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ABSTRACT

The structure of stationary Rossby waves in the presence of a mean westerly zonal flow with vertical shear
is examined. There is typically only one stationary vertical mode, the external mode, trapped within the
troposphere. For more than one tropospheric mode to exist, we find that vertical shears must be smaller than
those usually observed in extratropical latitudes. The vertical structure, horizontal wavenumber and group
velocity of the external mode, and the projection onto this mode of topographic and thermal forcing are
studied with continuous models (a linear shear profile as well as more realistic basic states), and a finite-
differenced model with resolution and upper boundary condition similar to that used in GCMs. We point
out that the rigid-lid upper boundary condition need not create artificial stationary resonances, as the artificial
stationary vertical modes that are created are often horizontally evanescent.

The results are presented in a form which allows one to design the equivalent barotropic model that
captures the external mode’s contribution to the stationary wave field. It is found, in particular, that the
wind blowing over the topography in such a barotropic model should generally be larger than the surface
wind but smaller than the wind at the equivalent barotropic level. Also, the group velocity of the stationary
external mode in realistic vertical shear is found to be considerably greater than that of the stationary Rossby
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wave in the equivalent barotropic model.

1. Introduction

The barotropic vorticity equation has played a
central role in the historical development of our
understanding of stationary planetary waves forced
by topography, the seminal work being the beta-plane
analysis of Charney and Eliassen (1949). More re-
cently, it has been found that the barotropic vorticity
equation on a sphere, linearized about an upper
tropospheric zonal flow, can yield surprisingly realistic
tropospheric stationary wave patterns (e.g., Grose and
Hoskins, 1979; Held, 1983). Furthermore, it appears
that for particular choices of the strength of the
topographic forcing and the level of the zonal flow
about which one linearizes in the barotropic model,
a good fit to baroclinic stationary wave calculations
can be obtained in the extratropical troposphere
(compare Fig. 8 in Hoskins and Karoly, 1981, with
Fig. 4 in Grose and Hoskins, 1979). Barotropic
models have also been used to study the midlatitude
responses to subtropical thermal forcing, and baro-
clinic models once again seem to confirm the value
of the barotropic calculations (Simmons, 1982; Hos-
kins and Karoly, 1981).

The extent to which the extratropical stationary
wave pattern is equivalent barotropic is well illustrated
in Wallace (1983). The midlatitudes of the Southern
Hemisphere (Wallace, Figs. 2.15 and 2.19) are clearly
dominated by an equivalent barotropic structure,
with maximum geopotential amplitude near the tro-
popause and small amplitude near the surface. This
structure also stands out very clearly in Fig. 1 of
Randel and Stanford (1983). A very similar structure
is apparent in the Northern Hemisphere (see Wallace,
Figs. 2.3 and 2.8) but is not quite as dominant, due
to propagation into the stratosphere at high latitudes
in winter and monsoonal flows in middle and sub-
tropical latitudes in summer. It has also been dem-
onstrated that much of the low-frequency variability
in the Northern Hemisphere extratropical troposphere
during winter is equivalent barotropic, particularly
over the oceans, and also has maximum geopotential
amplitude near the tropopause (e.g., Blackmon et al.,
1979). The wavelike teleconnection patterns, most
notably the “PNA” pattern, have this vertical struc-
ture, as well as a horizontal structure strikingly similar
to that of stationary barotropic Rossby waves (Namais,
1978; Wallace and Gutzler, 1981; Dole, 1983).
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Localized orographic or stationary thermal forcing
in extratropical latitudes generates a spectrum of
planetary waves. Those with larger horizontal scales
propagate into the stratosphere (in winter); those with
smaller scales are trapped in a waveguide between
the ground and upper-tropospheric westerlies. These
trapped waves decay as they travel downstream, due
to destructive interference between upward- and
downward-propagating waves, except for the vertical
modes supported by the waveguide. When # is as-
sumed to be horizontally uniform and is given a
vertical structure similar to that of the observed
midlatitude winds, vertical modes do exist with vertical
structure A(p) closely resembling that observed (Held,
1983). These solutions are the familiar external Rossby
waves, or planetary edge waves (Lindzen, 1967),
strongly modified by vertical shear in the mean flow.
Where this external mode dominates, the flow will
be separable, y' = A(p)¥(x, y), as postulated in
derivations of equivalent barotropic models. [Strictly
speaking, in the standard derivation of an equivalent
barotropic model (Charney and Eliassen, 1949; Hol-
ton, 1979) one assumes that the total geostrophic
streamfunction is separable. In the context of linear
stationary wave theory, one need only assume that
the deviations from zonal symmetry are separable.]

If the basic state flow is not horizontally uniform,
separable solutions to the homogeneous problem will
not exist in general. However, if the mean flow

variations are sufficiently slow, external Rossby wave- .

train solutions will exist with slowly varying vertical
structure A(p; x, y) determined by the structure of
the external mode on the local mean flow. The path
of the stationary wavetrain can be determined by ray
tracing as in Hoskins and Karoly (1981), but using
the local dispersion relation for the external mode
rather than that for nondivergent Rossby waves. The
picture that emerges is that observed stationary and
low-frequency equivalent barotropic structures are, at
least in part, external Rossby wavetrains generated
by remote forcing, with local vertical structure con-
trolled by the vertical structure of the basic state
through which the wavetrains propagate.

The structure of stationary Rossby waves in a semi-
infinite atmosphere with vertical shear has been ex-
amined by Tung and Lindzen (1979) and Plumb
(1981), although emphasis-in both of these papers is
placed on modes whose existence is due to the
mesospheric polar night jet. Geisler and Dickinson
(1975) discuss the neutral modes in Charney’s model
and in models with more realistic vertical structures,
but are concerned primarily with the effects of the
non-Doppler term in the lower boundary condition
for transient waves and with the relationship between
the neutral and unstable modes. The rather different
problems associated with the fast westward-propagat-
ing external Rossby waves, which are only slightly
affected by tropospheric winds, have received more
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attention (Geisler and Dickinson, 1975; Salby, 1981).
In this paper we focus on the structure and excitation
of stationary external Rossby waves in the presence
of a basic flow that is a function of height only and
that is everywhere westerly.

It is convenient to think of the stationary external
Rossby wavé as one member of a complete ortho-
normal set of vertical modes. One can then simply
project the forcing onto the mode of interest and
derive the appropriate horizontal structure equation.
In a semi-infinite atmosphere, this complete set of
vertical modes consists of discrete and continuous
parts, the individual modes in the continuous spec-
trum being “scattering states” that do not individually
satisfy a radiation condition as z — oo. This vertical
modal description is presented in Sections 2a and b.
As it is infrequently used in meteorology, in Section
2¢c we compare this description with the more com-
mon approach (decomposition in longitudinal Fourier
modes, followed by solution of a latitude-height
structure equation for each mode) for the special case
of a constant zonal flow. Some general properties of
the external mode in vertical shear are described in
2d and e. In Sections 3 and 4 we discuss, for different
mean flows, the number of discrete modes with
wavelike (rather than evanescent) horizontal structure,
and the vertical structure and group velocity of the
external mode. Charney’s model is analyzed in Section
3, and somewhat more complex, but still idealized,
basic states with bounded winds and a tropopause in
Section 4. In each case, we show how to design an
equivalent barotropic model that reproduces the cor-
rect response where the external mode dominates.
Charney’s model is attractive in that simple analytic
results for the vertical structure, equivalent barotropic
height, etc., are available in the interesting limit of
small surface winds. The numerical results of Section
4 are useful for examining the consequences in Char-
ney’s model of the unrealistic unbounded mean winds
and the absence of a tropopause. Section S contains
a local analysis of the external mode’s structure and
group velocity as a function of latitude using observed
zonal winds and using vertical resolution and an
upper boundary condition typical of that in GCMs.
This calculation provides somewhat more quantitative
information on the stationary external mode in the
atmosphere.

2. Vertical modal decomposition for stationary waves
a. Basic equations and notation

The thermodynamic and vorticity equations for
stationary quasi-geostrophic waves on a beta-plane of
infinite horizontal extent, forced by topography 4 and
heating per unit mass O, and linearized about a
horizontally uniform zonal flow #(z), can be written
in the form
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udv — vou + Nfy™'w' = kQ/(foH),

UV + BV = fopo '9:(pow),  (2.1)

with the surface boundary condition obtained by
setting w' = ud,h at z = 0,

udV — vou = kQ/(foH) — N*fy 'wdh. (2.1

We use z = H In(p4 /p) as vertical coordinate, where
H = RT(0)/g. Also, py = e ##, N2 = RH™Y4,T
+ «T/H), x = R/c,, and V' = 3¢, where ¢’ is the

eddy geostrophic streamfunction. The notation is-

otherwise standard. The potential vorticity equation
obtained from (2.1) reads

ﬁ[vzv, +f62po_laz(poN _zazvl)] + q_yU’
= £J09:(0oN2Q)/(po H) (2.2)

where g, = 8 — f5%007'9,(poN28,4). It is assumed
throughout that i > 0 for all z.

One can solve for the forced waves by first perform-
ing a modal decomposition in the vertical. Such a
decomposition is common in oceanography, where
the domain is finite in z, leading to a standard Sturm-
Liouville eigenvalue problem for the vertical modes.
It is less common in meteorology, since the semi-
infinite domain causes the complete set of vertical
modes to consist of both discrete trapped modes
(“bound states”) and continuum modes (“scattering
states”). Despite this complication, a modal decom-
position remains useful when one or a small number
of modes dominate the solution in some region (e.g.,
Gill, 1983, p. 176; or Friedman, 1966).

The relevant eigenvalue problem is

.f(‘)zpo—laz(pON_Qazva) + ﬁ_lq_yva = _>‘ava9 z= Oa
(2.3)
z=0.

Modes in the discrete spectrum are required to be
evanescent at infinity, po'”?v, — 0 as z — oo; for the
continuum modes, po'?v, is bounded at infinity.
Equation (2.3) is self-adjoint under the inner product

0,0, — Vi 19,4 = 0,

<A, B> =H! f poABdZ.
0

Therefore, all eigenvalues A, are real, and the eigen-
functions when suitably normalized satisfy

(Vas V) = bag, 2.4)

where the rhs of (2.4) should be interpreted as the
Dirac é-function, §(a — B), for two eigenfunctions in
the continuous spectrum. Vertical velocities associated
with a particular mode can be obtained from either
the thermodynamic or vorticity equations:

Udv, — v,0;1 = —Nf;"'w,, (2.53)
(X + BY0a = fopo™ "8, (pow,). (2.5b)
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b. Horizontal structure equation and equivalent baro-
tropic models

The eigenmodes of (2.3) form a complete set, so
the vertical profile of the forced wave at each point
(x, y) can be expanded in terms of the {v,}. In order
to solve for the forced wave we need only determine
the horizontally dependent coefficient with which
each v, appears in the expansion. After rewriting
(2.3) as Lv, = —A,v,, one can show, using integration
by parts, that if v’ satisfies (2.1°), then

ar LUy = =N (0, V)
— [ (xQ/(foHit) — N*f;7'0,M)],=0. (2.6)

Multiplying (2.2) by pov,t~', integrating over z, and
using (2.6) one obtains the horizontal structure equa-
tion, :

(V2 = XXV, V) = ~foH '0,(0)d:h

— khH(ON8,(0,a7Y).  (2.7)

Once (2.7) has been solved, v’ can be determined
from

V(x, 3, 2) = 2V, va (X, Y)0a(2), (2.8)

where the summation represents a sum over the
discrete spectrum and integration over the continuum.
This is an inconvenient way of expressing the solution
immediately above orography, for the v, satisfy ho-
mogeneous boundary conditions, and as a result the
convergence of the series (2.8) to the solution is
nonuniform. We are primarily concerned here with
the remote response to localized forcing for which,
on the contrary, this is a particularly convenient way
of expressing the solution.

Using (2.5a) one can rewrite the thermal forcing
on the right-hand side of (2.7) as

kH ™' (w, Qi %). (2.9)

The latter form makes it clear that heating confined
to the immediate vicinity of the surface is inefficient
at forcing a stationary response, since w(0) = 0.
However, the factor #~2 mitigates this effect to a
great extent when surface winds are small.
- If A\, > 0, the mode « is horizontally trapped in
the vicinity of a localized source. If A, < 0, the mode
is horizontally wavelike with total horizontal wave-
number K2 = (—\,)"2, and (2.7) must be solved
with the appropriate radiation conditions. That dis-
crete mode with the smallest (most negative) A, is
called the external mode and denoted by the subscript
e. We assume that A\, < 0O for the remainder of this
section, a restriction justified in Sections 3-5.
Suppose that the heating and topography are lo-
calized. Then as one moves horizontally away from
the source at fixed height, the horizontally wavelike
modes become dominant in (2.8). Furthermore, the
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contribution from the horizontally wavelike contin-
uum modes decays algebraically downstream, due to
destructive interference, leaving the horizontally
wavelike discrete modes to dominate the response. It
is therefore of great importance for the structure of
the stationary wave field that there is generally only
a single discrete mode v, trapped within the tropo-
sphere, which then comes to dominate the tropo-
spheric solution at some distance from the source.
(As will be shown in Section 2c, this distance can be
quite short.) Layered models with rigid-lid upper
boundary conditions inevitably introduce artificial
discrete modes. The ability of such models to simulate
the tropospheric stationary wave field far from the
source is dependent on whether these artificial discrete
modes are horizontally wavelike or evanescent. This
question is discussed in Section 5.

For a discrete mode, pow, — 0 as z — oo, so that
K2 = =\, = B{v,y/{uv, ) from (2.5b). If one defines
an equivalent barotropic wind u, = B/K.? for the
external mode, then

= <uve>/<v . (2.10)

The equivalent barotroplc level z, is then defined so
that u(z,) = u,. This is the conventional definition;
from (2.5b), d.(pow,.) = O at this level. Equation (2.7)
implies that the contribution of the external mode to
v’ at the equivalent barotropic level, V' = (v'v, Yv.(z,),
is the solution to

(V2 + Bu, YW =—f,H 'o,h, (2.11)

where

axhe = Ue(O)Ue(Ze)axh + Kve(ze)<QN*Zaz(veu—l)>-
(2.12)

The familiar stationary response Vp to flow over
topography /1 in a quasi-geostrophic shallow-water
model, linearized about the constant zonal flow 1, is
given by

V2 + BV = —ufoHy '0,hp, (2.13)

where Hp is the mean depth. Thus, in regions where
the external mode dominates, the barotropic model
(2.13) is correct provided 1) that it is applied at the
equivalent barotropic level z,, and 2) that hg/Hp is
set equal to h./H, where H is the scale height and A,
the equivalent topography defined by (2.12).

The factor multiplying the true topography for use
in such a barotropic model is

a = 0, (0).(z,), (2.14)

assuming that Hz = H. From the boundary condition
in (2.3), one knows that v,(0) — 0, and therefore
a — 0, as #(0) — 0. Since #(0) is typically small, it
is more convenient to define A

a; = 0,(0)ve(z.)u./u(0). (2.15)

The right-hand side of the equivalent barotroplc
model (2.13) then reads
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—a, Jol(0)H ~1,h. (2.16)

The replacement of u with #(0) on the right-hand
side of (2.13) while retaining # = u, on the left-hand
sidé is often motivated (e.g., Hoskins and Pearce,
1983, their Appendix A.3) by assuming that the
perturbation is separable v = A(z)B(x, y), substituting
into the vorticity equation in (2.1), vertically inte-
grating, and then using the lower boundary condition
w’ = u(0)d,A. If one sets 4 = v,, the result at z = z,
is
(uV? + B = —foit(0).(2.)dh/({ve Y H).

This does not reduce to the correct topographic
forcing given by (2.12) or (2.16), since

0 (2)H(0)/(UeVe ) = V(z)0)/uve) # . (2.17)

The error arises because the forced wave has nonzero
projection onto more than one mode and, therefore,
is not separable. It is only far from the source and
within the troposphere that the solution is approxi-
mately separable, when it is dominated there by the
external mode.

c. An example of vertical modal decomposition

As a simple example of vertical modal decompo-
sition, we choose # and N? independent of z and
solve for the Green’s function in the (x, z) plane for
topography that varies sinusoidally in y, that is, the
stationary response to the topography A = Ad(x)
X sin(ly), where 4 has units of (length)’>. We set v/
= AN sin(/y)e?*'3,m, and then nondimensionalize
horizontal distances by L, vertical distances by H,
and velocities by BL2, where L = NH/fy, using the
same symbols for the nondimensional vanables The
problem to be solved becomes

8::m + 0 — Von = 0,
9 + 1/2 = —d(x),

with Vo= 1/4 + > — .
The vertical eigenvalue problem is
9:m = (Vo — M,
dm +n/2 =0,

Assume for definiteness that ¥, < 0. The discrete
spectrum consists of the mode 5, = ¢ %2, for which
Ne = Vo — 1/4, or k2 = ' — [>. As is well known,
the geopotential perturbation in this simplest external
Rossby wave is independent of height. The eigen-
functions of the continuous spectrum are 7, = (2/

z=0;

z=0. (2.18)

zz 0;

z=0. (2.19)

@) cos(nz, + ¥,), for which \, = Vo + n’ and

tan(®,) = (2n)~'. The eigenfunctions have been nor-
malized so that (2.4) is satisfied; in particular,

f nnnn‘dz = 5(" - n’)~
0 .
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The solution for the Green’s function is

7 = Xe(X)ne(2) + f

0

(2o}

xn(X)nn(2)dn,  (2.20)

where
(Oxx + kez)Xe = —‘5()(),

Oxx — Vo — nz)Xn = —nn(o)a(x)-

Since the zonal group velocity of stationary Rossby
waves is positive (for nonzero zonal wavenumber),
one has for the external mode

i —k, ! sintk,x), x>0
Xe ™ {'o, x<0; (22la)
and for the continuum,
if u=|Vo| — n?>0:
_ ~0,(0)u"? sin(u'?x), x>0
" [o, x<0; (221b)
if v =n*— |Vy| > 0
Xn = Na(0~'/2 exp(—v'?|x]). (2.21¢)

Thus, one can divide 7 into three parts, n = 0, + n,
+ 13, where 1, = x.(x)n.(2) is the contribution from
the vertically trapped, horizontally propagating exter-
nal mode, 7, [that part of the integral in (2.20) from
n =0 to n = |Vy'/?] is the contribution from the
vertically and horizontally propagating modes, and
75 (the integral from |V;]'? to o) is the contribution
from the vertically propagating but horizontally
trapped modes. If x < 0, only 53 contributes. Since
e + 13 = O[(x? + 2%~ Y] for x > 0, 7, dominates
near the ground as x — 0.

More conventionally, one solves (2.18) by Fourier
transforming in x and applying a radiation condition
as z — oo for each Fourier component. The result is

7 =(2r)"! fc dk(m — 1/2)'e*m3 4 (c.c), (2.22)

where m = (k? ~ |V,|)'/? and where C runs from the
origin to +oo along the real k-axis, following the
lower lip of the square root branch cut, as shown in
Fig. 1. Also, C must pass under the pole at m = 1/2,
or k = k,, since this pole moves into the upper half-
plane if one adds damping or solves an initial value
problem. :

The equivalence of the vertical modal (2.20-2.21)
and the zonal modal decompositions can be seen by
deforming the contour C in (2.22). If x < 0, one can
close in the lower half-plane, as shown in Fig. 1, and
the integration over C can be replaced by integration
along the imaginary k-axis. If x > 0, integration over
C can be replaced by contributions from 1) the pole,
2) the integrations along both sides of the branch cut
and 3) integration along the imaginary axis. Straight-
forward manipulation shows that the contribution
from the pole equals the external mode solution 7,
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F1G. 1. The contour C in the complex k-plane used in evaluating
(2.22). The integral around the dashed contour C’ equals zero, and
if x < 0 the integral over C can therefore be replaced by an integral
along the imaginary k-axis. The integral around C” equals the
residue at the external mode pole; therefore for x > 0 the integral
over C can be replaced by this residue plus the contribution from
integrating around the branch cut, plus an integral along the
imaginary k-axis.

the integration along both sides of the branch cut
equals 7,, and the integrations along the imaginary
k-axis equal 3.

Figure 2 is a plot of the geopotential, ®(x, z)
= ¢%2y for the case k, = 0.7, ] = 0. Since the external
mode’s contribution to & is independent of z in this
simple special case, it is clear from Fig. 2 where it
dominates the response. Figure 3 compares the total
perturbation geopotential at z = 0 with the external
mode contribution. This figure emphasizes that despite
the gross discrepancy near the source, where ®(x, 0)
~ —In(x)/w, the first downstream trough is still very
well captured by the external mode in isolation. The
qualitative behavior of the Green’s function in Fig.
2, with the external mode contribution dominant in
the troposphere except in the immediate vicinity of
the source, is also seen in stationary wave Green’s
functions for more realistic basic state winds (e.g.,
Held, 1983). The most noteworthy difference is that
if u has vertical structure, then the external mode
does also.

d. Vertical structure of the external mode

For arbitrary N¥(z), u(z) > 0, the standard trans-
formation n = b"%v,, with b = po N2, converts (2.3)
into
62:11 + (sz(‘)—zl;nlq-y - b—l/Zazzbl/Z)n = _Nzﬁ)_z)\ﬂ

(2.23)

with the boundary condition
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10 15

FIG. 2. Linear stationary geopotential height response to the mountain 4 = A8(x), assuming
that i and N? are constant. Horizontal distance is nondimensionalized by NH/f and vertical
distance by H, the scale height. In these units, the stationary wavenumber is 0.7. The
dimensional geopotential is obtained by multiplying by AN/f;. Shaded areas are negative.

dn = nla™'du + (2b)7'9:b), z=0. (2.23)

As in Bretherton (1966), the boundary condition can
be satisfied by adding a é-function to the potential.
The resulting equation is

(=0 + V=N, —wo<z<o, (2249

where :

V(2) = V(—2) = —N’fs%a"'q, + b™'729,.b'?

+ 2[u~'8,u + (2b)7'9,b18(2). (2.25)
Solutions of (2.24) that are symmetric about z = 0
are also solutions of (2.23). The external mode is the

+1.51 -
"
A i
+1.0 - I' \ -
/A
VAR
/ \
+0.5}F . /// \ (x0) B
,—”” \ /
— \
\ .
0 -
~0.5F
EXTERNAL MODE
CONTRIBUTION'
-1.0F
—I.SL
2.0 1 a . _— 1 . 1 — |
’ -1.0 0 +1.0 +2.0 +3.0

F1G. 3. Comparison of the full baroclinic Green’s function shown in Fig. 2
evaluated at the surface, and the contribution of the external mode given by (2.21a).
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lowest bound state of the potential V. If V' — V(c0)
and N — N(0) as z — oo, then all discrete modes
satisfy A < V(o0), while the continuous spectrum is
characterized by A > V(c0), where A = N%(o0)fo 2A.
If V(c0) < 0, then the continuous spectrum consists
of horizontally propagating as well as horizontally
trapped modes.

For constant # and N2, the potential is constant
except for an attractive 6-function at the origin. Such
a potential has the one bound state discussed above,
7. = e or v, = 1, with K,2 = /4. In this special
case, the vertical velocity and the thermal forcing of
the mode are identically zero [see (2.7)]. For the
linear shear profile # = uy + Az, with typical midlat-
itude values for A and uy, the external mode has the
* structure shown in Fig. 4 (see Section 3 for detailed
discussion). As expected for the lowest bound state,
v, is of the same sign for all z. The corresponding
eigenvalue A, is negative, so the mode is horizontally
wavelike. The surface é-function is now repulsive,
since #'d,u is much greater than —(2b)'9,b
= (2H)™! at the surface, and the mode is trapped
instead in a potential well created by the increasing
westerlies. Despite this fundamental difference, the
external mode in Fig. 4 evolves continuously from
the simple external mode v, = 1 as the vertical shear
is increased from zero.

Because of the repulsive é-function, n. increases
away from the surface and, therefore, v, (or the
geopotential) increases faster than e¥?¥. More pre-
cisely, the lower boundary condition implies that
9,(v./u) = 0 at z = 0; therefore, the increase in v,
with height near the ground is similar to that of u.
Maximum amplitude in 5, occurs considerably below
the mode’s turning point in the potential well, which
occurs near z = 2H for the parameters chosen for
the figure; maximum geopotential amplitude occurs
somewhat higher and closer to the turning point. The
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cold lows and warm highs below the geopotential
maxima serve to distinguish these remotely forced
waves from the cold highs and warm lows typically
forced by local heating.

The sign of the vertical motion in the external
mode is easily obtained from the vorticity equation
(2.5b). The term d,(pow.) has the same sign as (8K, 2
— u)v,; therefore, for monotonically increasing u(z),
9,(pow,) is of the same sign as v, below the equivalent
barotropic level z., and opposite in sign to v, above
Z,, implying that w, and v, are in phase for all z. We
find that this result remains valid over most of the
fluid for more realistic basic states. Since the ther-
modynamic equation (2.5a) can be written 9,(v./u)
~N?%%0"%w,, we have the result that d,(v./u) is
opposite in sign to v,. Therefore, v, increases with
height but less rapidly than #. Equation (2.12) then
implies that positive perturbation heating is equivalent
to a negative topographic slope insofar as the far field
is concerned. .

The meridional displacement of streamlines in the
presence of a steady wave is £ = —¢'(0,¥%)"" = ¢'/iL.
The preceeding discussion implies that the displace-
ments £.(z) created by the external mode have
maximum amplitude at the ground. The same
will be true of the perturbation potential vorticity,
q. = —£.4,, as long as g, has little vertical structure.
The eddy vorticity and potential vorticity are in
phase, g. = {.u.4,/(uB), but g, generally decreases
away from the surface while {, = —K_ %/, increases.
The vertical structures of w,, g, oc v./u, T, oc 3.¢,,
and Qgrr = —0.(v./u) for the linear shear profile,
illustrated in Fig. 4, are consistent with these argu-
ments. The structure in Qgrr at low levels implies
that the far field response is very sensitive to the
vertical structure of the heating when the heating is’
confined near the surface.
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FIG. 4. Vertical structure of the external mode on the flow u = uy + Az, with ¥, = 0.2(AH)
and r = BN2H/(f*A) = 1.0. Plotted are v,, the geopotential (or meridional velocity) ampli-
tude normalized according to (2.4); polv%; powe., the density weighted vertical velocity; Qurr
= —3,(v./u), the heating efficiency factor appearing in (2.7); the temperature structure 7, (or,
equivalently, 8;v.); and the amplitude of the meridional particle displacement v,/ (also
proportional to the potential vorticity perturbation).
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e. Group velocity and damping

In designing an equivalent barotropic model for
stationary waves, one should try to include damping
that mimics the effects on external Rossby waves of
various dissipative mechanisms of importance in the
atmosphere. We address this problem briefly here
and in more detail in a forthcoming paper (Held et
al., 1985). Consider a plane wave external mode
solution to the homogeneous version of (2.1)-(2.2)
(¥ = Ye(2) explikx + ily), Yo o v, K* + I = K]
and perturb this wave by adding small height-inde-
pendent linear damping of eddy vorticity, —y{’, and
of temperature, —yd¥". If we set w(z) = up + f(2),
the introduction of damping has the effect of replacing
o with uy — ivyk™, or K2 with K.? — ivk™'dK.*/duy,
where the partial derivative is taken with fixed f(2).
Since the unperturbed wave satisfies (V2 + K,2)d,y'
= 0, the weakly damped stationary external wave
satisfies the horizontal structure equation

(V2 + Kez)ax '= —'Y(aKeZ/auO)\V

= yK, 20K [oup)S'.  (2.26)
Therefore, the vorticity equation, u.0d,.{' + Bv'
= —v,.{’, predicts the correct spatial decay provided
that

Ye = 'YueKe—z(_aKg/auO) = v8. (227)

If the problem were Galilean invariant, one could
make the correspondence 1, — —c and relate v, to
the group velocity of the external mode. For transient
waves, the term 9,(8,¢' — N%g~'¥") must be added to
the left-hand side of (2.1') [g here refers to the
acceleration of gravity, not to the quantity defined in
(2.27)). The term N 2g~!'y' prevents exact invariance,
but is extremely small (~0.02dy) for quasi-stationary
external waves in realistic vertical shears. We therefore
ignore this correction and replace u, with —¢ in
(2.27). Since the group velocity of a wave with phase
speed c(K?), evaluated in a frame of reference in
which ¢ = 0, is

G = (G, G)) = kV ¢ = 2kkdc/oK>
= (k, /), we have
G, = —2kk(dK */ouy) ™" (2.28)

for the external mode. The correction factor g in
(2.27) is seen to be the ratio of the group velocity of
a Rossby wave in that equivalent barotropic model
with the correct stationary wavenumber,

Gjp = 2BkK,*k = 2ukK, Kk,

to the true group velocity of the external mode. As
discussed in Sections 3-5, g is typically less than
unity.

The following expression relating 9K,?/du, or g to
the vertical structure of the mode is derived in the
Appendix: ,

where k
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g = u(ulu™") + KN TH9,0.)3:(ve/ i)}
(2.29)

The first term in angle brackets is always positive,
while the second is generally negative since, as argued
in Section 2d, 9,(v./u) is typically opposite in sign to
v, and, therefore, to d,v,. However, in nearly all cases
the sum is positive, so that G, is in the same direction
as Gg. The only exception we have found is in the
two-layer model when surface winds are small and
the shear is supercritical (Panetta ez al.,, 1985).

If the inviscid wave is modified by adding a small
amount of Ekman pumping, the lower boundary
condition becomes

40 — V8, = ~HN*Yf 2yu V%', z=0. (2.30)

vgi is the Ekman spindown time in the purely
barotropic special case (¥ and ¥’ independent of z).
A calculation analogous to that leading to (2.29)
results in

Ye = YexUL(OY#0) ™" = yriger.  (2.31)

Ekman pumping is inefficient if #(0) is small, since
8k is proportional to

vezd_ ! ,z=0 = 00,0.(0;u)” ! |z=0

and v,(0) — 0 as w(0) — 0.

(2.32)

3. External modes in a linear shear flow

Following Charney (1947), it is illuminating to
consider in detail the flow #(z) = yy + Az on a beta-
plane, with y, and A posmve constants, and with
uniform N2, For such a flow ¢, = 8(1 + r“) where
r = BN2H/(f?A). Defining 7 = Y'e M and then
nondlmensnonahzmg using H, NH/f, and HA for the
vertical length, horizontal length, and horizontal ve-
locity scales, the eigenvalue problem for stationary
waves is reduced to the form —d,,n + Vy = Ay, —
< z < o0, with .

V(z) = L — 1)é(z).

3.1

The remaining nondimensional parameters in the
problem are 1, and r. For typical midiatitude condi-
tions, r =~ 1 while u, < 0.3.

Since V(o) — V(z) = O(z7!) for large z, the
discrete spectrum consists of a countably infinite set
with an accumulation point at A = V(o0) = 1/4. The
infinite number of modes is due to the fact that the
turning point zp = (1 + r)(1/4 — A\)™! — u,, at which
V(z) = A, recedes to +oo0 as A — 1/4 in such a way
that the WKB phase integral

_f (V — N2z

1/4 — (1 + Nuo + 2)™ + Quy™

(3.2)

also becomes infinite. Hence, there are infinitely

. many values of A near 1/4 for which n has the proper
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FiG. 5. The nondimensional squared horizontal wavenumber K* = —X, as a function of
nondimensional surface wind u, for the discrete modes in Charney’s model with r = 1.5. The
insert emphasizes the fact that 0K,%/6uy; — 0 as ty — 0.

phase to match to an exponentially decaying solution
above the turning point. The continuous spectrum
extends from A = 1/4 to oo and consists of vertically
propagating, horizontally trapped modes only, since
V(o) > 0.

Burger’s (1962) analysis of Charney’s model pro-
vides essential information on the neutral modes of
interest here. Recasting Burger’s results in our nota-
tion, he finds for the discrete spectrum that

A — 1/4 — [(1 + n/2n)? (3.3)

as up approaches 0, where n is a positive integer. It
follows that for sufficiently small #,, the number
of horizontally wavelike discrete modes (those with
A < 0) equals the largest integer less than 1 + r. The
corresponding eigenfunction for the external mode (n
= 1) approaches v, oc ze"#? as uy — 0. In this limit,
v, reaches its maximum value at z = 2/r, the tem-
perature perturbation decreases away from the surface,
3,0, oc (1 — rz/2)e ™2, the meridional displacements
(or, equivalently, the potential vorticity perturbations)
have maximum amplitude at the surface, v./u
oc €2, while pow, is proportional to z2 exp[—(1
+ r/2)z].

Explicit calculation shows that A, increases as
increases, for each »n. For the wavelike modes this
implies that the horizontal wavenumber K, = (—,)'/?
decreases with increasing westward phase speed of
the wave with respect to the mean winds, as expected
for Rossby waves. Specifically, as 1, increases from 0
to oo, the external mode eigenvalue, A, = A, increases
monotonically from —r(2 + r)/4 [see (3.3)] to O.
Therefore, the external mode is always horizontally
wavelike. In contrast, for all n > 1, A\, — 1/4 as

Uy — oo, implying horizontal evanescence for suffi-
ciently large 1y. The plot in Fig. 5 of the first three
eigenvalues as a function of g, for r = 1.5, illustrates
this behavior. The curves were obtained using series
expansions for the eigenfunctions, as outlined in
Pedlosky (1979), and iterating to find the eigenvalues.
It follows from the foregoing that if » < 1, there is
one and only one vertically trapped, horizontally
wavelike mode—the external mode; for 1 < r < 2,
there must be two such modes for sufficiently small
Uy, but only one for sufficiently large u,, etc. Figure
6 shows a computation of the number of horizontally
wavelike modes given 0 <r <4, 0 < yp < 2.0.

FiG. 6. Number of horizontally propagating stationary modes
in Charney’s model as a function of r and u,.
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It is useful to have expressions for the external
mode stationary wavenumber K, = (—A,)"? in the
two limits 1y <€ 1 and uy > 1. The former limit is of
relevance to the extratropical troposphere, while the
latter limit makes the connection with the familiar
case of constant . Using standard perturbation theory
one can show for large 1, that

K2~ rup (1 — up™h), (3.4)

or K2 =~ Buy~'(1 — AHuy™") dimensionally, as plotted
in Fig. 5. Defining the equivalent barotropic height
as before, we have K.> = r/(uy + z,). Comparison
with (3.4) shows that z, — 1 as 1y — oo (i.e., as the
vertical shear approaches zero, for fixed surface wind).

As surface winds approach zero, K> — r/z., by
definition of z,. But we know from (3.3) that K,> —
r(2 + r)/4 as up — 0. Therefore,

z,— 4/(2+7r) as 3.5)

In this limit, the dimensional equivalent barotropic
height is greater than one scale height as long as r
< 2, and is bounded above by 2H. This result seems
to justify the common choice of upper tropospheric
zonal mean winds for use in linear barotropic models.
(However, Charney’s model overestimates this height
somewhat, as discussed in Sections 4 and 5.) Using
the explicit solutions to Charney’s model, one can
show that .

K2 =r@2 + n/4 — utr(l + r*/4 + O(up®) (3.6)
(see Fig. 5), from which one finds that
Z,=4/2 + 1)~ uy
+4(1 + Q2 + N u + O(we®).  (3.7)

Plots of z, as a function of 1, for several values of r
are included in Fig. 7. While not necessarily mono-
tonic, z.(14) evidently has little structure between its
two limiting values, z,(0) = 4/(2 + r) and z.(0)
= 1.

Given the vertical structure of the external mode,
one can compute the appropriate topographic stretch-
ing for use in an equivalent barotropic model,
au.foH 'd.h = a4i0)foH 'd.:h, where o and «; are
defined by (2.14) and (2.15). One can think of a (or
o) as a correction to be used when computing the
stretching by blowing the equivalent barotropic wind
(or surface wind) over the topography. The « and «;
are plotted in Fig. 7 as functions of u, for several
values of r. Typically, « is smaller than unity, and «;
larger than unity; both approach unity as uy — 0; «
is. proportional to u#y, and «y approaches a constant,
S(r), as ug — 0. The normalized eigenfunction suffi-
ciently accurate for small %, to compute S(r) turns
out to be

Ve = 6'2[26(up + 2)le”"%;
Therefore,
S() = 8(1 + N2 + r)2e 2@ .

uo — 0.

s=(1+r/2 (38)

3.9

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 42, No. 9

so that S varies monotonically from 2.0 at r = 0 to
4.9 at r = 2. As indicated in Fig. 7, «; varies signifi-
cantly as 1y and r vary when g is small.

Figure 7 also shows the ratio g of the barotropic
to correct baroclinic group velocity as obtained from
(2.27), once again as a function of #, for several
values of r. As uy, — oo, the two group velocities
approach one another. However, for small u,, the
barotropic model seriously underestimates the group
velocity. Indeed, from (3.6) the dimensional group
velocity for a zonally directed ray approaches

AHu,'Q + (1 + r3 (3.10)
as up — 0. This infinite group velocity is replaced
with a very large value when the non-Doppler term
in the lower boundary condition is retained (see
Section 2e.) More pertinently, it disappears when u(z)
is modified so that winds do not increase indefinitely
with height, as described in Section 4.

According to (2.27), g is also the factor to be
multiplied into the damping rate v, to convert it into
the rate appropriate for use in a barotropic model, if
thermal and mechanical damping rates are equal and
independent of height. Also plotted in Fig. 7 is the
analogous correction factor for Ekman pumping, ggy,
defined by (2.31). It is easily verified from (3.8) that
8ex — 2uo(1 + 1*/(2 + 1) as uy — 0. Thus, both g
and gg, approach zero as y; — 0, but for different
reasons: g vanishes because the group velocity becomes
infinite in this limit, while gg, vanishes because the
amplitude of the external mode at the surface vanishes.
For more complex basic states, gg still vanishes in
this limit while g does not. We emphasize that other
combinations of thermal and mechanical damping
can lead to very different results.

4. Vertical modes for more realistic wind and static
stability profiles

Charney’s model emphasizes the importance of the
shear parameter r in determining the characteristics
of the discrete modes; in particular, r > 1 is required
for the existence of more than one horizontally
wavelike mode. In the present section we relax the
unrealistic assumption of uniform wind shear and
also investigate the effects of a tropopause. The.
delineation of the circumstances under which more
than one horizontally wavelike discrete mode can
exist will be of particular interest. We are also con-
cerned with the extent to which Charney’s model
distorts the amplitude of topographically forced ex-
ternal waves and the group velocity of these stationary
waves,

Throughout this discussion we will make use of
nondimensional variables with unit of depth H, unit
of length M(O)H/f, and unit of velocity #,(0)H. In
these units, the shear at the ground equals one. We
also define roy = BN*0)H/[ fo*i#,(0)], the nondimen-
sional Charney parameter based on ground level
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TABLE 1. The nondimensional total horizontal wavenumber K,
equivalent barotropic height z., surface wind amplification factor
a,, and group velocity ratio g, for the stationary external Rossby
wave on the four wind profiles (4.1a—d), assuming that u, = 0.2141,
zy = 1.5, zv = 1.5, z; = 0.5, and r, = 0.5. Results are shown both
with constant N? and with a tropopause (N, = 2.5Ny?). The
asterisk signifies that a second mode exists; two asterisks indicate a
. metastable state.

Ms/NDZ | 1 | 25 125 | 1 | 25 1y 25
Ke 055 | 058* O.Mj 064 | 068 | 089 | 077N 077
7, 146 1 12 | 101 { 0% | 09 ! 0% | 068 ro.ss

! | ! | T
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| | | (OO
g 0s8 | o | o | ons | om | om !

shear and static stability. The following four velocity
profiles will be considered: :

IZ—uo=z,- (413)

_ z, z<z,

U— Uy = { (4.1b)
Zyy ZZ Zy,

u — uy = z, tanh(z/z,,), (4.1¢)

u — uy = A{tanh(z/z,)
— {tanh[(z — z; — z,))/z;] + B}(1 + B)™!, (4.1d)

where B = tanh[(z; + z,)/z;] and A is defined so
that the shear at the ground is unity. Equation (4.1a)
is the familiar Charney profile, while (4.1b) is the
piecewise linear finite depth shear zone considered in
Held (1983). Profile (4.1¢) is similar to (4.1b), save
that the velocity approaches its asymptotic value
smoothly. Profile (4.1d) is a jet with a peak wind
near z = z, and which is asymptotic to the surface
wind ug as z — oo. (See Table 1 for a schematic of
these profiles.) The tropopause is modeled by setting
N = Ny for z < zr and N = N; for z > zr.

If we introduce the transformed vertical coordinate

J(z, z<Zt

zr + v(z — z7),

= (4.2)

zZ=Zt,

where v = N,/N¢, and set 3 = py'?v, then (2.3) again
reduces to .

(=0 + V)n = An 4.3)

in nondimensional terms, where the potential is

1/4 — (ro + @, — w)u™! + 2(uu~" — 1/2)8(2),
Z < Zr

(41’2)—] - [rO +_V—2(ﬁz - ﬁzz)]ﬁ_l9 z = zy,
“4.4)
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and n, has a jump at the tropopause given by
ni(zr + € = vn(zr — € + n(z7)ul(zr) ' Vil (2zy — €)
—vlufzr + &) — (v — v 1)/2]. (4.9)

Some qualitative features of the spectrum of eigen-
values can be discerned by examining the shape of
the potential. In Fig. 8 we plot the potentials associated
with profiles (4.1a), (4.1¢) and (4.1d) for u, = 0.214,
ro = 05, z, = 15, z; = 0.5 and N, = Ny. The
potentials for the Charney profile and the hyperbolic
tangent profile resemble each other closely. For z
< 2.0, V is slightly more negative for the hyperbolic
tangent profile, owing to the effects of curvature of
u. In either case, the dominant features are a deep
potential well below z =~ 1.5 and a repulsive é-function
at z = 0. The amplitude of the external mode will
then increase away from the ground, attain a tropo-
spheric peak, decrease toward an upper tropospheric
turning point and patch into an exponentially decay-
ing solution. The large z behavior of the two profiles
differ in a noteworthy way, however, as shown in the
insert in Fig. 8. For the Charney profile, as noted
earlier, V(o0) = 0.25 and V — V(o) = —ry/z at large
z; thus the WKB phase integral (3.2) becomes infinite
as A — V{(0), and the discrete spectrum of eigenvalues
has an accumulation point at V(o0o). For the hyper-
bolic tangent profile, the potential is asymptotic to
—0.05, owing to the finite maximum wind. However,
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FiG. 8. The potential V(z) given by (4.4) for the profiles (4.1a),
(4.1c) and (4.1d). There is a repulsive é-function at z = 0 in each
case. The insert emphasizes the asymptotic behavior of the potential
for the cases a) and c).
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there is no accumulation point at A = —0.05 because
V approaches }'(c0) exponentially, rendering the WKB
phase integral finite. As z, is made larger, the potential
approaches the potential for the Charney profile over
greater depths, and the number of horizontally wave-
like discrete modes must eventually equal the number
in Charney’s model.

The potential for the jet profile differs substantially
from those of the other two profiles. The curvature
near the jet maximum deepens the potential markedly
and the low value of #(c0) makes V(o0) significantly
negative, The potential well is separated from this
flat portion by a pronounced potential barrier asso-
ciated with the negative shear and positive curvature
above the jet. This configuration is inimical to the
existence of discrete modes. A discrete mode must
have A < V(o0) but A must also be greater than the
minimum value of V: since the d-function at the
origin is repulsive, we must have A > V(0+). This
stringent restriction on A limits the amount by which
7 can vary in the low-level propagating region and
can render the matching to a rapidly decaying expo-
nential in the potential barrier impossible. We will
see below that this situation indeed occurs for the
profile in question. However, it will also be seen that
among the continuum of modes with A > V(c0) the
tropospheric response is very sharply peaked at a
certain value of A, leading to a tropospheric response
that for all practical purposes is identical to that
resulting from excitation of a discrete mode.

The discrete modes of the eigenvalue problem were
obtained numerically using a variable step fourth-
order Runge-Kutta routine to integrate (4.3) from
the lower boundary to a height z, large enough that
1 could be considered uniform. The eigenvalue A was
adjusted with Newton’s method until this solution
matched smoothly onto the solution above z, with
exponentially decaying energy.

We first turn to results for the hyperbolic tangent
profile without a tropopause. Figure 9 shows the
equivalent height z, as a function of surface wind
[or z./H as a function of uy/(#,(0)H] in dimensional
terms) for ry = 0.5 and various values of z,. In all
cases shown, there is only one horizontally wavelike
discrete mode for each u,. We recall that for the
Charney profile z, = 4/(r + 2) = 1.6 at up = 0, and
z. = 1 at large 1. For z,, = 3, z, is somewhat below
the Charney profile result at small #,, and approaches
it more closely as u#, increases. The value of z,
decreases with decreasing z,, and increases with de-
creasing i, but with a range of variation that becomes
smaller as z,, is decreased. Thus, the infinite depth
shear zone in the Charney profile leads to an over-
estimate of the equivalent height and of its sensitivity
to the surface wind. In Fig. 9 we also show the
corresponding results for the factor «, useful in
designing an equivalent barotropic model that predicts
the correct wave amplitude. Recall that «, reduces to
unity when the traditional prescription of reducing
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FiG. 9. z., a,, and g as functions of u#,, for several values of
z,, for the hyperbolic tangent profile (4.1c), with r, = 0.5 and
N; = Nt.

the topography by the ratio of surface wind to model-
level wind is used. With decreasing z,, a, decreases
but remains larger than unity. The implication is that
for a given surface wind and tropospheric wind shear,
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the infinite dépth shear zone in Charney’s model
results in an overestimate of the amplitude of the
topographically forced external waves at z,.

The final plot in Fig. 9 is of g, the ratio of
barotropic group velocity to the group velocity of the
external mode. Here we see an important difference
between the results for the hyperbolic tangent profile
and those for the Charney profile. The group velocities
for the Charney profile become infinite as wy — O,
whereas those for the hyperbolic tangent profile remain
finite. The equivalent barotropic model still under-
estimates the true baroclini¢ group velocity, however,
the discrepancy being greatest at small 1, and
large z,,.

In Table 1 we present the salient properties of the
external mode for wind profiles (4.1a-d). The param-
eters are held fixed at y, = 0.2141, z, = 1.5, zr
= 1.5, z; = 0.5 and ry = 0.5. Results with a tropopause
were computed using (N,/Ny)? = 2.5; otherwise we
set Ny = Nt. We show also the total stationary wave-
number K = (—\)2. ,

The addition of a tropopause is seen to have a
minor effect on the results for the Charney profile,
causing a slight shortening of the stationary wavelength
and a slight decrease in the equivalent height. This
insensitivity is in part due to the smallness of 3,4 and
d,n at the tropopause, since the jump in d,m7 at zp
[see (4.5)] is small as a result. A more notable
consequence of the introduction of the tropopause
into this particular basic state is that it leads to the
existence of a second horizontally wavelike mode, a
deep internal mode with K = 0.093. More will be
said about this mode shortly. All other cases shown
in Table 1 exhibit only a singie horizontally wavelike
mode.

The results for the piecewise linear profile and for
the hyperbolic tangent profile are virtually identical,
and in neither case does the tropopause have any
appreciable effect. Evidently, it makes little difference
whether the curvature is distributed, as in (4.1¢), or
gathered into a delta-function, as in (4.1b). In either
case the wavelength is appreciably shortened and z,,
a,, and g™ are all reduced in comparison with the
Charney profile. The shortening of the wavelength
may be traced to the deepening of the potential by
the flow curvature; the other changes are largely
controlled by the wavelength shift.

The situation for the jet profile with z, = 1.5 and
zy = 0.5 is rather different. No horizontally propagat-

ing discrete modes were found at y; = 0.2141 for -

this profile. In fact, a discrete mode did not appear
until ¥y was made greater than 0.77. The configuration
in Fig. 8 is similar to one in quantum theory which
gives rise to a metastable state. In such a state, energy
placed in the potential well is not completely trapped,
but leaks out so slowly that the state has many
features of a discrete mode. In pursuit of this idea,
. we examined continuum modes v,,(z) = po 9
normalized so that as z — oo, v,(2) — (2/%)'?
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X cos(mz‘+ ¥), as required by (2.4). The mode index
m ranges from zero to infinity and the phase shift

#(m) is determined by integrating (4.3). According to

(2.7) the topographically forced contribution of mode
m evaluated at height z is proportional to v,,(0)v,,(2).
In Fig. 10 we show this quantity as a function of m
[and of the corresponding K(m)] at height z = 0.68.
This height is the equivalent height associated with
the wavelength of maximum response (this particular
jet profile produces an unrealistically low z.), but the
shape and width of the curve is virtually identical at
all tropospheric altitudes. It is evident that the tro-
pospheric response is dominated by a very narrow
range of m (and hence of K). The width 6K of the
peak determines the downstream decay scale, as
different waves in the continuum begin to destructively
interfere only after a distance L such that L6K > 1.
From the figure, we find L ~ 50 radii of deformation,
whence we conclude that the downstream decay is
negligible and that the tropospheric response is essen-
tially the same as that due to a discrete mode with K
set at the value of the peak response. We have not
encountered any physically reasonable profiles for -
which metastability introduces appreciable decay, al-
though the existence of such profiles has not been
ruled out. In general, it seems that the curvature and
shear above the jet act as an effective lid, and prevent
significant leakage into the stratosphere. Values
for K, z. and a, for the jet profile are included in
Table 1.

Finally, we treat the question of the existence of
multiple horizontally wavelike modes in the discrete
spectrum. This problem will be addressed only for
the hyperbolic tangent profile, so as to avoid the
complications associated with computation of meta-
stable states. Our goal is to identify the region of (ug,
z,) space in which multiple wavelike modes exist.
The shape of the region depends on ry. Consider first
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F1G. 10. The amplitude at the equivalent barotropic level of the
continuum modes forced by topography for the jet profile (4.1d)
as a function of the vertical wavenumber at infinity m, or horizontal
wavenumber K, showing the peak corresponding to a metastable
state.
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ro = 0.5, for which the Charney profile has only a
single wavelike mode. Without a tropopause, this was
also found to be the case for the hyperbolic tangent
profile, regardless of the value of z,,. With a tropopause
of strength (N,/N1)*> = 2.5 located at z = 1.5, a
second mode enters at sufficiently large z,. In Fig.
11a we show the region of (u, z,) space in which a
second mode exists. In terms of the transformed
coordinate {, the high stratospheric static stability
. favors the existence of a second mode by deepening
the region above the tropopause in which ¥V is negative
[see (4.2) and (4.4)]. It is then possible, for slightly
negative A, to fit an oscillation of » into the region
above the tropopause and still match to a decaying
exponential at the turning point. The jump condition
(4.5) can also contribute by providing a discontinuous
advance in the phase of the mode. Figure 11a shows
that a second mode never exists for z, < 2.8. For z,
> 2.8 there are very deep internal mode solutions
corresponding to wave reflection from stratospheric
winds. As such, they are qualitatively similar to the
internal modes discussed by Plumb (1981) in connec-
tion with stratospheric sudden warmings. We note
that increasing 1, tends to suppress the second mode
by making the potential everywhere shallower. Also,
the folding of the boundary curve in Fig. 11a shows
that increasing z,, can sometimes suppress the second
mode. This is so because the curvature term deepens
the potential but vanishes with increasing z,,.

In Fig. 11b we show the corresponding results for
ro = 1.5 and N; = Nr. At this value of ry, the Charney
profile without a tropopause permits a second mode
as long as uy < 1.6 (see Fig. 5 or Fig. 6). For the
hyperbolic tangent profile, a second mode exists only
within certain ranges of z,. For the case 1y < 1 of
most interest, a second mode exists when z, > 2.2.
As in the case ry = 0.5, the two-mode boundary folds
over and approaches the critical u, for the Charney
profile from the right.

Figure 11c shows the two- and three-mode bound-
aries for r, = 1.5 with a tropopause. These curves
must also become vertical at large z,; however, the
asymptotic regime lies outside of the range of (1,
z,,) plotted. For small surface winds, a second mode
can exist when z, > 1.8, a condition only slightly
easier to satisfy than the corresponding condition for
the no-tropopause case.

It thus appears that a second mode can exist only
under conditions of weak shear extending over a deep
layer. Indeed, we find that if the shear extends only
through ~10 km (z,, = 1.5) then for a second mode
to exist we must have ry > 2 or, equivalently, shears
less than ~ 1 m s~ km™! (for N? ~ 107* 572 at 45°).
As values of ry > 2 are rare in extratropical latitudes,
the trapping of two modes below the tropopause
must be viewed as very exceptional. Modes created
by reflection from stratospheric or mesospheric winds
may also occasionally play a significant role in tro-
pospheric dynamics (see Tung and Lindzen, 1979;
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FiG. 11. Number of discrete horizontally propagating modes for

the hyperbolic tangent profile (4.1¢) as a function of nondimensional
surface wind and z,, for three different settings of the parameters
ro and N;/Nt.

Plumb, 1981). However, with such high turning
points, horizontal refraction and dissipation are much
more likely to prevent the constructive interference
between upward- and downward-propagating waves
needed to create a modal structure.

5. Stationary external mode structures as a function
of latitude

As a final calculation we consider a finite-differ-
enced model with vertical resolution and upper
boundary condition similar to that often used in
general circulation models, and with basic state winds
and static stabilities taken from observations. En-
couraged by the qualitative success of ray tracing in
explaining the structure of stationary waves in baro-
tropic models linearized about zonal flows with real-
istic meridional structure, we calculate a Jocal station-
ary wavenumber and vertical structure for the external
mode by solving the following eigenvalue problem at
each latitude #:

FUO)p0™'0.(poN"20,0,) + (i) (Bed)0e = — Al

ud,w, =v,0,u, z=0 and z=2z¢ (6.1)
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where

a”'9,q = B(O) + a”'3,5 — fA(O)oo ™' 3-(po N7?0,),
(6.2)

§ = —[a cos(8))'9,[u cos(é)].

If the mean flow is sufficiently slowly varying with
latitude, mode-mode coupling can be ignored, and a
horizontal structure equation can be obtained for
each mode, with (—\,)"? playing the role of the total
horizontal wavenumber: A\, = —k? — /2. As before,
a requirement for horizontal propagation is that A,
< 0. Setting m = ka cos(f) and

(6.3)

the wavenumber m component of mode a will be
meridionally propagating only in those regions where
m?* < m2. ,

We compute # '3, and N? at 5° intervals from
the Northern Hemisphere wintertime climatology in
Oort and Rasmussen (1971), using standard centered
finite-differencing, and restricting the calculation to
those latitudes (30°, ..., 65°) at which # > 0 at all
levels. Data is provided at eleven pressure levels
(1000, 950, ..., 100, 50 mb). Standard centered
finite-differencing is also used for (6.1), using the
same vertical levels at which the data is given. The
finite-differenced boundary conditions are

(ﬁl + ﬁz)(va,l - vq,z) = (dl - ﬁZ)(va,l + va,Z)a

where the subscripts (1, 2) correspond to (950, 1000)
mb for the lower boundary condition and (50, 100)
mb for the upper. With this finite-differencing, the
eigenvalue problem yields nine discrete modes. At
each latitude we find that one and only one mode is
horizontally wavelike (K2 = ~\, > 0), just as in
Charney’s model when r < 1. We have repeated this

m? = —\,a? cos’(#),

calculation with summertime data and once again-

obtain only one wavelike mode, except at one latitude
near the subtropical transition from surface westerlies
to easterlies. Thus, in nearly all cases examined,
vertical finite-differencing comparable to that used in
many GCMs does not introduce spurious horizontally
wavelike modes. This is not to say that such spurious
modes can never be produced. For example, if one
takes the tanh profile (4.1¢) and places a rigid lid at
a sufficiently high altitude, spurious horizontally
wavelike modes can always be created, whether the
model is continuous or finite-differenced. In models
which extend to the tropopause or only slightly
beyond, however, there is insufficient room in the
vertical to fit these modes.

The vertical structure of the geopotential for this
external mode is shown in Fig. 12 for 30, 45 and
60°. In each case the structure is broadly similar to
that of the external mode in Charney’s model (see
Fig. 4). One finds that these small differences in
vertical structure at different latitudes do not suffice
to explain the observed latitudinal dependence in the
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FIG. 12. Vertical structure of the stationary external mode
geopotential in the finite-differenced model described in the text,
using observed Northern Hemisphere zonal winds and static sta-
bilities, at three different latitudes.

vertical structure of the zonally averaged stationary
eddy geopotential variance in Northern Hemisphere
winter. The baroclinic “near-field”” responses (see Fig.
2) evidently complicate the picture.

The vertical structures in Fig. 12 do bear a striking
resemblance to the mean zonal wind profiles. In fact,
the small differences between the three curves in the
figure are qualitatively similar to differences between
the zonal flows at these latitudes. The following
scaling argument helps one understand this similarity,
thereby providing an alternative way of understanding
the maximum in amplitude in the upper troposphere.
The stationary external Rossby wavelength is generally
significantly larger than the radius of deformation
NH/f, while the vertical “scale” of the mode, v(3,v,)”",
is larger than H throughout much of the troposphere,
so the usual quasi-geostrophic scaling implies that the
effects of vertical motion in the temperature equation
are modest. Therefore, v.0,4 ~ u#d, v, or v, =~ u;, in
particular, the maximum in meridional velocity (or
geopotential) should be near the maximum in .
Nonlinear equivalent barotropic models, in which the
total flow is assumed to be separable, have played an
important historical role in numerical weather pre-
diction. The utility of such models is evidently a
consequence of this similarity in vertical structure
between stationary (or quasi-stationary) external
modes and the mean flow on which they propagate.
The results for Charney’s model in the limit of small
surface winds described in Section 3 help one appre-
ciate the limitations of this scaling argument. In that
case, u oc z while v, oc z exp[—rz/(2H)], so that v,
~ u over more than a scale height only if the verti-
cal shear is sufficiently large that r < 1, resulting
in a stationary wavenumber that is much smaller
than f/(NH).
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The equivalent barotropic pressure p,, at which u
= (8 + a '9,{)K, 72, obtained by linearly interpolating
in In(p), is shown as a function of latitude at the top
of Fig. 13. In all cases, p, lies between 400 and 450
mb. This is somewhat lower than what one would
estimate based on Charney’s model. The correspond-
ing value of m, [Eq. (6.3)] is also shown (cf. the
analogous plot for a barotropic model in Hoskins
and Karoly, 1981, Fig. 13b). One can infer from this
figure, for example, that a wavenumber 4 external
mode can only propagate equatorward of ~55°. The
fact that m decreases with increasing latitude implies
that all rays are ultimately refracted into the tropics.
Using this climatological zonally averaged basic state,
there is no hint of a minimum in m that would raise
the possibility of extratropical trapping. We emphasize
that this does not rule out the possibility of trapping
at certain times and in certain longitudinal sectors.

ol | .

1 1 !
30 3 40 45 50 5% 60 65°

LATITUDE

FI1G. 13. Properties of the stationary external mode [p, = equiv-
alent barotropic pressure; m, = zonal wavenumber dividing merid-
ionally propagating (m < m,) and trapped (m > m,) waves; g, see
(2.27); and «y, see (2.15)] as functions of latitude in the finite-
differenced model with observed Northern Hemisphere wintertime
winds and static stabilities.

HELD, PANETTA AND PIERREHUMBERT

881

Also shown in Fig. 13 are the group velocity ratio
g and the surface wind amplification factor «;. As
expected from the results of the previous sections, g
is considerably less than unity, ranging from 0.6 to
0.8, implying that an external mode wavetrain prop-
agates faster than a wavetrain in the corresponding
equivalent barotropic model. The plot of «; shows
that surface winds must be multiplied by roughly a
factor of 2 before being blown over the topography
to obtain the correct vorticity source for use in an
equivalent barotropic model.

All of the results in Fig. 13 are’ insensitive to
modest changes in the low-level wind field, such as
increasing the winds in the lowest two or three levels
by a few m s!. This is encouraging, since the
observed winds are affected by boundary layer stresses,
and it is unclear which winds are appropriate for use
in an inviscid analysis. There are other quantities of
interest that are sensitive to small changes in low-
level winds, the most important being «, that is, the
actual amplitude of the far-field wave [see (2.14)].
Sensitivity of the wave amplitude to low-level winds
is unavoidable in a linear theory in which the topo-
graphic forcing vanishes as #(0) — 0. The value of
gex [Eq. (2.31)] is also found to be sensitive to the
details of the low-level winds.

6. Conclusions

The typical planetary-scale response to a localized
stationary midlatitude source consists of a packet of
long Rossby waves that propagates into the strato-
sphere and a packet of shorter Rossby waves trapped
between the upper tropospheric westerlies and the
surface. The latter packet rapidly takes on the vertical
and horizontal structure of the stationary external
mode, with maximum geopotential amplitude near
the tropopause and relatively small amplitude near
the surface. It is this vertical structure that dominates
much of the stationary eddy pattern in midlatitudes.
That stationary eddy patterns are equivalent barotro-
pic to a considerable degree is explained by the fact
that the external mode is nearly always the only
stationary wave trapped in the troposphere, and must
therefore dominate the tropospheric response far from
the source. While it is possible to trap more than one
stationary mode within the troposphere, this requires
smaller shears than are generally observed, as shown
in Sections 3 and 4.

The vertical structure of equivalent barotropic low-

-frequency transients, such as the PNA teleconnection

pattern, can be explained in precisely the same way.
While the nonlinear cascade of energy to larger
vertical, as well as horizontal, scales may play some
role in exciting these patterns and nonlinearity may
be important for their persistence and decay, we see
no need to invoke nonlinearity to explain the observed
vertical structure.

In a model with a rigid-lid upper boundary con-
dition and finite-differencing with resolution typical
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of GCMs, and using observed wintertime zonal winds
and static stabilities, we again find the external mode
to be the only horizontally wavelike stationary mode,
in agreement with continuous, semi-infinite models.
If this were not the case, we suspect that the tropo-
spheric stationary wave field in such models would
be seriously distorted.

If the zonal flow is independent of latitude or,
more realistically, if the meridional variations are
sufficiently slow that mode-mode coupling can be
ignored, then that part of the forced response due to,
the external mode satisfies the stationary barotropic
vorticity equation linearized about a mean flow ..
The equivalent barotropic -height, z,, at which u
= u,, depends on the structure of the mean flow. In
the linear shear flow u = uy + Az, z,1s 4H/(2 + r)
when 1#y € AH, where H is the scale height and r
= BNZH/(fy’A); it is ~425 mb in the calculations
with observed mean winds in Section 5. For topo-
graphic forcing, the vortex tube stretching to be used
in an equivalent barotropic model so as to predict
the correct far-field response at z, is typically overes-
timated by blowing the equivalent barotropic wind
u, over the topography and dividing by the scale
height, and underestimated (by roughly a factor of 2,
according to the results of Section 5) by replacing u,
with #(0).

The group velocity of stationary external Rossby
waves is generally larger than the group velocity of
stationary waves of the same wavelength in a baro-
tropic model. The linear shear flow has the peculiar
property that the group velocity of stationary external
waves tends to infinity as #(0) tends to O, if one
ignores the very small non-Doppler term in the lower
boundary condition. For more realistic wind profiles,
the group velocity increases, but remains finite, as
u(0) — 0. ‘

When the winds above the tropospheric jet decrease
to small values and remain small with increasing
height, there may be no true stationary discrete
vertical modes at all. However, in the cases we have
examined of this type, there always exists a metastable
state for which leakage into the stratosphere is so
small that it results in negligible downstream decay
of the stationary wavetrain. A transition to easterlies
in the stratosphere would also eliminate any possibility
of a true linear discrete stationary mode. Although
the discussion in this paper has been restricted to the

case of westerly mean winds, one can anticipate that .

such a critical level would not destroy the physical
importance of the external mode, but once again
introduce some downstream decay.
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APPENDIX
Derivation of Equation (2.29)

A relation between dK,2/du, and the vertical struc-
ture of the external mode can readily be obtained
from the eigenvalue problem in the form (2.24).

Replacing 1, with uy + 6ug results in the perturbed

potential ¥ + 4V, where

3V = i 2bupfed, — 20,i0(2)), (A1)
and «(z) = (N/fo)>. The perturbed external mode
eigenvalue is then

okl === = [ ndovaz | [ mian )
. ’ 0

Once again using the normalization

el S S S R )
0

where v, = py”'/?Nn,, we have
—3K 2 /Ouy = (ve U g, — €'9.u))

= KX ")y + X N7H8,0.)0. (v ")),
(A4)

The second expression in (A4) is obtained by using
the relations

ﬁ(—Ke Ve +f62P0_laz(PON,_20e) = -q_yvea
z=0.

(AS)

ud,v, = v,0,U,

Substitution into (2.27) then yields the expression
(2.29) for g.
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