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ABSTRACT

External Rossby waves in vertical shear can be destabilized by thermal damping. They can also be destabilized
by damping of potential vorticity if this Jamping is larger in the lower than in the upper troposphere. Results
are described in detail for Charney’s model. Implications for the effects of diabatic heating and mixing due to
smaller scale transients on equivalent barotropic stationary or quasi-stationary long waves are discussed. It is
pointed out that energy or potential enstrophy budgets may indicate that transients are damping the long waves

while, in fact, their presence is destabilizing these waves.

1. Introduction

In Held et al. (1985) (hereafter referred to as HPP),
we examined the dispersion relation for neutral external
.Rossby waves in vertical shear, the vertical structure
of these waves, and their excitation by orographic and
thermal forcing. The present paper is an extension of
that work to include the effects of dissipation on these
waves, with particular emphasis on the possibility that
some kinds of “dissipation” amplify rather than damp
the otherwise neutral waves. We believe these results
may have some implications for theories of low fre-
.quency variability in the extratropical troposphere.
The linear tropospheric response to localized oro-
graphic or stationary thermal forcing in midlatitudes
is dominated far from the source by stationary external
Rossby wavetrains. These neutral waves are equivalent
barotropic, with maximum geopotential amplitude
near the tropopause. The teleconnection patterns of
low-frequency variability in midlatitudes have a very
similar vertical structure. Whatever the precise con-
nection between teleconnection patterns and simple
quasi-stationary external Rossby wavetrains, it secems
reasonable to assume that the same linear balances that
determine the external mode’s vertical structure are
also of paramount importance for the vertical structure
of the teleconnection patterns. It follows that a discus-
sion of the effects of damping on external Rossby waves
in which this vertical structure plays the key role is
directly relevant to the question of the maintenance of
the teleconnection patterns.
The relationship between the external Rossby wave
and the Charney and Green mode instabilities for the
Charney model basic state with typical midlatitude pa-
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rameter settings is shown schematically in Fig. 1. The
real part of the phase speed is plotted as a function of
horizontal wavenumber k, with the unstable modes
indicated by dashed lines. The vertical structure of the
streamfunction for an external Rossby wave y.(z)
moving slowly westward with respect to the surface
wind #(0) is also illustrated. As discussed in HPP (p.
871), although the streamfunction amplitude increases
with height in the troposphere, it increases less rapidly
than does the mean zonal flow i#(z), a fact that will be
of importance in what follows.

It is well known that Ekman pumping can destabilize
neutral modes in Phillips’ two-layer model (Holopai-
nen, 1961; Wiin-Nielsen et al., 1967). However, as dis-
cussed briefly in HPP and reiterated below, Ekman
pumping invariably stabilizes the external mode in
continuous model atmospheres (see also Card and
Barcilon, 1982, for the effects of Ekman pumping in
Charney’s model). That thermal damping can desta-
bilize neutral modes in the two-layer model is discussed
by Wiin-Nielsen, et al. (1967), Haltiner (1967), and
Pedlosky (1975). White and Clark (1975) use these two-
layer results to argue that the perturbed heat fluxes
through the ocean surface induced by quasi-stationary
long waves could be a mechanism of the excitation of
such waves. Based on calculations with continuous
models, Geisler (1977) criticizes this claim; however,
he considers only the effect of thermal damping on the
unstable eastward propagating long waves and not on
the neutral external waves that propagate westward
with respect to the surface wind. Hendon and Hart-
mann (1982), using a primitive equation model on the
sphere linearized about a flow with realistic vertical
and horizontal shear, find that low-level thermal
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FiG. 1. Schematic depicting the real part of the phase speed of the external Rossby
wave, the unstable Charney mode, and the unstable Green mode for Charney’s model,
using typical midlatitude parameters. The bifurcation occurs precisely at the point
where cg = u(0) if one ignores the small “non-Doppler” term in the lower boundary
condition, as we have in this paper. Also shown in the insert is a comparison of the
vertical structure of the external mode streamfunction y¥(z) and the vertical structure

of the mean zonal flow @(z).

damping decreases the amplitude of the far-field re-
sponse to orographic or stationary thermal forcing in
midlatitudes, but that deep thermal damping extending
into the upper troposphere increases these amplitudes.
One of our motivations in this work is to relate these
results and reexamine the plausibility of the thermal
damping mechanism for the excitation of external
waves.

It is also well-known that the transient eddy heat
fluxes tend to damp the deviations from zonal sym-
metry in the climatological temperature field, partic-
ularly at low levels. This is evident from energy analyses
of the sort first performed by Holopainen (1970) and
the local budgets discussed by Lau (1979). However,
it is not simply the eddy heat flux, but rather the full
potential vorticity flux (in addition to the heat flux at
the ground), which is needed to determine the effects
of the cyclone-scale transients on the time-mean flow.
In this regard, it is interesting that Youngblut and Sa-
samori (1980) and Holopainen et al. (1982) find that
the transient eddy potential vorticity fluxes damp the
stationary eddy potential enstrophy. Holopainen et al.
estimate an e-folding time of 4-5 days averaged over
the extratropical troposphere. One is tempted to con-
clude that the stationary eddies would be larger if the
transients were not present. While this may in fact be

true (as also argued by Vallis and Roads, 1984) based
on calculations with an idealized two-layer model), the
effects of potential vorticity damping on simple external
Rossby waves warn us not to jump to this conclusion
on the basis of the potential enstrophy budget alone.

We begin in section 2 by considering the effect of
various damping mechanisms on the external mode in
the limit of very small damping rates. We consider
both the temporal growth (or decay) of modes with
real horizontal wavenumber, and the spatial growth of
modes with real (in fact, zero) frequency, the latter
being relevant for the structure of forced stationary
wavetrains. A straightforward perturbation theory re-
lates the growth or decay to the vertical structure of
the unperturbed neutral mode. This perturbation the-
ory also makes clear that the most natural way of un- -
derstanding the destabilization is in terms of the ver-
tically integrated “wave activity” or pseudomomentum
budget.

Whether or not a small amount of damping results
in destabilization, one still expects that sufficiently large
damping may be stabilizing. We therefore present nu-
merical results for large damping in section 3 to indicate
the range of damping coefficients that result in desta-
bilization. Also described are calculations of the effects
of thermal and potential vorticity damping in the pres-
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ence of finite Ekman pumping. We restrict consider-
ation to Charney’s model. The substantial differences
between the effects of damping in the two-layer model
and in continuous models are discussed elsewhere.

2. Small damping

Consider the quasi-geostrophic thermodynamic and
vorticity equations linearized about a zonal flow, in
the presence of linear thermal damping v7(z) and me-
chanical dampmg Yar(2):

You+ W — Vu, + N% = —yr(z2W?,
§1+ ash + BY ~ fopo (pow'); = —vm(2)§. (1b)

Our notation follows that in HPP. The corresponding
potential vorticity equation reads

g+ uqx + gV = D', (2a)
D= _7M§l ~ po (poeYTY2)zs (2b)
where ¢(z) = (fo/N)?2. If we also include Ekman pump-
ing, the lower boundary condition over a flat surface
becomes
Vo + Wy = Dy,
Dy = —yry; — HN*fg 2 vex{,
atz=0.
Multiplying (2a) by g,”'¢’, integrating in the vertical,

and combining with (3a) multiplied by &, ¥/}, one can
derive the following conservation law:

al{2g) 4"} — d2Hizy ¥ 2.2
=8,{uv} + {374 D'} ~ «Hit)y V.Dilo, (@)

where an overbar refers to the zonal mean and curly
brackets denote a vertical average:

— v, (3a)

(3b)

(4} = B f poAd:z.
(4]

We refer to (4) interchangeably as the vertically aver-
aged “wave activity” conservation law, following Ed-
mon et al. (1980), or as a vertically averaged pseu-
domomentum conservation law, in the spirit of An-
drews and Mclntyre (1978), since it is a direct
consequence of the translational invariance of the basic
state. We note, however, that the pssudomomentum
defined by Andrews and Mclntyre differs from that in
(4) by the addition of a term whose integral over the

domain vanishes and by an overall minus sign, as dis-

cussed for the barotropic case in Held (19885). In this
context, it is more convenient to work with a quantity
which is positive definite for external Rossby waves.
We are interested in how a neutral external Rossby
wave is modified by the addition of small amounts of
damping. We begin by considering the standard modal
instability problem for real (k, I), and set ' = ¥ expli(kx
+ Iy — wi)] + (c.c), where '
Y =yt &Y, (5)

w = wg + lw; = kc, + bw.
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The subscript e refers to the unperturbed external
mode. For convenience, we choose our reference frame
so that ¢, = 0. The mode under consideration is as-
sumed to be propagating westward with respect to the
flow at all levels, so that i > O in this reference frame.
The momentum flux convergence on the right-hand
side of (4) is identically zero for these normal mode
solutions. To lowest order in the damping, the left-
hand side of (4) becomes 2w; P, where P is proportional
to the wave dctivity or pseudomomentum of the un-
perturbed mode:

= {qy qu} - G(Huz) ‘l/ez |z~ (6)
The relations -
—‘iy_lqe = ‘l/eﬁ-l =79, z20
I .M
Uy ez =Vl . z=0

where 7.(z) is the meridional particle displacement in
the external wave, lead to the following alternative
forms for P:

p= { {nyﬂez} - e1—1—17'-‘-277e2|z=0a

K2 {Ylu"} + {ebe (Wil ')}, (8D)
k? + ]2, Pis positive for all of the neutral

(8a)

where K? =

- modes discussed-in this paper, a point we return to

below. To lowest order in the damping, the right-hand
side of (4) can also be evaluated using the neutral ex-
ternal mode eigenfunction. Substituting the expressions
(2b) and (3b) for D' and Dy into (4), manipulating the -
right-hand side using (7), and then d1v1d1ng by 2P, one
obtains

Ty =

KX b l2a™"} + yex K220 om0 + {vrede AWt~ l)z}.

KZ{‘PeZ —_l} + {E'pe,z(lpeu—l)z}

&)

If o = ¥7 = v, a constant independent of z, and if
vex = 0, then w; = —+ as required.

We refer to the numerator in (9) by the symbol D,,
so that w; = —D,/P. The sign of D,, that is, the sign
of the vertically averaged dissipation of wave activity,
determines whether the neutral wave is stabilized or
destabilized by the weak damping. If D, is negative,
the wave is destabilized. Since # is assumed to be pos-
itive, (9) implies that weak mechanical damping, va
> 0, or Ekman pumping, yex > 0, cannot destabilize
the wave. However, weak thermal damping can desta-
bilize the wave if

YeodWeii ™), < 0. (10)

As indicated in Fig. 1 and discussed in HPP, this is
generally the case: the external mode streamfunction
increases less rapidly with height than does the mean
zonal wind. -
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We use Chamey’s model (# = Az, A = const, N2
= const) to illustrate this destabilization. Throughout
our discussion of this model here and in section 3, we
nondimensionalize vertical distance by H (the scale
height), horizontal distances by NH/f, and velocities
by HA. After computing the vertical structure and hor-
izontal wavenumber of the external mode as a function
of its phase speed ¢, we compute the effect of uniform
thermal damping (yr = ¥ = const; var = vex = 0)
using (9). The resulting growth rate is proportional to
v. The dashed line in Fig. 2a is a plot of w;/v as a
function of ¢, with the nondimensional $-parameter
in Charney’s model, r = BN2H/(f*A), set equal 10 0.5.
[One obtains r ~ 0.5 by choosing N ~ 1072 s, H
=~ 8 km, and A ~ 2 X 1073 57! at 45° latitude; our
unit of time is then N/(fA) ~ 5 X 10* 5.] All of these
waves are destabilized, with the largest growth rates
(for a given small damping) for those waves with small
phase speeds. The w;are large for the modes with small
¢ because these modes have very little vertically aver-
aged pseudomomentum. Indeed, P vanishes as ¢ —
0—, as the external mode approaches its point of bi-
furcation with the unstable Charney and Green modes.
The range of c shown in Fig. 2a corresponds to a rather
small range of wavenumbers (K = 0.56 at ¢ = 0; K =
0.52 at ¢ = —0.5). Results for a larger range of wave-
numbers are described in section 3.

Consider the energetics of these amplifying waves.
The thermal damping is destroying available potential
energy, but since the wave is growing this damping
must be overcompensated by a generation of available
potential energy due to a downgradient heat flux. Also,
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the growth of kinetic energy must be due to a positive
generation: w}, > 0. The downgradient heat flux and
eddy kinetic energy generation are created by the ther-
mal damping. A standard energy analysis that does not.
take this into account would lead to the misleading
conclusion that the thermal damping is destroying the
wave. In contrast, the pseudomomentum budget yields
the correct picture. The key point is that the pseudo-
momentum equation is a conservation law, whereas
the eddy energy equation includes an eddy-mean flow
conversion term whose modification by the damping
must be included to compute the effect of the dissi-
pation on the wave energetics.

The phase relationships in the neutral external wave
may help one to understand the energetics intuitively.
Since the wave amplitude increases with height in the
troposphere, the highs are warm and the lows cold.
The steady thermodynamic equation can be rewritten

as
sz‘lwe = —ﬁz(veﬁ_l)z, (11)

where v, = Y, . Since v,, and v, are of the same sign
in the troposphere, (10) implies that v, and w, are in
phase. As one moves eastward into a region of rising
motion, the air becomes warmer in spite of the adi-
abatic cooling, the meridional advection of warm air
being dominant. (This phase relation between vertical
motion and temperature perturbations is just the op-
posite of that in a stationary gravity wave.) The addition
of thermal damping can be thought of as displacing
the temperatures upstream, moving the warm air into
the region of upward motion and thereby generating
eddy kinetic energy.
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FIG. 2. (a) Temporal growth rate for the external mode in Charney’s model (with r = 0.5), perturbed by
uniform thermal damping of strength vy (dashed line) and potential vorticity damping of strength ye #¥
(solid line); w,/y is plotied against the nondimensional phase speed of the unperturbed mode. (b) The
corresponding nondimensional spatial growth rate, ~k;/v.
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Suppose now that it is the potential vorticity itself
that is damped, rather than the momentum or tem-
perature, with the strength of the damping dependent
on height; suppose also that ygx = 0. Equation (2b) is
then replaced with D' = —v,4". V'{0) satisfies the same
equation as does ¢'(0), and any irreversible horizontal
mixing that damps ¢'(0) can be expected to damp
¢¥(0) as well. Therefore, we also replace (3b) with Dy
= —y(0)’. Wherever we refer to the effects of “po-
tential vorticity damping” in the following, it is to be
understood that this surface temperature damping is
also included. Note that height-dependent potential
vorticity damping is not equivalent to (local in the ver-
tical) momentum and thermal damping, for any
choices of y(z) and y1(z). Instead of (9), we now have

ey = {7Q§ynez} - fH—laz'YQnezlz=0 (12)

{‘jynez} - 6II“ll_[z"]t.’zlzﬂ') ’
The alternative expression (8a) for P has been used to
obtain this result. If v, is independent of height, then
w; = —7Yg, and the wave is damped.

Once again, the denominator in (12) is positive def-
inite for the waves of interest here. However, the nu-
merator can be negative if the second term dominates
over the first. From the form of this expression, it is
clear that this can occur when the damping is larger at
low levels. Since the denominator is a relatively small
difference between two large terms for quasi-stationary
waves, it is very easy to obtain destabilization in this
way. As an example, we have repeated the calculation
for the external mode in Charney’s model with r = 0.5,
setting v = vy exp(—z/H). The resulting wy/7 is plotted
as the solid line in Fig. 2a. The destabilization is con-
sistently stronger than in the case of thermal damping
with strength .

When analyzing the stationary planetary wave re-
sponse to localized forcing in a dissipative atmosphere,
one is interested not in the temporal growth rates of
normal modes, but rather the spatial growth or decay
of a stationary wave. Given the dispersion relation w
= Q(k, v,), where v, represents all the relevant damping
mechanisms, the perturbation to the frequency at fixed
real k due to small damping is éw = v,;0Q/97;, as com-
puted above. The perturbation to the wavenumber k
at fixed real frequency due to small dissipation is ob-
tained from the relation 0 = 8k« 99Q/9k + v,092/0v;.
Therefore, dw = —0k- G, where G = (G, G,) is the
horizontal group velocity of the unperturbed external
mode plane wave. In a frame of reference moving with
the phase speed of the wave, G is parallel to k. For
example, in the case of a zonally directed group velocity
(/ = 0), the spatial growth or decay, k; = Im(8k), can
be obtained directly from the temporal growth or decay,
w; = Im(6w): k; = —wi/Gy. Thus, in the presence of
weak thermal damping or low-level potential vorticity
damping, a stationary external wave will amplify in the
direction of its group velocity.

An expression for k; that does not require explicit
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evaluation of the group velocity G of the stationary
wave can be obtained by using the relationship between
G and the vertically averaged wave activity P. Consider
first the more familiar resuit for the simplest barotropic
Rossby wave y exp[ik(x — ct) + ily] in a uniform flow
i, for which ¢ = i — BK~? and

Gle-o = 28kK %k = 2ukK k. (13)

For a stationary barotropic wave, the wave activity P
is
P=g72 = gIKW =0 KA (14)

(To within a constant, P is equal to the wave action-
wave energy divided by Doppler-shifted frequency.)

Therefore, _
GP = 2kky? (15)

(cf. Young and Rhines, 1980, or Hoskins et al., 1983).
The generalization of this result to the case of stationary
external Rossby waves in vertical shear is

GP = 2kk{¥.2}, (16)
with P given by (6). This relation can be obtained from
Egs. (2.27-2.29) in HPP by noting that

G = 2kkdc/oK?, (a7

and that the choice. of normalization in HPP is such
that {y,?} = 1. Combining (16) and (17) one sees that
Pis of the same sign as dc/dK?. In all continuous models
that we have examined in.which g, > 0 for z > 0,
dc/dK? is positive for the external mode, just as it is
for the simplest Rossby wave in a uniform flow, and
therefore P is also positive. We can now write

ki = —wi/Gx = Dp/(PGy) = Dp/(ZkZ{'I’eZ})-

Calculations of k;/v in Charney’s model for the cases
of uniform thermal damping, yr = v, and decaying
potential vorticity damping vo = v exp(—z), are shown
in Fig. 2b as a function of nondimensional phase speed.
One can think of the negative of the phase speed as
the surface wind #(0) required for the wave to be sta-
tionary. ‘ ’ ’

"In the limit ¢ — 0—, a simple expression exists for
the external mode’s vertical structure: ¥, = z exp(—rz/
2). One can then evaluate k; explicitly from (18). One
finds that as ¢ — 0—, k;/y — —(1 + r)/4 for uniform
thermal damping. For potential vorticity damping of
the form yg = v exp(—agz),

L+
rQ+nl+r+oag’

(18)

kily — (19)

These expressions give some indication of how the
spatial amplification depends on the shear and static
stability of the basic state (i.e., on the value of r) and
on the vertical structure of the damping coefficient.
From (19) one finds spatial amplification as ¢ — 0—
for all positive ag, but confinement of the damping to
low levels (large «g) yields larger amplification rates.
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In HPP, we define a quantity «y, which is the appro-
priate Rayleigh friction coefficient for use in an equiv-
alent barotropic model that captures the external
mode’s contribution to the stationary wave field when
the atmosphere is weakly dissipative. Following the
reasoning in HPP, one can show that

Ye = 2uek1 = uer/(Kz{‘[’ez})9 (20)

where u, is the zonal wind at the appropriately deter-
mined equivalent barotropic level. (The zonal group
velocity of a stationary wave in the equivalent baro-
tropic model is then 2u,.) Equation (20) reduces to Eq.
(2.31) in HPP for the special case in which Ekman
pumping is the only dissipative mechanism present. If
mechanisms are present which tend to damp eddy
temperatures or low level potential vorticities, then the
appropriate choice of vy, may be negative.

3. Large damping

In this section we treat the spatial and temporal in-
stabilities of the Charney problem in the presence of
finite damping. Finite damping effects are essential in
the computation of w; when the westward phase speed
of the wave with respect to the mean surface wind is
small; the perturbation theory breaks down in this limit
because of the vanishing of the denominator in (9).
These calculations also allow one to determine if de-
stabilization occurs for physically interesting values of
the damping coeflicients. Additionally, we are inter-
ested in the extent to which the destabilization by ther-
mal or potential vorticity damping is altered in the
presence of strong Ekman pumping. All results dis-
cussed below were obtained by numerically solving the
eigenvalue problem for w or k using the technique de-
scribed in section 4 of HPP. Only results for r = 0.5
will be presented. We restrict attention to the effects
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of damping on the external mode and its continuation,
the Charney mode instability; the influence of dissi-
pation on the Green modes will not be considered (but
see Wang et al., 1985).

Results for the temporal problem with constant
thermal damping are given in Fig. 3a. In this figure,
we show the imaginary part of w in the domain 0.1
< k < 1.5and 0 < v < 1, using the same nondimen-
sionalization as in section 2. We set / = 0 for simplicity.
The dividing line between positive and negative wg is
shown by the heavy line. In the undamped problem
with r = 0.5, the Charney mode instability exists for k
> k. = (r(2 + r)/4)"”? ~ 0.56; the unstable modes are
eastward propagating, while the neutral external mode
which exists when k < k. is westward propagating (see
Fig. 1). In the presence of small damping, it is note-
worthy that the external mode continues smoothly into
the Charney mode as the phase speed becomes eastward
and the mode develops a steering level within the flow.

From Fig. 3a it is apparent that the most unstable
eastward propagating Charney mode is markedly sta-
bilized by damping, while the westward propagating
external mode is destabilized and remains unstable
even at large values of the damping coefficient. Al-
though the most unstable mode remains eastward
propagating for all values of damping considered, the
introduction of instabilities propagating westward with
respect to the surface wind is potentially relevant to
the maintenance of quasi-stationary long waves, as dis-
cussed by Haltiner (1967) and White and Clark (1975).

Figure 3b shows the spatial amplification rate k; of
a stationary external mode subjected to constant ther-
mal damping, for surface wind in the range 0 < i{(0)
< 1. [The perturbation theory of section 2 is a good
approximation for a given #(0) as long as v is suffi-
ciently small that the contours in Fig. 3 are equally
spaced in the vertical.] The &; are everywhere negative,

{b) -k,
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qu. 3.(a) G.rowth rate w; for modes of Charney’s model (r = 0.5) with uniform thermal damping, as a
function of hongomal wavenumber and strength of the damping v; (b) k; for stationary modes as a function
of the surface wind % required to make the mode stationary and the strength of the damping. (See text for

nondimensionalization.)
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corresponding to growth in the downstream direction.
The greatest destabilization is found for profiles with
small surface wind. When #0) = 0, the growth rate
attains a maximum value k; = —0.072 at vy = 0.44.
Since the nondimensional wavelength, A\, = 27 /k,, of
this stationary mode is ~ 11, the maximum value of
lkiA is ~0.8, which corresponds to very significant
growth over one wavelength.

Next we consider the effects of potential vorticity
damping with profile yo = ¥ exp(—z). The temporal
growth rates as a function of oy and of the real horizontal
wavenumber are given in Fig. 4a. As with thermal
damping, the Charney modes are stabilized and the
westward propagating modes destabilized. As discussed
in section 4, our interest in these results is primarily
confined to the quasi-stationary waves (wg =~ 0). From
the figure we see that the shallow potential vorticity
damping creates quasi-stationary instability as long as
~ is less than ~0.6 (for this value of r). For larger v
the damping is stabilizing. As <y increases from zero,
the phase speed of the most unstable wave decreases,
passing through zero at v =~ 0.25.

Results for the spatial growth rate of a stationary
wave in the presence of this low level potential vorticity
damping are shown in Fig. 4b, as a function of y and
the surface wind #(0). The greatest spatial amplifica-
tion, k; ~ —0.12, occurs at zero surface wind and v
~ 0.2. As compared with the constant thermal damp-
ing case, the spatial growth rate is larger for the same
v. However, for sufficiently large potential vorticity
damping the mode becomes evanescent.

In reality, any downstream amplification due to
thermal damping or potential vorticity mixing will be
opposed by decay due to drag in the surface boundary
layer. If the perturbation theory of section 2 is relevant,
one can simply add the contributions to k;from the
individua! damping mechanisms. However, surface
drag of realistic strength distorts the modal structure,

(o) @,
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particularly near the surface, to the extent that simple
addition of the separate k;’s is not adequate. To illus-
trate this point, we choose #(0) = 0.2 and r = 0.5 and
compute k; for the stationary wave, with and without
Ekman pumping, as a function of the strength of the
thermal or potential vorticity damping. Figure 5a
summarizes the results for ygx = 0, and Fig. 5b for
vex = 0.25. [If our unit of time is M f3u/dz)~! = 5
X 10* s, as estimated in section 2, the value ypx
= (.25 corresponds to an e-folding time of 2 X 10° s
~ 2.5 days for the spindown of a barotropic eddy.]
The dashed line in each figure represents the case of
uniform thermal damping and the dashed-dotted line
the case of shallow thermal damping with v, = ¥
X exp(—z/2). The solid line represents potential vor-
ticity damping with vo = v exp(—2).

It is clear from the figure that the thermal and po-
tential vorticity damping have less of an effect on k;
when strong Ekman pumping is present. One can still
see the tendency of the uniform thermal damping to
increase the downstream amplitude when y < 0.2, but
it is incapable of overcoming the decay due to the
boundary layer damping. For the case of shallow ther-
mal damping, the effects of the Ekman pumping are
greater, and, except at very small v, the thermal damp-
ing simply increases the downstream decay. The dif-
ference between uniform and shallow thermal damping
in Fig. 5b may provide one way of interpreting the
results of Hendon and Hartmann (1982) mentioned
in the Introduction.

Potential vorticity damping is still capable of over-
coming the decay due to surface drag; indeed, v > 0.05
(corresponding to an e-folding time of ~ 10 days using
the basic state parameters listed above) is sufficient to
produce downstream amplification. This is in part due
to the fact that the downstream decay induced by the
Ekman pumping is itself rather weak for this set of
parameters. As discussed in HPP, the decay due to Ek-

DAMPING (7)
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FiG. 4. As in Fig. 3, but for potential vorticity damping yvo = v€~
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Negative values are indicated by dashed contours.



.15 FEBRUARY 1986

0'041 (Q) 7EK :0
0,02
ky o Y
0,024
-0.04 -
-0.06 -
~0.08 |
0.06)
-
0084 e ET
0.024
ky 0 + - Y
08 10
~0.024 .
2 D Yg=ve”
-0.04 Y=Y
30 Yy = Ye/2

FIG. 5. Spatial amplification rates &; as a function of the strength
of the damping for 1) potential vorticity damping, 2) uniform thermal
damping, and 3) shallow thermal damping, for the stationary wave
in Charney’s model [r = 0.5, #0) = 0.2). (a) Results obtained
with no Ekman pumping; (b) results with large Ekman pumping,
vex = 0.25.

man pumping is small when the zonal mean surface
wind is small. '

4. Discussion and conclusions

In the absence of damping, Charney’s model does
not possess any instabilities that propagate westward
. with respect to the surface wind. However, when one
.adds thermal damping the westward propagating ex-
ternal Rossby waves are destabilized. Alternatively, one
can show that a stationary wave in a flow #(z) > 0 with
realistic vertical shear will amplify eastward, in the di-
rection of its group velocity, when thermal damping is
present. A perturbation theory valid for sufficiently
small damping provides one way of understanding this
destabilization; the “damping” in fact acts as a source
of wave activity for the mode. One cannot conclude
from the fact that the thermal damping tends to destroy
the available potential energy of the wave that it also
tends to reduce its amplitude.

For reasonable midlatitude values of the basic state
parameters, this destabilization persists even when the
strength of the thermal damping, v, is as large as (1
day)~!. However, the presence of Ekman pumping of
realistic strength reduces the range of v, for which
destabilization occurs. This is particularly true if the
thermal damping is confined to the low levels where
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the effects of surface friction are most pronounced.
Calculations such as those summarized by Fig. 5, as
well as those of Hendon and Hartmann (1982) make
it seem unlikely that shallow sensible heat fluxes in-
duced by the presence of a quasi-stationary wave would,
as suggested by Haltiner (1967) and White and Clark
(1975), result in significant amplification of the wave.
If these heat fluxes are distributed through a greater
depth, perhaps by moist convection associated with
extratropical cyclones, the potential for amplication
increases.

External waves that propagate westward with respect
to the surface wind are also destabilized by processes
that damp low-level potential vorticity and surface
temperature perturbations. Calculations with Char-
ney’s model suggest that this result is fairly robust, with
substantial destabilization persisting in the face of re-
alistic Ekman pumping, and at fairly modest levels of
the potential vorticity damping.

We would like to think of this potential vorticity
damping as mimicking the effects of mixing by cyclone-
scale transients. For this approach to have even qual-
itative validity, there must be some scale separation
between the cyclone-scale transients and the larger-scale
waves. From this point of view, the effects of potential
vorticity damping on the Charney modes is of little
interest as these modes are responsible for the cyclone-
scale transients themselves. In addition, if the mixing
by cyclone-scale transients is to damp the large-scale
wave, the latter must be more or less stationary on the
time scale of the development of the cyclone-scale ed-
dies. Therefore, potential vorticity damping is not a
very plausible way of approximating the effects of these
smaller scale transients on very long waves with rapid
westward phase propagation. However, we do feel that
this may be a useful idealization for the effects of
smaller-scale transients on quasi-stationary long waves.
Indeed, White and Green (1982) have constructed a
model of the long waves based on this premise (but it
is difficult to relate the effects of potential vorticity
mixing in their highly truncated model in a channel
to the present analysis of its effects on wavetrains).

As mentioned in the Introduction, estimates by
Holopainen et al. (1982) indicate that the average rate
of damping of the stationary eddy potential enstrophy
by transient eddies is of order (5 days)™! averaged over
the extratropical troposphere in Northern Hemisphere
winter. Figure S of Holopainen et al. indicates that the
potential enstrophy destruction is larger near the sur-
face and the tropopause, and smaller at middle tro-
pospheric levels. Whether there are corresponding
maxima in the local rate of potential enstrophy de-
struction per unit of potential enstrophy (=2v,) is less
clear. In any case, it is reasonable to assume that the
horizontal mixing at low levels is primarily due to the
initial growth stage of baroclinically unstable distur-
bances, while the maximum in the potential enstrophy
destruction near the tropopause results at least partly
from mixing during the decay of mature disturbances
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(e.g., Hoskins, 1983). Other processes, such as the
barotropic instability of zonally asymmetric flow dis-
cussed by Simmons et al., (1983), may also play a role
in the upper tropospheric maximum, as Holopainen
et al. point out that much of the upper tropospheric
mixing is itself associated with low frequency eddies.

Our calculations indicate that the low-level mixing
alone is of the right magnitude to produce significant
downstream amplification of a stationary wave. For the
basic state parameters on which Fig. 5 is based, the
amplitude of the stationary wave would decrease by
=~30% over one wavelength if Ekman pumping were
the only relevant dissipative mechanism 2wk, 'k;
=~ 0.3). The amplitude would increase by ~20% over
one wavelength if, in addition to this Ekman pumping,
the nondimensional potential vorticity damping were
set equal to vo = 0.1 exp(—2). If we choose N(fdu/
dz)"! = 5 X 10* s, this value of v corresponds to a
damping rate of ~(3 days)‘l for potential enstrophy
at the surface and ~(5 days)™ averaged over the lowest
scale height. Note however that upper level potential
vorticity damping is stabilizing. The net effect of the
mixing by cyclone-scale transients on the wave activity
of the stationary waves therefore results from the com-
petition between two rather distinct processes: the low-
level mixing accompanying the growth of cyclone-scale
eddies acts as a source of stationary wave activity; the
upper level mixing associated with decaying eddies acts
as a sink.

Despite the complications introduced by the upper
tropospheric mixing, we feel that this analysis helps
one understand how a stationary or quasi-stationary
external Rossby wave can avoid being dissipated by
the strong horizontal mixing generated by baroclinic
instabilities. Contrary to what one might intuitively
suspect, the low-level down-gradient potential vorticity
fluxes (and heat fluxes near the surface) generated by
these instabilities can actually increase the amplitude
of the external wave. This is a type of “wave-wave”
interaction that would not show up as such in standard
energy or potential enstrophy analyses. The results of
Hayashi and Golder (1983) on the space-time spectral
energetics of a general circulation model with a uniform
fower boundary (and therefore a zonally symmetric
climate) are consistent with this picture. They find that
low frequency waves (periods greater than 20 days) are
maintained by conversion from zonal available poten-
tial energy, while wave-wave interactions are draining
energy from these waves on average (see their Table
3). Our analysis suggests that cyclone-scale eddies are
acting as a catalyst, in that the mixing on these scales
is distorting the longer wave in such a way that this
long wave can then tap the available potential energy
on planetary scales.
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