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ABSTRACT

Linear modes on shear flows are not orthogonal in the sense of energy; if two modes are present, the eddy
energy is not equal to the sum of the eddy energy in the separate modes. Howevey, linear modes are orthogonal
in the sense of pseudomomentum (or pseudoenergy). Two applications of this result to plaretary waves in
horizontal and vertical shear are discussed. 1) The qualitative character of the evolution of a disturbance to 2
stable meridional shear flow, as described by the barotropic vorticity equation, depends critically on whether
the disturbance projects primarily onto discrete modes or onto continuum modes that cascade enstrophy to
small meridional scales. It is demonstrated that the pseudomomentum and pseudoenergy orthogonality relations
provide a natural framework for examining the relative excitation of discrete and continuum modes. 2) Using
the quasi-geostrophic potential vorticity equation, it is shown that pseudomomentum orthogonality provides a
simple explanation for how quasi-stationary neutral external modes of large amplitude can be excited by a small

initial disturbance.

1. Introduction

The propagation of waves on shear flows and the
resulting wave-mean flow interaction are conveniently
analyzed in terms of wave pseudomomentum (or
“wave activity”’) and the flux of pscudomomentum (or
“Eliassen~Palm flux”), as elucidated by the work of
Andrews and Mclntyre (1976, 1978) and in numerous
more recent papers. Pseudomomentum and the anal-
ogous concept of pseudoenergy are also very useful
concepts when working with a modal decomposition.,
Whereas wave energy as usually defined cannot be de-
composed into contributions from individual modes
because these modes are not orthogonal in the appro-
priate sense, pseudomomentum and pseudoenergy can
be so decomposed. Ripa (1981) utilizes pseudomo-
mentum orthogonality for waves on a basic state at
rest in a study of wave-wave interactions. Mohring
(1980) discusses related results for acoustic modes in
waveguides. We believe these orthogonality relations
can play a useful role in a number of meteorological
contexts. Following a discussion of the orthogonality
of modes in shear in Section 2, two applications to
models of large-scale waves in the atmosphere are de-
scribed: the meridional dispersion of nondivergent
Rossby waves on the sphere in the presence of a lati-
tude-dependent zonal flow (Section 3); and the exci-
tation of quasi-geostrophic external Rossby waves in
vertical shear (Section 4).

2. Orthogonality of modes on a shear flow

Consider the nondivergent barotropic vorticity
equation on a midlatitude beta-plane, linearized about
the zonal flow #(y):

S+ a4+ v =0,
£ = Y+ Wiy
', v) = (=¥, ¥z),
vy=8-u,. 2.1)

For a particular zonal wavenumber, Y’ = ye'* + (c.c.),
we assume that the initial value problem can be solved
by decomposing into modes:

¥ = T Apdn(p)e (2.2
n
where V, and c, satisfy the eigenvalue equation
(@VE + YW = Vi,
Ve =9, ~ k% 2.3)

and where ¥, = 0 at the channel walls, y =0, L. If 2
= (), the modes are simple Rossby waves, ¥, = sin(/,)
with /, = nw/L, and all phase speeds are negative, ¢,
= —8/(k* + 1,?). If @ has meridional shear, the spectrum
consists of a set of discrete neutral modes, possibly in-
finite in number, propagating westward with respect
to the flow at all latitudes, a continuum of singular
neutral modes with min[i7(})] < ¢ < max[u(y)] [for
which the sum over # in (2.2) should be replaced by
an integral], and, possibly, conjugate pairs of ampli-
fying and decaying discrete modes with Im(c) # 0. [We
assume that X is not located precisely at a stability

"boundary where discrete modes coalesce; at such a

point, the solution to the initial value problem cannot
in general be written as a sum over separable modes
of the form (2.2).]



1 NOVEMBER 1985

One of the difficulties that arises when thinking in
terms of this modal decomposition is that the different
modes are not orthogonal in the sense of energy or
enstrophy. Using the notation

L
{X,Y}=L" f X*Ydy 2.4)
0

the eddy enstrophy in wavenumber k averaged over
the domain is proportional to

{f, f} = Z A:Am{g-m {m} CXD[ik(C: — il

mn

(2.5)

In general, it is not true that {{,, {n} = 0if n # m,
and one cannot decompose the eddy enstrophy into
distinct parts contributed by individual modes. The
same result holds for the eddy energy, {, {}. It makes
no sense to ask how much energy resides in a given
mode at a particular time, nor does it make sense 10
ask how the energy or enstrophy is partitioned between
the discrete modes and the continuum. Interference
effects of this sort are discussed by Lindzen, er al. (1982)
and Farrel (1984) in the analogous problem of quasi-
geostrophic modes in vertical shear. If only two discrete
neutral modes are excited (with frequencies »; and »,),
the wave energy and enstrophy will oscillate in time
with frequency »; — »,.

The nonorthogonality of modes in the sense of en-
ergy or enstrophy is a direct consequence of the fact
that eddy energy and enstrophy (as opposed to total
energy and enstrophy) are not conserved. A conser-
vation law for a quantity that is quadratic in wave am-
plitude leads immediately to an inner product under
which neutral modes are orthogonal. As an example,
we have the familiar conservation law, easily obtained

from (2.1), _ .
(yn*/2), = ('),
or, for a particular zonal wavenumber,
(vl = (u*v + w®),

where 7n' is the meridional particle displacement, {
= —v1, and an overbar denotes the zonal mean. In-
tegrating over the channel we have dP/dt = 0, where
P = {n, vy} is proportional to the pseudomomentum.
(Following the terminology of Andrew and Mclntyre,
in fact P is the negative of the pseudomomentum.) If
a mode 7, exists with Im(c;) # 0, it follows that {»,
ym} = 0, since

(2.6)

P oc {my, yn }eMmex @27
for an initial condition consisting of this mode only,
and dP/dt must vanish. The Rayleigh-Kuo necessary
condition for instability follows in the usual way. Sup-
pose now that the wave field consists of only two modes
7 = bn; + byyy at t = 0. Then

P = |byf*{mi, ym} + 62 {m2, v} .
+ {btby{n, yn2} explik(ct ~ )] + (c.c.)}. (2.8)
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[If Im(c) # O for one (or both) of the modes, then one
(or both) of the first two terms on the rhs will not ap-
pear.] Assuming that ¢, # ¢}, P can be conserved in
time only if the modes are orthogonal in the sense {»,,
yny} = 0, that is

L L
0= fo yitmdy = [ vttty @9)

0

If two or more neutral modes happen to have the same
eigenvalue, one can always orthogonalize in the sub-
space spanned by the degenerate eigenfunctions.
Therefore, the discrete neutral modes can be chosen
to be orthogonal to each other, as well as to the unstable
modes and the neutral continuum in this same sense.
However, a growing mode is not, in general, orthogonal
to its conjugate decaying mode: {#T, vn,} # 0. Then
P can be decomposed into separate contributions from
individual neutral modes, plus one contribution froim
each amplifying-decaying pair. If

=2 A4M+ X (Bulim+ Cpu).  (2.10)
where the first sum is over the neutral modes and the
second over the amplifying-decaying pairs, then

P= Z |An‘2{77ns ‘/nn}

+ 2 BHCn{nm, Y05} + (cc)). (2.11)
If v > 0, there are no modal instabilities and P is a
sum over positive definite contributions from each
neutral mode. _

While one is tempted to refer to —yn'%/2 as the pseu-
domomentum density, it differs from the pseudomo-
mentum density as defined by Andrews and McIntyre
(1978),

~' ~ (f~ @)m)Ex — Ve
where ¢’ is the zonal particle displacement satisfying
E+ut.=u + . (2.13)

(2.12)

However, the integrals of the two quantities over the
channel are identical, since one can show from (2.1)
and the definitions of the particle displacements that

W' = (f = @M + Ve — v1*/2
=~ = (/= @y/2)y. 214)

The rhs of (2.14) is proportional to Mg — M, where
M is the absolute zonal momentum of the fluid (7
— fy) averaged over the infinitesimal Eulerian volume
between the latitude circles y and y + ¢, and M is the
absolute zonal momentum averaged over the Lagran-
gian volume between the two material lines whose
zonally averaged latitudes are y and y + e. One can
prove that an alternative way of writing the pseudomo-
mentum orthogonality relation is
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{1 = (f— @ym, £4} + (2 ~ (f = @), £1)
+ {vs, 93} + {v2, 9t} =0 (2.15)

ifc; # c*.

A more direct proof of orthogona]xty is also available.
The eigenvalue equation (2.3) can be rewntten in the
form Ny = cyn, where N = i + vV, "2y and where
V"2 is the inverse of V,2. N is self-adjoint for any two
eigenfunctions 7; and 7,, with eigenvalues ¢, and ¢,
{Nn1, m2} = {m, Nma} = {ct — c2}{m, ym2} = 0. One
again has the orthogonality condition (n;, y7,) =
when ¢, # ¢¥.

Pseudoenergy is another conserved quantity that is
quadratic in wave amplitude. For the linear barotropic
model the pseudoenergy E is

L . —_—
= (2L)! J; (u? + 1%~ ayn?dy  (2.16)

‘or, for solutions of the form » = e®™ + (c.c.), E
= —{n, Nn} where N is defined as in the previous para-
graph. The related orthogonality relation is {n,, Nn,}
= 0 when ¢, # ¢§. The same result can be obtained by
rewriting the eigenvalue equation (2.3) in the form Oy
= ¢Nn, with

0 = yil* + ayVi 2y + YVl + YV VY
2.17)

and with N as above; Q is also self-adjoint.

. In this barotropic model, it is easy to show for a
neutral mode with phase speed ¢ that £ = —¢P. It fol-
lows that the pseudoenergy in a neutral mode is iden-
ticaliy zero in a frame of reference moving with the
phase speed of the mode, a result that holds more gen-
erally. For a disturbance consisting of a superposmon
of many neutral modes, one has

E=-3¢,P,

Andrews and Mclntyre have shown that such pseu-
domomentum and pseudoenergy conservation laws
hold for a wide class of waves on shear flows, as they
are a direct result of the translational and time invari-
ance of the basic state. It follow that analogous or-
thogonality . relations hold in these other cases. An
analogous pseudoenergy conservation law also holds
for linear waves on a time-independent basic state that
varies with longitude as well as latitude, as long as this
basic state satisfies the unforced nonlinear equations
of motion (Andrews, 1983a). Therefore, the corre-
sponding orthogonality relation for normal modes car-
ries over to this more general case.

As one further illustration, consider the shallow wa-
ter equations on an equatorial beta-plane, linearized
about a basic state with zonal flow #(y) and height

71(y)z>
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Du' = (f+ {0 — ghts,
DV = —fu' — gh,,

. Dh' = —vh, — h(u) + v)), (2.19)
where D = 9, + 19,. Manipulation of these equations,
included for completeness in Appendix A, results in
the following pseudomomentum conservation law (cf.
Andrews, 1983b; »and Ripa, 1981):

(R2Q%/2 — wh), = (hu'd),

where Q = (f+ {)/h is the potential vorticity and Q'
= —(),n'. This conservation law immediately yields the
orthogonality relation for two modes satisfying c,

# o3
{ﬁm, nymz} ~ {uy, b} —

where braces again denote integration over the domain.
As in the nondivergent case, a direct proof of orthog-
onality can be obtained by writing the eigenvalue
problem for normal modes in the form NV = PV,
with N and P both self-adjoint, and with {¥, P¥} pro-
portional to the pseudomomentum in the mode. This
form of the eigenvalue problem is displayed explicitly
in Appendix A.

The generalization to the primitive equations, lin-
carized about a zonal flow with arbitrary horizontal
and vertical shear, is straightforward if we work in is-
entropic coordinates and if the lower boundary is an
isentropic surface. The appropriate orthogonality re-
lation takes the same form as (2.21) if we identify &
with —dp/d0 and redefine the inner product to include
a-vertical as well as a latitudinal integral. If the lower
boundary is not an isentropic surface, in addition to
the vertical integral one has a contribution from the
lower boundary analogous to that in quasi-geostrophic
theory discussed to Sec. 4 (D. G. Andrews, personal
communication, 1984). -

(2.20)

(s, M} =0 (2.21)

3. Barotropic decay on a sphere

Consider the barotropic vorticity equation on a
sphere of radius a linearized about the zonal flow u(0)
= auw(6) [where u = cos(6)]

S+ afh = —vlaw) 'V,
y=a'(f+ s (3.1
The domain integrals, [ (- - +)uddd\, of p = ut?/
(27v) and (1”2 + v?)/2 — @p, are conserved. Setting ¢’

= fe’m(*“” + (c.c.), the correspondmg eigenvalue
problem is

[V’ + (@) ' W = VY,

Vi = (au) [ uduluds) — m’}. (3.2)
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We take the zonal flow to be of the form
#(0) = A4 cos(8) — B cos*(6) + C sin*(9) cos®(6). (3.3)

The values 4 = 25, B = 30, and C = 300 m s~} yield
winds that are broadly similar to those in the upper
troposphere. For this choice of parameters, #(f) and
the corresponding +y are plotted in Fig. 1. Since vy > 0,
all modes are neutral.

The relative excitation of the discrete modes and the
continuum is critical for the character of the evolution
of the linear perturbation as well as for the resulting
mean flow modification. To the extent that the con-
tinuum dominates, the evolution will be qualitatively
similar to that of a perturbation on a linear shear flow
(e.g., Yamagata, 1976; Tung, 1983); the vorticity field
will be sheared by the flow, eventually creating ever
smaller scales in the vorticity and larger vorticity gra-
dients. To the extent that the discrete modes dominate,
the evolution will be similar to that in the absence of
shear; a number of modes of different scales might be
excited, but there would be no continual cascade of
enstrophy to smaller scales.

The qualitative distinction between discrete and
continuum modes is clear if one can decompose a lo-
calized initial disturbance into wavepackets with dif-
ferent dominant meridional wavenumbers and, there-
fore, different angular phase speeds. Those packets with
phase speeds greater than the minimum value of @ in
the domain make up the continuum; they propagate
meridionally, and their meridional wavenumbers be-
come infinite as ¢ — oo, as the packets asymptotically
approach the latitude at which their phase speeds match
the local @. Those packets with phase speeds less than
the minimum value of @ propagate freely at all latitudes
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FIG. 1. The basic state zonal flow i7and the corresponding absolute
vorticity gradient v used in the numerical example of barotropic
decay on the sphere.
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(between the two polar turning points) and excite the
discrete modes. If we add a small scale-selective damp-
ing of vorticity to the problem, then the continuous
spectrum will decay rapidly once the vorticity has been
sheared to the point that meridional scales in the dis-
sipation range have been generated (see below). The
associated mean flow acceleration will be largest where
the waves with the dominant meridional scales in the
initial condition have their critical latitudes. In contrast,
the decay of the discrete modes with large meridional
scales will be extremely slow.
Consider as an example the initial condition

' = cos(f)e 1C-0/ewPpim) 4 o o (3.4

with 6 = 45°, 6, = 10°, and m = 3. For this initial
condition and the zonal flow (3.3), the projection onto
the first mode is found to account for 5% of the pseu-
domomentum, the projection onto the second mode
for 10%, and third mode for 7%. The contribution of
the other discrete modes is negligible, so the remaining
78% of the pseudomomentum resides in the contin-
uum. We add a small linear diffusion of vorticity, #V?{’
with v = 1.0 X 10* m? s7!, to the vorticity equation
(3.1) and then integrate forward in time. This value of
the diffusion coefficient is sufficiently small that sig-
nificant dissipation does not occur on the scale of the
initial condition. The resulting time evolution of the
global mean eddy enstrophy and pseudomomentum
are plotted in Fig. 2a, and the global mean eddy energy
and pseudoenergy in 2b. The enstrophy, pseudomo-
mentum and energy are all normalized to unity at
t = 0. The pseudoenergy is computed with the eddies
normalized so that the energy equals unity at ¢ = Q;
the difference between the two curves in 24 is then the
integral of p weighted by the mean angular veloc-
ity w.

Following a period of rapid decay in eddy energy,
the energy and enstrophy oscillate in time with a period
of 3.3 days as they continue to decay slowly. The cor-
responding frequency is the difference between the fre-
quencies of the first and third modes. (Although the
second mode is also excited, it happens not to interfere
with the other two modes in these global integrals as
it is antisymmetric about the equator while the other
two are symmetric.) The pseudomomentum decays
very slowly initially, for it is conserved until small
enough scales are generated that the dissipation be-
comes active. The continuum has begun to decay sig-
nificantly before day 10 and its dissipation is nearing
completion by day 40, after which the bulk of the pseu-
domomentum is accounted for by the three excited
discrete modes. There is no oscillation similar to that
in the enstrophy or energy because of the orthogonality
relation discussed in Section 2.

The pseudoenergy E is free of oscillations for the
same reason. The change in sign of E can be understood
by recalling that E = —¢P for a mode with angular
phase speed c. Initially, the disturbance is dominated
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FIG. 2. (a) The time evolution of the globally integrated eddy enstrophy and pseudomomentum, both normalized to unity at ¢ = 0, for
the initial condition given in the text; (b) the time evolution of the integrated eddy energy and pseudoenergy, with the eddy energy normalized

to unity atz = 0.

by modes in the continuum with ¢ > 0; as the contin-
uum is dissipated away, the discrete modes with ¢ < 0
dominate and E turns positive. The very rapid decay
of eddy energy in the first few days can be understood
by noting that E is nearly conserved in this initial stage,
while the bulk of the pseudomomentum is found to
drift rapidly equatorward, into regions of smaller @,
due to Rossby wave radiation. Equivalently, one can
argue that equatorward propagation is necessarily as-
sociated with poleward momentum flux, and propa-
gation into regions of smaller angular velocity then im-
plies that #'v’ w, > 0, which in turn implies a conversion
of eddy energy into zonal energy.

The fraction of the pseudomomentum that projects
onto. the discrete modes of the flow (3.3) is shown in
Fig: 3 for various initial conditions of the form (3.4).
The zonal wavenumber m ranges from 1 to 6 and the
point of maximum eddy vorticity, 6, is chosen to be
either 45°N or 30°N. The critical difference between
the long and short zonal wavelength disturbances is
apparent; the long waves have a substantial projection
onto westward propagating discrete modes, while the
shorter waves project primarily onto the continuum.
For given m, a disturbance at 30° excites the discrete
modes more strongly than one with the same meridi-
onal structure at 45°. While one can understand this
result by examining the structure of the discrete modes,
one can also attribute it to the fact that v reaches its

- maximum value near 30°. Think of the initial distur-

bance as exciting a wavepacket with a particular dom-
inant meridional wavenumber. Because of the larger
v, 4 packet excited at 30° will have more rapid west-
ward phase propagation than one at 45°. As a result,
it more easily excites the westward propagating discrete
modes.

4. Excitation of the external mode

Consider a quasi-geostrophic flow on a (-plane
channel, linearized about a zonal wind u(y, z). In In(p)
coordinates (and ignoring the small non-Doppler term
in the lower boundary condition)

O + Udy)g’ = —gysx for z=0,
@+ B = LV
g =05 (poed): + ¥ix + ¥y,
gy =B — thy — po ' (Po€id;);,
po=e 7  e=fIN"2 4.1)

The vertically integrated pseudomomentum conser-
va;ion law for this system reads

at z=0,

a,[ fow (oor?d,/2)dz — e(O)h'_’(O)a,m)/z]

=9, J; | pouv)dz. (4.2)
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FI1G. 3. The fraction of the initial pseudomomentum contained in
the individual discrete modes for an initial condition of the form
(3.4), as a function of zonal wavenumber m. In (a) the latitude of
the initial eddy vorticity maximum, 8, is 45°; in (b) it is 30°.

Here ¢' = —4,n' for z = 0 while ¥}, = &, at z = 0.
Restricting consideration to the separable case, @
= 7i(z), and setting ¥’ = Y(2)e*®*M + (c.c.), the vertical
modal structures ¢ satisfy the eigenvalue problem

ARY + G = CRY, z>0,
Lz\bz - u_z¢ = c‘sz z= 0,

R = p5'd,(poed;) — K2, (4.3)
where K? = k? + [2. The orthogonality relation that
corresponds to the conservation law (4.2) once again
takes the form {7, Pn;} = 0if ¢t # ¢;. Here P = g,
— eu,0(z+), where 6(z+) is a Dirac delta-function lo-

cated slightly above the surface, and the brackets again
correspond to an average over the domain:

{4, B} = H! fo poA*Bdz. 4.4)
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The structure of the spectrum in Charney’s model
(= Az, A = constant, N? = constant) is in many ways
similar to that found for other vertical wind profiles of
relevance for the troposphere (e.g., Geisler and Dick-
inson, 1975). In the following discussion of this model,
we nondimensionalize with the radius of deformation
NH/f, H, and AH as horizontal scale, vertical scale,
and velocity scale, respectively, retaining the same no-
tation for the nondimensional variables. The sole re-
maining parameter characterizing the basic state is 7
= BN*H/(f?A). Define K2 = [(1 + r)*/n* — 1]/4. From
Burger's (1962) analysis, we know that if K> > K,°
= r(2 + r)/4, there are no discrete neutral modes, but
there is one unstable mode (the “Charney” mode) and
its conjugate, as well as a continuum of neutral modes.
If max(0, K»%) < K? < K2, there is again one unstable
mode (the “Burger” or “Green” mode) and its con-
jugate, and the neutral continuum with ¢ > 0, but there
is also a neutral mode with ¢ < 0, the external Rossby
wave. If max(0, K3?) < K? < K,? (which can only occur
if r > 1), there are two neutral modes in addition to
an amplifying-decaying pair and the continuum. Typ-
ically, r < 1 in the extratropical troposphere, so that
the external mode is often the only neutral mode. With
a more realistic vertical wind profile, trapping a second
neutral mode within the tropospheric wave guide re-
mains difficult (Held, et al, 1985), although other
modes can be trapped by stratospheric or mesospheric
winds.

In these nondimensional units P reduces to 1 + r
— &(z+) for Charney’s model. Although {5, Py} can
be negative, because of the §-function resulting from
the surface temperature gradient, the contribution from
each neutral discrete mode in Charney’s model can be
shown to be positive. However, unless the waves are
propagating very rapidly westward, one finds a large
cancellation between the interior and boundary con-
tributions to {#, Pp}.

It is of particular interest to consider the external
mode excited by that component of the initial condi-
tion with K? slightly smaller than K;? = r(2 + r)/4.
Such a mode propagates slowly westward with respect
to the mean surface wind. Indeed, by manipulating the
explicit solutions to Charney’s model (e.g., Pedlosky,
1979), one can show that

K? = K2 =~r(1 + 1Pc*4 + O(c?), (4.5)

where c is the (negative) phase speed of the mode with
respect to the surface wind. Since mean surface winds
are typically small and positive in midlatitudes, waves
that are quasi-stationary with respect to the ground
and, thus, contribute to the low frequency variability
of the atmosphere, will have total horizontal wave-
numbers in this range. The component of the initial
disturbance with K slightly less than K, can be decom-
posed into contributions from the external mode, the
amplifying and decaying Burger mode, and the con-
tinuum:
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n = aene + (Burger mode) + (continuum). (4.6)
Using pseudomomentum orthogonality,

do = {Ne» Pr}/{nes Pne}- @7

One can also show that the vertical structure of the
external mode’s streamfunction, V., approaches
zexp(—rz/2) + O(c)as K— K,, while the corresponding
particle displacement, 7, approaches exp(—rz/2)
+0(c) (e.g., Held et al., 1985). Defining 7o = exp(—rz/
2), it is important to observe that {no, Pno} = 0,as can
be confirmed by performing the integration. For given
streamfunction amplitude, the pseudomomentum in
the mode vanishes as it approaches its point of bifur-
cation with the Charney and Green modes. As de-
scribed in Appendix B, one must consider the O(c)

_terms in the eigenfunction to evaluate the external
mode’s pseudomomentum. The result is ’

{fe, P1c} = rlel = OK* = K",

Assuming that 7; is substantially different from 7., SO

4.8

that {n., Pn;} is not O(c), the external mode component

of the initial condition is O(c™"). Therefore, the ampli-
tude of the excited neutral mode will be very large if K
is close to K;. The unbounded algebraic growth one
finds when K is precisely equal to K, can be thought of
as the limiting case. Farrell (1984) has made essentially
‘the same point by explicitly solving the initial value
problem for Eady’s model. Pseudomomentum orthog-
onality provides a useful way of understanding this be-
havior. This result is invalid in the exceptional case
that the initial condition consists of nearly a pure ex-
ternal mode, n; = 7., for then {ne, Pn1} = O. In this
case, a.n. = n; there can be no amplification if only
a single neutral vertical mode is excited. The counter-
intuitive result is that the vertical structure of the initial
condition should not be too close to that of the neutral
mode we wish to excite.

Energy is being extracted from the zonal flow as this
large amplitude neutral external mode evolves out of
the initial condition, just as in the growth of an unstable
mode. Indeed, the lesson 10 be learned is that there is
little physical distinction between the neutral modes
with K slightly smaller than K, and the unstable modes.
The unstable modes, having zero pseudomomentum,
can grow to arbitrarily large amplitude as far as linear
theory is concerned, while the neutral modes with small
pseudomomentum grow to a large but finite amplitude
that depends on the initial conditions. In reality, non-
linearity limits the amplitude of the neutral modes if
this amplitude is sufficiently large, just as it must in
the case of unstable waves.

In Appendix B we discuss the fact that | po¥’dz
equals the pseudomomentum in a mode multiplied by
dc/dK>. The large streamfunction amplitude consistent
with a small amount of pseudomomentum when c is
small in Charney’s model is, therefore, intimately re-
lated to the large group velocities of these modes (see
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Held et al., 1985). In the more realistic model atmo-
spheres with bounded winds considered by Held e al,
it is found that the group velocity of the external mode
does become large as the phase speed of the wave ap-
proaches the surface wind, but it does not increase
without bound as it does in Charney’s model (compare
Figs. 7d and 9¢ in that paper). Therefore, in more re-
alistic atmospheres one expects behavior qualitatively
similar to that described above, but not quite as dra-

matic.

5. Concluding remarks

The conservation laws for pseudomomentum and
pseudoenergy for linear waves on shear flows imme-
diately yield orthogonality relations for the modes of
the system. These relations are useful whenever one is
concerned with the excitation of neutral modes. We
have described two instances from planetary wave the-
ory. The first of these concerns the barotropic decay
of a perturbation on the sphere, where the orthogonality
relations are useful in clarifying “how much” of an
initial disturbance projects onto discrete neutral modes
as opposed to the continuum. Analogous calculations
can be performed for the shallow water equations Ot
for the primitive equations on the sphere, and may
also be useful in analyzing the excitation of equatorially
trapped ocean waves in the presence of strong equa-
torial currents.

The distinction between discrete and continuum
modes is an important one, even if the discrete mode
resonances in more realistic atmospheric models have
significant width (see Salby, 1981) so that the distinc-
tion is not as sharp as in our idealized model. A dis-
turbance that projects primarily onto discrete modes
interacts with the zonal mean flow in a fundamentally
different way from a disturbance which projects pri-
marily onto the continuum. In the latter case, the linear
dynamics itself produces an enstrophy cascade to small
meridional scales, so that the mean flow modification
that ultimately results from the dissipation of the wave
is relatively insensitive to the details of the dissipation
mechanism. In contrast, the mean flow modification
due to the decay of discrete modes is entirely dependent
on the dissipation mechanism.

The second example is the excitation of external
Rossby waves in vertical shear. Pseudomomentum Or-
thogonality provides a simple way of understanding -
the ease with which one can excite large amplitude
waves that propagate slowly westward with respect to
the surface wind. The key observation is that such ex-
ternal Rossby waves have very little pscudomomentum
and are therefore physically similar to unstable waves.
A somewhat counterintuitive aspect of this result is
that in order to excite a large amplitude external mode,
the initial disturbance should not have a vertical struc-
ture similar to that of the mode.
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APPENDIX A
The Shallow Water Equations

The linearized shallow water equations are given by
Egs. (2.19). Setting, Q = (f + {)/h, we also have DQ'
+ v'Q, = 0, where D = 0, + u#dx and

h*Q = hy' = (f+ O (A1)
From (A1) we have '
h'Q = ~h(u'V), + W’ — (f+ DIV,  (A2)
Also, from conservation of Q’,
[07/2), = Vv, (A3)

where Q' = — Q,'. Further, one obtains directly from
- the linearized zonal momentum and height equations
that

Wh'), = whi+ uh' = (f+ O — wv'h, — hu'v,.
(Ad)

Substituting (A2) into (A3) and then subtracting (A4),
one finds the pseudomomentum conservation law dis-
cussed in the text,
(220712 — w'h'], = (hu'Y),. (A5)
We now demonstrate that the eigenvalue problem
obtained from these shallow water equations can be
written in the form N¥ = ¢PV¥, with {¥, P¥} pro-
portional to the pseudomomentum in the wave field
described by the state vector ¥. Define an auxiliary
variable x’ such that v' = x/. Setting D = (7 — ¢)dx,
the conservation of Q' reduces to (7 — ¢)Q = ~Q,x,
or

#Q,(hn) — hQyx = ¢0y(hm), (A6a)

where variables without primes or overbars refer to

complex wave amplitudes, as in the text. Similarly, the
zonal momentum and height equations reduce to

au—(f+Hx+gh=cu (A6b)

ih + (hx), + hu = ch. (A6C)

Finally, the expression (A1) for Q' can be rewritten as
RQy(hn) — (f+ O + hxe — hu, = 0. (A6d)

The four equations (A6a-d) can be combined into
the matrix equation

ISAAC M.
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g, 0 0 kg, | [n
0 -g - (f+9) h
0 —u_ —h —oh u
~hQ, (f+§ hd, -—k*h X
g 0 0 0 hn
1o o -1 0 h
=¢lo -1 0 of]u| &P
0 0 0 0 X

The two matrices in (A7) are self-adjoint. Denoting the
matrix on the rhs as P and setting ¥ equal to the vector
[fm, h, u, x], one can immediately prove that (cf
— &){¥,, P¥,} = 0, which is precisely the orthogo-
nality relation obtained from pseduomomentum con-
servation.

APPENDIX B
External Mode Pseudomomentum

The eigenfunction for the neutral external mode with
small negative phase speed c that is sufficiently accurate
to allow computation of the pseudomomentum is

¥=(z-0o —rcY[2(z-ohe ™. (BI)

‘The corresponding particle displacement, 7, is obtained
by dividing by (z — ¢). The underlined term is O(c)
only. in a small layer near the ground; elsewhere it is
O(c?) and negligible. P = {7, Py} equals

j(; N (1 + Ppe*dz — 7%0).

The integral equals [1 + O(c?)], while n%0) = [1 + rc
+ O(c?)]. Therefore, P = rlc.

An alternative derivation of this result, based on the
relation between pseudomomentum and group veloc-
ity, is illuminating. Assuming that the basic state is
independent of y, the vertically integrated meridional
flux of pseudomomentum equals the meridional group
velocity of the mode G, times the vertically integrated
pseudomomentum:

(B2)

-H™! f pot'dz = G, P (B3)
. 0
(for example, see Grimshaw, 1984). Noting that G,
= 2klac/dK? and that u'v’ = —2ki|y|%, and nondimen-
sionalizing as in the discussion of Charney’s model in
Section 4, we have
f e ?|Yl’dz = Pac/oK>. (B4)
0
This last equation is equivalent to one derived by other
means in the Appendix of Held ez al. (1985) [although

it should be noted that the normalization used in that
paper is such that the lhs of (B4) equals unity]. Setting
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¥ = z exp(—rz/2) to lowest order, the lhs = 2(1 + )73,
while from (4.5) 3K%/dc = r(1 + r)*|c|/2 to lowest order.

" The result P = rlc| is once again obtained.
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