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ABSTRACT

A barotropic model is described that is designed to study the interaction of the Hadley cell with a Rossby
wave forced in midlatitudes by a stationary *topographic” source. The Hadley cell is driven by a mass source/
sink that is partly fixed, representing solar heating, and partly dependent on the layer thickness, representing
infrared cooling. The response of the mean zonal and meridional winds to infinitesimal wave forcing is analyzed
in detail; then the forcing is gradually increased to examine the departures from linearity.

1. Introduction

The subtropical jet is maintained through compe-
tition between the acceleration of the westerlies by the
poleward flow in the Hadley cell and their deceleration
due to the divergence of the eddy momentum flux in
low latitudes (e.g., Palmen and Newton 1969, pp. 16—
20). The divergence of eddy momentum flux in turn
is a direct consequence of mixing of potential vorticity
by Rossby waves propagating into the tropics from
midlatitudes (e.g., Edmon et al. 1980). If this Rossby
wave drag is very small, and if the vertical mixing of
momentum is also insignificant, the poleward flow in
the Hadley cell will conserve its angular momentum.
The angular momentum-conserving flow continues
- poleward up to a latitude determined by the thermal
forcing (Schneider 1977; Held and Hou 1980), re-
sulting in a strong subtropical jet. Significant Rossby
wave drag is needed to produce a realistic wind distri-
bution and a realistic momentum budget in the sub-
tropics, in which fu ~ (eddy momentum flux diver-
gence) rather than (f — du/dy)v =~ 0.

In this study, a simple model of the interaction be-
tween the Hadley cell and an incoming Rossby wave
is described. The starting point is an idealized shallow-
water axisymmetric Hadley cell forced by “solar heat-
ing” (a specified mass source) and “infrared cooling”
(a mass sink dependent on thickness). A stationary
Rossby wave is then forced from midlatitudes. The
analysis focuses on the distribution of the vorticity
transport and mean flow deceleration caused by the
wave, and the effect of this drag on the Hadley cell and
the subtropical jet. Only an incoming stationary wave
is considered in this study, rather than a stationary
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wave plus a spectrum of transient waves as seen in the
atmosphere, and it should be borne in mind that a
broader incoming phase speed spectrum could behave
differently. The stationary wave problem is relatively
easy to analyze and it is also of interest in its relation
to models of the Charney-Devore (1979) type. Cal-
culations with a similar model, but in a different pa-
rameter range chosen to examine problems in strato-
spheric dynamics, have recently been described by
Juckes (1989).

2. The Hadley cell model

Consider the following set of shallow water equations
for axisymmetric flow on the sphere:

aU=(f+ZW - xuU,
3V =~(f+ Z)U —a~'d(® + U*/2) — k¥,
= —fU~ a”'U? tan(8) — a~'3%® — «kmV,
8,® = —®o(a cos(8)) ' ds(cos(0)V)
— k(P — @.(0)),
Z = —(a cos(8)) ' 34(cos(§) V),
f=2Q sin(6). (lc)

The term x7(® —~ ®,.) is the mass source/sink, where
&, is given the simple form -

(1a)

(1b)

,(6) = — 3 Ag Pa(cos(9)). (2)
Here P, the second Legendre polynomial and Ag the
difference in the geopotential from equator to pole in
“radiative-convective equilibrium.” Rayleigh friction
proportional to «s, which can be thought of as rep-
resenting vertical mixing, has been included in the mo-
mentum equations. The very small term proportional
to 8,72 has been omitted in (1b). More importantly,
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any momentum source associated with the mass source
has been omitted. .

There are two distinct ways of motivating the use of
such a barotropic model for a study of the Hadley cell
and the subtropical jet, neither of which is entirely sat-
isfactory. Consider first an isentropic layer of the at-
mosphere, with potential temperature 0, depicted in
Fig. 1. The flow within the layer is hydrostatic and
independent of height. The layer is bounded above by
a “rigid” surface whose pressure is a function of latitude
P(0). The fluid underneath this layer has the potential
temperature 0. For axisymmetric flow in such a layer,
the momentum equations in pressure coordinates are
just as in (1), once again ignoring any “vertical” flux
of momentum associated with the mass source. Since
Pris assumed to be fixed, conservation of mass results
in the following equation for the pressure at the lower
boundary Pg: )

8Py = —(a cos(0)) ™' d(cos(8)(Pg — Pr)V)

+ (source/sink). (3)
By integrating the hydrostatic equation
0®/9(p/ps)* = —¢,0 (4)

across the lower interface and assuming that the geo-
potential gradient in the lower layer is negligible, one
obtains a relationship between the gradients of Pp, or
of Ilg = ¢,(Pg/P,)", and &:

Ve = (@A - @B)VHB (5)

In geostrophic balance, U = (fa)~'d®/4a4; if this
zonal wind field is to approximate the observed winds
in the upper troposphere, and if 0, and 05 are chosen
to represent the upper and lower troposphere, then the
slope of the lower boundary of the layer will have to
approximate the observed mean tropospheric isen-
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FIG. 1. Schematic of the one-layer model.
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tropic slope. However, one also wants this layer to rep-
resent the outflow from the Hadley cell. Unfortunately,
these conditions are mutually exclusive: an isentropic
layer that lies between 300 and 100 mb in the tropics,
so as to be representative of the Hadley cell outflow,
lies above the tropopause in high latitudes, so the slope
of its lower boundary will not be representative of the
troposphere. A one-layer model of the upper tropo-
sphere should be thought of as having heuristic value
only; it may miss important dynamics associated with
the fact that isentropic surfaces of interest intersect the
tropopause.

To obtain a linear shallow water height equation of
the form (1¢), one must ignore the nonlinearity that
enters through the relation between Ilg and Pg, and
one must ignore variations in Pz — Py in the compu-
tation of the mass flux convergence. We can set

¢ ol B oIl 9Py
Pl (04— 65p) Pyl (04— 8p) P, o (6)
The analogue of ®, is then
(04 — ©3)(3X1/0p)s(Pp — Pr). (7)

For a description of a shallow water model in which
the nonlinearity associated with the term 9II/dp is re-
tained, see Salby (1989). To justify the neglect of vari-
ations in Pz — Pr, one can formally consider a layer,
as pictured in Fig. 1, in which the slope of the upper
boundary approximately matches the slope of the lower
boundary needed to produce winds of the appropriate
magnitude.

Alternatively, one can take as a starting point a two-
level primitive equation model, such as that in Held
and Suarez (1978). For steady axisymmetric flow, an
equation analogous to (1) can be obtained by assuming
that the lower layer zonal wind is negligible compared
with that in the upper layer. For finite-differencing as
in Held and Suarez, geostropic balance for the upper
layer zonal wind can be written

190
=, - II;)——, 8
fU =11, 1) 230 (8)
if U, < U,, where the subscripts 1 and 2 refer to
the upper and lower layers, and © is the mean potential
temperature 1 (0, + 0,). The equation for © takes the
form
) 1 9 .
0 —=~—"—— )V 0) + forcing, (9
o~ acos(p) ag (oY) forcing, (9)
where 0 = (0, — 0,)/2, so the role of ¥, is played
by (II, — I1,)0, in close analogy with (7). One must
also ignore the vertical advection of momentum to ob-
tain a system analogous to ( 1). The limitations of this
approach to justifying a shallow water model of the
upper troposphere result from the familiar limitations
of the two-level model.
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One cannot expect to generate a realistic Hadley cell
without taking the effects of moisture into account.
Where there is upper level divergence there must also
be upward motion and low-level convergence, and the
latent heat release associated with the resulting water
vapor convergence must be thought of as a mass source
for the “warm,” high © layer in the upper tropo-
sphere. Where there is lower layer divergence, evapo-
rated water vapor is removed that would otherwise have
precipitated, providing a cooling, or mass sink for the
high © layer. Including a mass source proportional to
the divergence is equivalent to a reduction in the value
of &, or of the static stability ® in the context of the
two-layer model. See Neelin and Held (1987) for fur-
ther discussion of this familiar idea in the context of
models of the time-mean tropical flow. It would be
natural to choose the resulting effective layer thickness
®$, to be very small in the tropics but growing to larger
values at higher latitudes; however, the choice here is
to retain the simplicity of the model ( 1a—c) with con-
stant ®y, selecting a small value meant to be relevant
for the low latitudes where attention will be focused.

If one chooses Pz = 300 mb, P — Pz = 200 mb,

and 04 — Op = 30 K, as an example, then (7) implies
that &, ~ 4 X 103> m? s~2 This value must then be
. reduced to take the effects of moisture into account.
The value ®, = 1 X 103 is chosen in all calculations
described below. .
* One is tempted to use this barotropic model despite
its deficiencies because its qualitative behavior is very
similar to that of the fully two-dimensional Hadley cell
model analyzed by Held and Hou. As «;, = 0, the
solution for U approaches a limit that is independent -
of &, and k. Equatorward of the latitude 8, this limit
is the momentum conserving profile Uy, = Qasin?(8)/
cos(#), for which f + Z = 0; poleward of 8y, U
approaches - its radiative equilibrium value U,
= — f719,®,. The latitude 6 is determined completely
by ®.(0), for given Q and a. The meridional flow V
vanishes for 8 > 85 as k3, = 0, and approaches a limit
proportional to xr/®, for 8 < 0y. As ks increases,- Z
eventually becomes negligible as compared with f and
the problem becomes linear. Essentially identical
models are considered by Hou (1984) for the atmo-
sphere of Venus, by Schneider (1983) for Mars, and
by Held and Hoskins (1985) for the terrestrial case.

Figure 2 displays the steady solution to (1) with the
following parameter settings:

$,=103m?s72, Ay =2.0X 10*m?2s7?
k7 ' =10days, Q =2n/day, a=6.4X10°m,

Ky ' =5, 10, 20 and 40 days. (10)
If one ignores the very small dissipative term in (1b),
it is easily shown that the steady state U depends on
®o, k1, and k, only through the combination oxprxr "
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FIG. 2. (a) The zonal wind, (b) meridional wind, and (c) absolute
vorticity obtained from the Hadley cell model with k' = 5, 10, 20,
and 40 days.
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The zonal flow for &5 =4 X 103m?s2and x,,! = 20
days, for example, is essentially identical to that for ®,
= 103 and «,, ! = 5 (the meridional flow is a factor of
4 smaller).

The form (2) for ®, is chosen for simplicity and for
consistency with Held and Hou, but it ignores two ef-
fects that make the Hadley cell stronger. As Lindzen
and Hou (1988) emphasize, the circulation can in-
crease in strength dramatically when a cross-equatorial
flow is generated by choosing &, asymmetric about the
equator. Equally important, it is not correct to drive
the Hadley cell with forcing that varies on such a large
latitudinal scale as does the choice (2). The value of
Ay has been chosen to produce winds of roughly the
observed magnitude, so in a sense some of the effects
of baroclinic eddies have been taken into account in
this choice. However, reducing As; decreases the
strength of the circulation, whereas in reality baroclinic
eddi€s cool the atmosphere strongly in the subtropics,
but not in low latitudes, thereby increasing the gradient
between the deep tropics and the subtropics that drive
the Hadley cell. To help compensate for these omis-
sions, we have chosen a value for the thermal damping,
k7, that is stronger than can be easily justified for the
troposphere; As is also somewhat larger than observed
in the upper troposphere.

3. The Rossby wave model

To construct a model of a Rossby wave interacting
with this Hadley cell, (1a)is replaced with the nonlinear
barotropic vorticity equation

&=V [(f+ ¢+ Fyvl — k¢ — w4 (11)

The deviations from zonal symmetry are taken to be
nondivergent. Thus, the flow v on the RHS of (11) is
of the form

(u,v) = (—a"'9y, (acos(8)) "oy + V), (12)

where { = V?J. Scale-selective diffusion has been in-
cluded in (11) to absorb any enstrophy cascade that
occurs. The wave is forced by the steady contribution
to the potential vorticity F, which we write as F = fh’
where 2’ can be thought of as the perturbation in the
lower boundary divided by the mean layer thickness.
(We use fh' rather than (/' + {)A' since the forcing is
confined to midlatitudes, where /' > ¢ in any case.)
The forcing is given a wavenumber 3 zonal structure
and a Gaussian meridional structure:

h' = hy exp(—[(8 — o)/ Ag]?) cos(8) cos(3N\) (13)

with 6y = 45°N and A, = 10°. The cos(#) factor is
included to ensure that F'is identically zero at the pole.

Equations (1b) and (Ic) for Vand ® are unchanged.
Since no eddy term has been included in the height
equation, ¥V should now be interpreted as the “residual”
mean meridional circulation [ Andrew and MclIntyre
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(1976); see Andrews (1983) for the isentropic coor-
dinate version]. The model’s Eulerian mean meridi-
onal circulation can be thought of as equal to V
+ v'h’. The Appendix describes the assumptions
needed to make this identification precise.

The zonal mean of the vorticity equation now yields

U= (f+ Z)V+ v'q — xyU + (diffusion), (14)

where a prime denotes a deviation from the zonal mean
and ¢’ = ¢’ + fh'is the eddy potential vorticity. The
effect of the eddies on the zonal mean flow is felt
through the momentum flux convergence and the
“mountain torque” or “form drag,” whose sum is the
eddy potential vorticity flux:

Vg’ =0T+ VR = —9,(Wv') + fUR.  (15)

The choice not to consider the full asymmetric shal-
low water equations is partly based on the assumption
that the divergence in the waves plays a secondary role
in the wave breaking and in the resulting mean flow
modification. The choice is also influenced by the small
value chosen for ®,. The special dynamics that can
occur in a divergent model when U?/ &, exceeds unity
do not seem germane to the problems being addressed.
In addition, the small value of ®, has been justified by
arguing that upper level divergence is associated with
lower tropospheric convergence and latent heat release.
Unlike the divergent axisymmetric Hadley flow, it is
not self-evident that divergence accompanying -a
Rossby wave propagating into low latitudes should be
associated with lower tropospheric convergence..

4. The linear Rossby wave limit

Figure 3a shows the stationary wave streamfunction
that forms in this system for infinitesimal forcing
(hy — 0). The parameters are as in (10) with «,!
= 20 days and with the biharmonic diffusion coefficient
v = 10" m*s™". The calculations are performed using
a spectral model with R60 truncation.

The solution has a different character north and
south of the source. To the north, the solution has very
little phase variation with latitude, indicative of a
standing wave created by reflection from the wave’s
polar turning point. To the south, the solution has the
phase tilt of a wave propagating equatorwards, indi-
cating that the wave incident on the tropics has been
at least partially absorbed. Amplitudes in the Southern
Hemisphere are small.

The small wave amplitudes near 30°N are suggestive
of partial reflection. A plot of the correlation coefficient
between #' and v’ can be used to estimate the reflection
coefficient. If the solution is approximately of WKB
form,

¥ ~ Re{Alexp(—iX) + R exp(ix)] exp(ikx)} (16)
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FIG. 3. The eddy streamfunction obtained from the Hadley plus
the Rossby wave model (a) in the limit of infinitesimal wave forcing,
and (b) for h, = 0.2. Negative values are shaded. The linear result
is normalized so that the two figures would be identical if linear
theory remained valid for the finite-amplitude case. The contour in-
terval in (b) is 6 X 10 m? s~'. The “topography” peaks at 0° and
120° iongitude. :

where
'y
X(y) Efy [(§)dE,

‘and [ is the local stationary meridional wavenumber
(and where both 4 and R are slowly varyingin y), then
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u'v'
(PRIFED RS |
_ (1- IR}
([1 + |R?|]? — 4| R|? cos?(Xg + 2x))/?’
(17)

where R = |R| exp(iXz). This quantity oscillates be-
tween unity and '

(1= [RI))/(1 + |RI?). (18)

[See Rousteenoja (1990) for further discussion of this
method of computing the reflection coefficient.] Figure
4 shows the latitudinal structure of this correlation be-
tween 10°S and 45°N for Hadley + infinitesimal wave
calculations with different values of ,,. The correlation
has a structure consistent with that implied by the WKB
wavefunction, so one can hope to approximate the re-
flection coefficient by equating the minima in this curve
with (18). For k! = 20 d, this estimate yields |R|
~ 0.35 if one uses the minimum between 15° and
30°N. The larger value further north suggests additional
reflection from the region near 30°, which is plausible
given the sharp structure in the vorticity gradient (Fig.
2), but cannot be trusted because of overlap with the
source. The reflection coefficient increases with de-
creasing damping, a consequence of the changes in the
zonal flow pictured in Fig. 2. As the Rayleigh damping
is reduced, the absolute vorticity in the tropics ap-
proaches zero and the vorticity gradients needed for
Rossby wave propagation disappear. One expects per-
fect reflection of an infinitesimal wave from the north-
ern margin of the Hadley cell in the limit x3; = 0 (cf.

IRl

CORRELATION

LATITUDE

F1G. 4. The correlation coefficient between the eddy zonal and
meridional velocities, for 4 values of . From local minima in
these curves one can infer the reflection coefficient shown on the

right.
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Platzman 1949). One expects little reflection of infin-
itesimal waves from the observed zonally averaged cli-
. matological profile, however, which more nearly re-
sembiles the flows with large damping in Fig. 2.

The existence of a stationary Rossby wave resonance
is responsible for the presence of multiple equilibria
in the model of Charney and Devore (1979), and in
other similar models for stationary waves interacting
with the zonal mean flow. The existence of such a res-
onance is, in turn, a consequence of reflection from
the beta-plane channel walls. The present model can
be considered a spherical version of Charney and De-
vore (1979) [in this sense it is similar to Legras and
Ghil (1985)], but one in which the mean flow is main-
tained by a thermally driven Hadley cell. Therefore, it
is of interest to determine if the partial reflection seen
here is sufficient to produce resonant-like behavior.
Figure 5 is a plot of the eddy streamfunction squared,
averaged over the globe, as a function of A®, for k™
=20d and 10 d. As A® is varied, U changes in strength,
and one might expect to pass through a resonance in
analogy with Charney and Devore. A resonance is
clearly present near A®, = 1.3 X 10* Increasing
damps the resonance because of the reduction in re-
flectivity due to the more ample vorticity gradients in
low latitudes as well as the smoother vorticity gradient
structure near the jet, and also because direct damping
of the wave begins to play a role.

Despite this potential for resonant behavior, the
present model differs fundamentally from that of
Charney and Devore (1979) with regard to the distri-
bution of the mean flow modification due to the wave.
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FIG. 5. Globally averaged eddy streamfunction squared, as a func-
tion ofl the “radiative equilibrium™ height gradient, A4, for two values
of k M. :
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FIG. 6. (a) The stress exerted on the mean zonal flow due to the
eddy momentum flux convergence and to the form drag, or mountain
torque, and (b) their sum, the eddy potential vorticity flux, for in-
finitesimal Rossby wave forcing with the same 4 values of x5! as in
Figs. 2 and 4. Units are (4/0.1)> m s™! day™".

Returning to the standard parameter setting with A®,
= 2 X 104, Fig. 6 shows the form drag, the eddy mo-
mentum flux convergence, and their sum, the eddy
potential vorticity flux for different values of x;. The
form drag and the momentum flux convergence nearly
balance in the source region, a consequence of the
nonacceleration theorem [see Eq. (20) below], so that
the bulk of the potential vorticity flux occurs in low
latitudes. The equatorward penetration of the momen-
tum flux increases as the dissipation is lowered. The
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form drag also has some sensitivity to the dissipation.
Since the directly excited wave should have little sen-
sitivity to damping at the smaller values of «,, in Fig.
6, the changes in form drag likely result from changes
in reflectivity and interference between the incident
and reflected waves. o

One can derive an expression relating v'g’ to the dis-
. sipation of the wave by Rayleigh friction and diffusion
.and to advection of the eddy enstrophy by the mean
meridional circulation. Starting with

8q' = —Ud.q' — yv' — 8,(Vq') — kel — v, (19)

where v = d,(f + Z), multiplying by ¢’ and averaging
around a latitude circle, one finds for a stationary wave
that

Y'q = —kpuq'{ — vV — 40,(Vq). (20)

Figure 7 shows v'q’ for k», ' = 20 d decomposed into

these three contributions. The biharmonic_diffusion
contributes a small amount near the peak of v'g’, while
the contribution of Rayleigh friction is larger in low
latitudes and dominant near the source. However, the
less familiar term involving the meridional circulation
is the largest of the three, explaining more than half of
the flux where this flux is largest. A meridional flow
opposed to the group velocity of a Rossby wave train,
as here, retards the wave and prevents what would oth-
erwise be deeper penetration into the tropics (see Wat-
terson and Schneider 1987). We have confirmed that
removing the effect of 7" on the wave results in the
displacement of the peak in v'q’ to the equator, the

0.6 { ]
N e FRICTION
04l I — . — .- DIFFUSION 4
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FIG. 7. Decomposition of the eddy potential vorticity flux. for in-
finitesimal forcing and ;' = 20 d, into the contributions from
biharmonic diffusion, Rayleigh friction, and advection by the mean
meridional circulation. These terms are plotted so that their sum
equals the negative of v’q’. Units as in Fig. 6.
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Fi1G. 8. The changes in the zonal mean zonal and meridional flows
due to an infinitesimal Rossby wave, with x,,~' = 20 d. The changes
are negligible outside of the latitude span shown. Values shown should
be multiplied by (4/0.1)2.

location of the critical latitude. Thus, not only is the
wave influenced by-the zonal flow, but also in a more
subtle way, by the meridional flow as well.
__The Hadley ceil model’s response to the eddy forcing,
v'q’, due to this infinitesimal wave is shown in Fig. 8.
The response (6U, V'), which is proportional to the
square of the wave amplitude, has been normalized to
correspond to Ao = 0.1. While the zonal flow is decel-
'q’ is largest, there is also
significant acceleration centered near 30°N. The de-
celeration spreads well into the Southern Hemisphere.
The northern branch of the Hadley cell has been
strengthened, ana the zero crossing in V shifted slightly
into the Southern Hemisphere.
Suppose for the moment that the steady state balance
in the zonal momentum equation is simply
0=fV—-xnU+vYyq. (21)
If one also ignores the minor term quadratic in U in
the V -equation, as well as the small damping term, so
that :
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0=—fU—-a"'49, (22)

one can derive a relatively simple second-order equa-
tion for the response 6V to the eddy driving:

f26V _ 4’0KM i l
kr a cos(8) 88 a cos(6)

X a% (cos(8)8V) = —fv'q. (23a)

One can then obtain 6U from
kdU = f8V + v'q’ (23b)

or '
% 91 b
Jrra cos(8) 80 a cos(d) 36

oU (cos(8)dV'). (23c)

For extratropical forcing centered at latitude 6, the
character of the response depends on the relative mag-
nitude of the meridional scale of the eddy forcing L,
and the scale L defined by

L? = ®opr/ (f(60) k7). (24)

If L;> L, f6V =~ —v'q’' is the approximate solution to
(23), and the eddy stress is primarily balanced by the
perturbed Coriolis force. In this limit, 6U is indepen-
dent of ;s and is best determined from (23c). If L,
< L, on the other hand, v'q’ is primarily balanced by
the Rayleigh friction. For a localized stress with scale
smaller than L, the response of the meridional flow
will have the scale L, resulting in acceleration of the
zonal flow north and south of a localized eddy stress.
In the limit of é-function forcing, the response §U is
unphysical, since it will have a §-function singularity
as well.

If we take 6, = 8°N for our case, then L ~ 1 X 10
m, which is comparable to the distance to the equator,
so (24) must be replaced by the equatorial radius of

deformation, modified once again by the ratio of me-

chanical to thermal damping rates:

L& = ®akp/ (Q%7). (25)

For eddy stress confined within a distance L, from the
equator, as is the case in Fig. 6, the stress is primarily
balanced by Rayleigh friction, while 6V has the scale
L., resulting once again in acceleration outside of the
source.

Given the full zonal momentum equation ( 1a), the
response to small eddy forcing (ignoring the very small
direct effect of diffusion on the mean flow) satisfies

0=(f+Z)oV+ V6Z — kp6U + v'g".  (26)

If the second term in (26) is negligible, one can still
derive an equation analogous to (23a), with f25V re-
placed by f(f + Z)éV. However, if the second term
plays a significant role, the order of the equation is
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raised and interpretation in general is less straightfor-
ward. This term becomes more important as the source
becomes narrower. In the limit that v’q’ approaches a
é-function, Foé(y — ¥o), the dominant balance in the
source region becomes 6Z V =~ Fod(y — )v), so that
the zonal flow jumps by the amount Fy/V ( J,) passing
through y, in the direction of the meridional flow. Fig-
ure 9 shows the balance of terms in (26 ) for the present
calculation. The term 6Z V is found to be very signif-
icant, in fact comparable to v'q’ itself. The solution has
something of the character of the response to a §-func-
tion, in that §Z V does balance part of the deceleration
near the maximum in v'q’; however, Rayleigh friction
remains dominant in this region. Farther north, the
primary balance is between the first two terms in (26).

In the nearly inviscid limit «,, = 0, an alternative
explanation exists for the acceleration of the flow in
the subtropics, based on the construction of Held and
Hou illustrated in Fig. 10. Poleward of 8y, & = &,;
equatorward of 8;;; ® is in balance with the momentum
conserving flow U, (in the absence of eddy stresses)
and is, therefore, determined up to an additive con-
stant. This constant and 6y are simultaneously deter-
mined by requiring that & be continuous at 8y and
that the integral of ® — &, from the equator to 6y
vanish. If we now add a localized eddy stress, the zonal
flow is reduced by an amount inversely proportional
to V as it passes through this region, with the result
that the geopotential gradient is weakened and 6 is
required to move poleward to satisfy the constraints
(see figure). As a consequence, the zonal flow is ac-
celerated between the unperturbed and the new Hadley
cell boundaries. The intensity of the Hadley cell will

(HZ)V!
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FIG. 9. The terms in the zonal momentum equation that balance
the stress due to an infinitesimal Rossby wave. The prime here refers
to the deviation from the state with no wave present. Units and nor-
malization as in Fig. 6.
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F1G. 10. A schematic of the changes in the zonal wind and mean
temperature due to the addition of localized drag at the latitude ),
to the nearly inviscid Hadley cell discussed by Held and Hou ( 1980).

also increase. (We are implicitly assuming that U = 0
at the equator; strictly speaking the addition of stress
asymmetric about the equator will move the point at
which V' = 0 off the equator, creating equatorial east-
erlies; this will reduce the zonal winds further and add
an additional slight poleward perturbation to 6;.) Thus,
in both the linear and nearly inviscid limits one expects
subtropical acceleration in response to localized low
latitude stress. The behavior of the present model ap-
pears to be intermediate between these nearly inviscid
and dissipative limits. '
At the equator, an infinitesimal eddy stress is bal-
anced entirely by the Rayleigh friction in this model.
The inclusion of vertical transport of momentum (i.e.,
a momentum source related to the mass source ) would
allow for the possibility of a balance less dependent on
friction in the deep tropics.

5. Finite amplitude Rossby waves

We now examine how the eddy stress and the re-
sulting mean flow modification change as 5, increases.
The nonlinear vorticity equation, coupled to the mean
equations for V and ® (1b, 1c), is integrated forward

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 47, No. 7

in time using rhomboidal 60 truncation, but retaining
only those zonal wavenumbers that are a multiple of
3, the zonal wavenumber of the source. A leapfrog time
step is used for all except the dissipative terms, for
which a forward step is used. The integration is restarted
every 30 steps to avoid time splitting. We use the pa-
rameters listed in (8), with 3! = 20 d once again.
(With smaller damping, the approach to equilibrium
slows to the point that the integrations become too
time consuming. Furthermore, as the damping is re-
duced, the jet eventually becomes sharp enough to
generate barotropic instabilities, a regime we prefer to
avotid.) Steady solutions are obtained for 4, < 0.08. At
this point there is a bifurcation to a simple limit cycle.
The solution is exactly periodic at least up to /4, = 0.25.
We have had difficulty obtaining stable numerical in-
tegrations for A, > 0.25, for reasons that we do not yet
understand. S

Figure 11 shows the evolution of the absolute vor-
ticity through one period of the limit cycle for Ao
= 0.2. The system takes roughly 6 days to complete a
cycle. A wave breaking event in low latitudes dominates
the evolution. A tongue of low vorticity air is swept
polewards, entrained into the anticyclonic flow and
then dissipated, only to be regenerated 6 days later.
The resulting time-mean absolute vorticity pattern is
shown in the center of the figure.

The deviations from zonal symmetry of the time-
mean streamfunction for this case are compared with .
its linear limit in Fig. 3b. The linear result has been
normalized appropriately. The change in the pattern
from the linear prediction is not dramatic. A shift pole-
wards and eastwards is evident in the subtropics, with
the cyclonic circulation favored slightly over the an-
ticyclonic, and the penectration into the Southern
Hemisphere is reduced. In midlatitudes, the eastward
shift results in a reduction in the form drag.

Figure 12 shows the time-mean eddy potential vor-
ticity flux for several values of /. The actual fluxes are
plotted in (a); the fluxes have been divided by
[£0(0.1)]% in (b) for comparison with the linear pre-
diction. The observed (stationary plus transient ) eddy
vorticity flux in the subtropics near the tropopause in
northern winter is ~2 m s~! day ™' (Lau et al. 1981),
which is obtained in this model for /4, between 0.2
and 0.25.

The stress generated by the Rossby wave in low lat-
itudes broadens and moves polewards as the amplitude
of the wave increases. This is precisely the behavior
observed by Held and Phillips (1987) in the transient
decay of a disturbance excited in midlatitudes. The
broadening is a natural consequence of the larger par-
ticle displacements in the breaking region that occur
as the forcing amplitude increases. The poleward shift
may also be related to the reduction in the mean vor-
ticity gradient in low latitudes evident in Fig. 11 (see
also Fig. 16 below), or, in the picturesque terminology
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F1G. 11. The absolute vorticity field in the tropics at six equally spaced times in the periodic solution produced with 4, = 0.2.
The central figure is the time average. The contour interval is 1.35 X 107% s~'. The time between snapshots is ~ 1 day.

-of McIntyre and Palmer (1984), to the generation of nite amplitude. The behavior of the model is complex.
a “surf zone” that limits the penetration of Rossby There is a transition to chaotic behavior as 44 is re-
waves. duced with A, = 0.2, and the wave amplitude undergoes

One expects the resonant behavior seen for infini- large fluctuations. The chaotic solutions will be de-
tesimal forcing to have important consequences at fi-  scribed elsewhere. Behavior that is fundamentally dif-
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F1G. 12. (a) The time-mean eddy potential vorticity flux for four
values of the forcing ho. Units are m s~ day . In (b) the curves for
the three largest amplitudes in (a) are multiplied by (/,/0.1)2 for
comparison with the linear prediction.

" ferent from that in Charney-Devore-like models is to
be expected, since the mean-flow modification takes
place primarily in low latitudes. It will be of interest
to determine whether or not behavior of this model is
“similar to that of a spherical barotropic model with the
mean flow maintained by Rayleigh friction as in Legras
and Ghil (1985).
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Returning to the standard parameter setting, with
®, = 2 X 10* and x4 = 20 d, the U and V profiles
obtained for Ay = 0.25 are displayed in Fig. 13. The
Hadley cell in the Northern Hemisphere has been
strengthened by a factor of 2. Also shown is the Eulerian
mean V, = V + v'h’ (see the Appendix ), in which the
expected development of a Farrell cell is observed. The
acceleration of U in the subtropics persists as /g in-
creases, and the jet shifts poleward. The maximum de-
celeration obtained for the largest wave forcing (/g
= (0.25)is 16 m s~'. If the mean flow were maintained
by linear relaxation to some reference state, an e-folding
relaxation time of ~35 days would be needed to produce

{a) ZONAL WIND .
50’" : ' 1

(ms™)

-10 AL | 1 1 1
908 60 30 EQ 30 60 90N
(b) MERIDIONAL WIND
2r : q
-—--hg=0
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1 V+v'h! (hg=0.25} i
T
E
0
-1 1 i 1 1 1
90s 60\ 30 EQ 30 60 90N
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-

FI1G. 13. The zonal mean (a) zonal and (b) meridional winds pro-
duced by the Hadley cell plus Rossby wave model with kA, = 0.25,
and the corresponding winds in the absence of a Rossby wave. In
the region in which the forcing is nonzero in (b), the residual cir-
culation (dotted line) and the Eulerian mean circulation (solid line)
are both shown. Away from the forcing, these are identical.
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a deceleration of this size, given the strength of the
eddy forcing in Fig. 12. Simple linear relaxation to a
prespecified flow would not produce significant sub-
tropical acceleration, while the acceleration, in fact, is
of comparable amplitude to the deceleration for large
wave forcing.

In Fig. 14 the changes (8U, V') from the flow with-
out eddy stresses, normalized by the square of the forc-
ing amplitude as in Fig. 12b, are presented. The low-
latitude zonal-flow deceleration is seen to be reduced
dramatically from the linear prediction, by a factor of
4 for hy = 0.2. The subtropical acceleration retains
much of its strength, so that it becomes comparable in
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FIG. 14. The changes in zonal mean (a) zonal, and (b) meridional
winds produced by Rossby waves of different amplitudes, normalized
as in Fig. 12b.
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size to the deceleration for the larger values of /4. The

- reduction in the normalized §V is less pronounced than

that in 6U. Further inspection of the solutions shows
that the normalized form drag, and, therefore, the in-
tegrated eddy stress in low latitudes, weakens as /4, in-
creases, explaining a part of these reductions. The
broadening of the eddy stress is also important, since
this favors a mean flow response in which the Coriolis
force plays a greater role, thereby reducing 6U. The
poleward shift of the eddy stress has the same effect
since it results in a decrease in the effective deformation
scale L. [We are admittedly thinking here of an equa-
fion similar to (21), which is not entirely adequate;
however, we see the same qualitative behavior in cal-
culations with larger «,, for which the Hadley response
should more nearly correspond to that predicted
by (20).]

The time-mean momentum budget for the case fg
= 0.25 is shown in Fig. 15. This model has succeeded
in producing a flow in which the eddy momentum flux
divergence, rather than the arbitrarily specified Ray-
leigh friction, balances the Coriolis force (or (f + Z)V
more generally) in low latitudes. In terms of the Eu-
lerian mean meridional flow, the model also has the
approximate balance fV, ~ 0,(u'v")_in midlati-
tudes, since V'is small enough that V, ~ v'h’, and since
v'h’ ~ —v'{’. This balance, however, disguises the im-
portant fact that the eddy vorticity flux and the form
drag nearly cancel, leaving the Rayleigh friction to bal-
ance the Coriolis force on the residual circulation V,
just as in the unperturbed Southern Hemisphere. To
remove the unrealistic dependence on the Rayleigh
friction in midlatitudes, one would have to generate
eddies that break at these latitudes.

6. Conclusions

A heuristic barotropic model has been constructed
to describe the interactions in the upper troposphere
between the Hadley cell and Rossby waves propagating
into the tropics from midlatitudes. The special case is
considered in which the wave forcing is stationary and
has a zonal wavenumber 3 structure.

Even for infinitesimal Rossby wave forcing, the be-
havior of the model is more complex than one might
wish:

e The distribution of the eddy stress on the mean
flow is found to be strongly influenced by the mean
meridional circulation.

¢ The response of the zonal mean flow to this infin-
itesimal stress includes not only the expected deceler-
ation in low latitudes but also acceleration in the sub-
tropics. This subtropical acceleration in response to a
negative low latitude stress persists in the ‘“nearly in-
viscid” Hadley cell model described by Held and Hou
(1980).

¢ The change in the meridional advection of angular
momentum VM /3y = =V (f + Z), where Z is the
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F1G. 15. The balance of terms in the zonal momentum equation,
for the case hy = 0.25.

zonal mean relative vorticity, cannot simply be ap-
proximated by the change in the Coriolis force, but
changes in Z are also important. As a result, the equa-
tion for the response to the infinitesimal stress is third
order, rather than second order, in latitude.

¢ Substantial reflection of the wave propagating into
low latitudes can occur, thereby providing the potential
for resonant behavior. The reflection coefficient can
be estimated by inspecting the latitudinal structure of
the correlation between the eddy zonal and meridional
velocities. '

As the strength of the Rossby wave forcmg is in-
creased, the linear limit remains a useful zeroth-order
guide to some of the behavior observed. Most impor-
tantly, the eddy stresses are still mainly confined to the
wave absorption region in low latitudes; however, de-
partures from the linear prediction can be striking:

e The eddy stress broadens and shifts poleward. (No
quantitative method for computing the resulting dis-
tribution of the eddy stress, other than direct numerical
integration, is proposed; if such a method could be
found it would likely play an 1mportant role in eddy
flux closure theories.)

e Due to this shift in the eddy stresses, the mean
‘modification departs drastically from the linear pre-
diction at wave amplitudes that yield realistic magni-
tudes for the low-latitude eddy-momentum flux diver-
gence. The subtropical acceleration grows as large as
the lower latitude deceleration at large wave ampli-
tudes.

e An instability assomated with wave breaking in
low latitudes results in periodic flow above a critical
wave forcing amplitude. (Only solutions that have the
same threefold symmetry as the forcing have been ex-
amined; other instabilities could emerge when this
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symmetry is relaxed.) Chaotic behavior is found at pa-
rameter settings other than those emphasized in this
paper, particularly near the parameter setting that pro-
duces a resonance with infinitesimal forcing.

~ This model can be viewed from two distinct per-
spectives: as a generalization of Charney-~Devore type
models of stationary wave-mean flow interaction, and
as a model of the upper tropospheric flow in which the
stationary wave is simply a surrogate for the full spec-
trum of Rossby waves generated in midlatitudes. From
the first perspective, the distinctive feature of this model
is that the bulk of the mean flow modification induced
by the wave stresses occurs in low latitudes. Interesting
dynamics should be associated with the resonance, but
the dynamics will have a somewhat different character
than that produced by models in which the mean flow
is altered by the wave-induced stresses in the v1c1n1ty
of the source.

One is tempted to claim, on the basis of these results,
that the bulk of the mean flow modification due to the
presence of a midlatitude mountain should be expected
in low latitudes. In reality, mixing by baroclinic eddies
is likely sufficient to create substantial mean flow mod-
ification at the latitude of the source as well.

From the second perspective, the model has inter-
esting deficiencies. The nearly inviscid Hadley flow has
no vorticity gradient in low latitudes. Observations
show substantial gradients, consistent with a zonal flow
that is far weaker than the momentum conserving limit
in the subtropics. It is natural to assume that it is the
mixing by large-scale eddies that generates these gra-
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FIG. 16. The zonal mean absolute vorticity produced with hg
= ().25 compared with that produced when there is no Rossby wave.
The solid arrow illustrates the mixing that produces this modification.
The dotted arrow illustrates the mixing that would be needed to
increase gradients in low latitudes.
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dients; however, no significant creation of low latitude
vorticity gradients occurs in the present calculation.
Figure 16 compares the time and zonal mean absolute
vorticity distribution produced with large Rossby wave
forcing (/o = 0.25) with that produced by the purely
zonally symmetric model. The initial vorticity gradients
have simply been reduced further in the region, marked
by the solid arrow, in which substantial mixing has
occurred. In order to increase the low latitude gradients,
it is clear that the eddies have to take some of the high
vorticity air that initially resides poleward of the jet
and transfer it into low latitudes, as indicated by the
dotted arrow in the figure. Such behavior cannot re-
alistically be expected from a single steady wave in the
troposphere; more plausibly, this mixing would have
a diffusive character, in which a spectrum of eddies
produce partially overlapping mixing events. It would
be of interest to try to generate mixing of this character
in the present barotropic model, using parameters for
which low latitude vorticity gradients in the axisym-
metric flow are very small. In such a model, the eddies
propagating across the subtropics would be themselves
creating the vorticity gradients that allow for the pos-
sibility of propagation.

APPENDIX

Zonal-Mean Shallow Water Equations

For the full shallow water equations, the evolution
equations for a zonal mean flow driven by eddy fluxes
are

QU= (f+ZW+v'7, (Ala)
a4V =—~fU—-38,®—98,(v?)/2 (Alb)
9,®=-9,(V®+70'¢), (Alc)

where ¢’ is the eddy geopotential. To convert to the
notation of the text, set ¢' = —$ph'. (We ignore the
spherical geometry to simplify the discussion.) Defining
the residual circulation

V¥=V+0¢/d (A2)
and taking ® to be a constant ($,), we have
U= (f+ZW*+1q, (A3a)

oV* =—fU—93,® ~ ay(F)/z — 8,(V'¢')/ B

_ (A3b)
8 ® = —3,(BV'*), (A3c)

where '
Vg =0T~ (f+ 20 /R (Ad)

If one ignores the two last terms on the right-hand side
of (A3b) and the contribution of Z as compared with
f in (A4), these equations are identical to those used
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in the text (after reintroducing spherical geometry and
Rayleigh friction). Therefore, ¥ in (1) should be in-
terpreted as the residual circulation V'*. The neglect
of the final two terms in (A3b) is justified as long as
geostrophic balance is a good approximation for the
zonal flow, as it is in all the calculations described in
the text.
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