% Y
dz\ oz iy — Co
we also have ,

[ G sk vz = . a9

Defining H(z, {; k, [) by

G = H — IPy3"eOol2), (A6)

where v, = [ Y4dz so that [ Hyydz = 0, we find that

z(«z&) N (-‘M— i ,2),,,
dz\ 0z oy — Co

= 8z — ) — VIVolWolS). (AT)

As [ — 0, H approaches the generalized Green’s func-
tion defined by Courant and Hilbert (1953) for dif-
ferential operators possessing a zero eigenvalue.
Therefore H = 'O(/°) as [ — 0. It follows that
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lim (& k, 1) = —172v3 Wo()

-0
2o
(‘l/o 9z (f 9z qog)dz. (A8)
From (3.10), we immediately obtain the formula
(3.14) for lim m(k, 1).
-0

If k is now allowed to approach either the short or
long-wave cutoff of the unperturbed problem, so that
¢r0 1 0, one can show that (3.14) reduces to the / —

Yo
- (¢t — co)

lim m(k, I) = —ZnO[ag +
1—0

ke olea]™

o =5 Wol Py - (A9)
_ %4 /é@

« dydzl az

J

with all quantities evaluated at z,, the steering level
of the unperturbed mode as ¢;o { 0.

To see this, note first that we are free to choose
Im(¢o) — O as ¢c;o 1 0, so that v, — v,. Also,

1z, crp) dz =

lim Im - =— 20, 0), (A10
1010 (th — co) du fz, 0), (AI0)
azl
if f is real. But
3do/0
go— - YORID o 10, A
Up — Cor
. 8do /0 8%3,/9yd
lim 20/% _ §40/0¥0z (A12)
z—z0 Ug — Co R auo/aZ

using L’Hospital’s rule. Combining (3.14) with (A10)~
(A12), we immediately obtain (A9) once again.
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