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ABSTRACT

Eigenvectors and eigenvalues of the nondivergent barotropic vorticity equation linearized about zonally asym-
metric wintertime mean flows are calculated to determine which barotropic modes might contribute to westward
propagating disturbances observed in nature. Of particular interest are modes that correspond to a recurring
pattern concentrated in the Western Hemisphere with a period of about 25 days reported by Branstator and
Kushnir.

The most unstable modes of November—March means from individual years tend to be westward propagating
and have a structure that is similar to the observed 25-day pattern.

By following the evolution of each Rossby—Haurwitz mode as the basic state is gradually changed from a
state of rest to an observed mean state, it is demonstrated that all but about eight of the Rossby —Haurwitz modes
will be modified beyond recognition by the action of the time mean flow. One of these, the second gravest
antisymmetric zonal wavenumber-one mode (denoted {1, 3} and sometimes referred to as the 16-day wave),
has a structure that bears some resemblance to the observed 25-day pattern, but it is typically neutral. The
structural similarity between this mode and the 25-day pattern is not as pronounced as the similarity between
the most unstable modes and the 25-day pattern. Furthermore, the mode for the observed basic state that {1, 3}
evolves to depends on the path by which the resting state is transformed into the observed state, suggesting that
{1, 3} cannot always be thought of as a distinct mode in the presence of a realistic background. The results
indicate that even if {1, 3} can be considered to exist in wintertime mean flows, it is distinct from the most
unstable modes on those flows.

By slowly changing the basic states that support the westward propagating unstable modes until they are equal
to the climatological January state that earlier studies have shown produces quasi-stationary teleconnection-like
modes, it is demonstrated that the unstable westward propagating and quasi-stationary modes are related to
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each other.

1. Introduction

Perturbations that resemble external Rossby normal
modes have been isolated from large-scale tropospheric
and stratospheric variability in a variety of studies.
Based on this body of work, which has been reviewed
by Madden (1979), Salby (1984), Ahlquist (1985),
and Venne (1989), many westward propagating dis-
turbances in nature are generally thought to be mani-
festations of these classical modes. In this paper we
examine whether this identification continues to be jus-
tified if one takes into account the climatological sta-
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tionary waves with their potential to distort or act as a
source of energy to perturbations.

The best documented connection between Rossby
normal-mode theory and observations is probably that
between the observed ‘‘5-day wave’ and the gravest
symmetric wavenumber one mode {1, 1}.! Of more
meteorological interest is the proposed connection be-
tween the observed ‘‘16-day wave’’ and the second
symmetric wavenumber one mode, {1, 3 }. For exam-
ple, it has been argued by Madden and Labitzke (1981)
that the 16-day wave played a dominant role in the

! The notation for external Rossby normal modes is not uniform.
We use {m, n}, where m is the zonal wavenumber and n — | the
number of zeroes in the pressure from pole to pole. The odd n modes
are referred to as symmetric, having symmetric geopotential and zo-
nal winds but antisymmetric streamfunction. In a nondivergent baro-
tropic model linearized about solid body rotation, {m, n} has a
streamfunction with the horizontal structure of the spherical har-
monic Y, .+
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long-wave variability in the Northern Hemisphere dur-
ing January 1979. [See also Daley and Williamson
(1985) and Straus et al. (1987), who both emphasize
that it is only in the Northern Hemisphere that the ob-
servations resemble the theoretical mode.] Other modes
that warrant being identified by their observed periods
include the antisymmetric ‘‘10-day wave,”’ {1,2}, and
the gravest symmetric wavenumber two mode, the “‘4-
day wave’’ {2, 1}. Some observational studies go well
beyond these more well-known modes. For example,
Venne (1989) identifies the following modes by look-
ing for the predicted westward propagating structures
in the appropriate frequency bands: {1, 1}, {1,2}, {1,
3}, {1, 4}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2},
{3, 3}, {4, 1}, and {5, 1}. Hamilton and Garcia
(1986) provide observational evidence for some of the
n = 0, mixed Rossby—gravity waves, specifically {2,
0} and {3,0}.

The effects of zonally symmetric background winds
on the structure of these modes have been considered
by several authors using both barotropic and fully baro-
clinic models. In some cases these effects have led to
a greater similarity with observed westward propagat-
ing features. The gravest, most rapidly propagating
modes are naturally least affected by these winds. Dick-
inson and Williamson (1972), Kasahara (1980), and
Salby (1981) compute the changes in the structure of
mode {1, 1} caused by the climatological zonally sym-
metric wind field and find only small changes in the
troposphere (although there are very substantial alter-
ations in the middle atmosphere.) Daley and William-
son (1985), Kasahara (1980), Salby (1981), and Wu
and Miyahara (1988) analyze mode {1, 3 }. In northern
winter, these studies predict that it will have larger am-
plitudes in the Northern than in the Southern Hemi-
sphere, by at least a factor of 2.

In the current study we take the natural next step in
the consideration of background influences on Rossby
normal modes. We examine how these westward prop-
agating modes are modified when one linearizes about
a state resembling the zonally asymmetric climatolog-
ical flow. Our motivation arises from the observational
studies of Branstator (1987) and Kushnir (1987), who
have isolated a distinctive westward propagating pat-
tern in the low-frequency variability of the wintertime
troposphere with a period of roughly 25 days. While it
possesses a large wavenumber one component, the pat-
tern has a strongly asymmetric variance, with maxi-
mum amplitude in the North Pacific. Because this ob-
served structure bears some resemblance to mode {1,
3}, we are curious about their relationship. Does mode
{1, 3} evolve into such a more spatially localized pat-
tern as one introduces zonal asymmetries into the basic
state? Are observational studies that attempt to isolate
mode {1, 3}, by starting with a zonal wavenumber
decomposition, viewing the 25-day pattern of Bransta-
tor (1987) and Kushnir (1987) from a different per-
spective?
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Previous investigations of barotropic normal modes
in the presence of asymmetric mean states have con-
centrated on modes that develop because the climato-
logical wintertime upper-tropospheric flow is barotrop-
ically unstable. The longitudinal variations of the flow,
particularly 8U/0x, play a central role in the energetics
of these instabilities (Simmons et al. 1983, referred to
hereafter as SWB). SWB, Zhang (1988), and others
have attempted to relate these instabilities to the equiv-
alent barotropic teleconnection patterns of low-fre-
quency variability in the troposphere, most notably the
Pacific—North American pattern and the North Atlantic
oscillation. Typically, the most unstable modes on
those asymmetric flows that have been studied to date
show little evidence of westward propagation. In sec-
tion 3, however, we demonstrate that when the stability
analysis is repeated for the seasonal mean circulation
observed in individual winters, there are many in-
stances when unstable modes show clear westward
propagation and have structures that resemble the pat-
tern observed by Branstator (1987) and Kushnir
(1987). One particularly notable example of this is the
winter of 1979/80, for which a westward propagating
mode stands out clearly as the most unstable. This hap-
pens to be a year in which the amplitude of the ‘‘25-
day pattern’’ is especially strong.

In section 4 we investigate the structure of Rossby
normal modes in climatological basic states. We at-
tempt to determine which Rossby modes should be
thought of as distinct from the westward propagating
unstable modes. Evidence comes from continuously
changing the background state from one of rest to an
observed time mean asymmetric flow and identifying
those modes of the resting state that can be tracked,
with modest changes in structure, to modes of the ob-
served flow. Those modes that are insensitive to the
background flow can be considered to be the Rossby
normal modes that retain their identity in the presence
of stationary waves. Similarly, using the flow from in-
dividual winters, like 1979/80, we ask whether the
dominant unstable mode from an observed flow can be
tracked back to mode {1, 3} of the resting state or
perhaps to some other mode. Finally, we trace the evo-
lution of the archetypical teleconnection mode of SWB
as the basic state is gradually modified to determine
whether it is related to any of the other modes we ex-
amine. In this way we attempt to unify the framework
in which classical external Rossby modes, unstable ex-
ternal westward propagating modes, and external
quasi-stationary teleconnection modes are found and to
determine how these three types are interrelated.

2. The model

We use the simplest nondivergent barotropic model
for our investigation. The choice of a barotropic, rather
than fully baroclinic, model is based on the large num-
ber of eigenvalue calculations required for this study
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TABLE 1. Period and e-folding time in days for modes of
the nondivergent barotropi¢ vorticity equation linearized about
November—March mean 300-mb streamfunction for various years.
Second and third columns are for fastest-growing modes. Fourth and
fifth are those modes to which the most unstable mode of SWB
tracks. (The asterisk denotes modes used to construct CEOF1 of Fig.
1; “*same’’ indicates that the continuation of the most unstable SWB
mode matched the most unstable mode for that winter.)

Most unstable Continuation of SWB1

Year Period e-folding time Period e-folding time
1976/77 24.3 8.5% same same
1977/78 19.2 13.3* 40.0 154
1978/79 426 7.4* same same
1979/80 26.4 7.6* same same
1980/81 314 11.8* same same
1981/82 119.0 12.0 345 17.2
1982/83 ®© 8.0 428 58.5
1983/84 ®© 7.2 172.9 64.8
1984/85 30.1 6.8* 29.4 8.0
1985/86 45.5 6.0* same same
1986/87 30.5 7.3* same same
1987/88 23.2 7.8% same same
1988/89 o0 8.0 439 11.1
1989/90 336.1 11.0 same same
1990/91 39.7 11.6* same same

and the extra difficulty of tracking modes, as one varies
a parameter, in the presence of the plethora of baro-
clinic modes. The choice of a nondivergent barotropic
model, which was made to facilitate comparisons with
SWB, also requires comment, since a shallow water
model with an equivalent depth of 10 km is the appro-
priate model for external modes on a state of rest. For
a resting basic state, a nondivergent model distorts the
structure of the Rossby modes somewhat and artifi-
cially increases their westward phase speed, although
the divergence has a smaller effect on low-frequency
modes. The quasi-geostrophic external mode disper-
sion relation in vertical shear (Held et al. 1985) warns
us, in any case, that one cannot justify the choice of a
single equivalent barotropic level independent of fre-
quency. Therefore, for the purpose of computing the
effects of mean flow on these waves, the arbitrariness
in the choice of the level makes the nondivergent and
shallow water models equally suspect. As explained in
section 4b, we also have performed a few calculations
using a quasi-geostrophic spherical model with differ-
ent deformation radii as a probe of the robustness of
our conclusions, but fully baroclinic calculations in
some future study will be required for more definitive
results.

Our model is discretized in terms of a spherical har-
monic basis that is truncated triangularly at 21. A bi-
harmonic diffusion term with coefficient 2 X 10'
m* 572 is added to control the fine scales. The eigen-
vectors and values for the model are calculated using
standard EISPACK routines.
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3. Westward propagating unstable modes

Branstator ( 1987 ) suggested that recurring westward
propagating barotropic features whose zonal structure
is not a simple harmonic might be modes of a linear
system that is influenced by the stationary waves. Be-
cause these features are prominent in nature, one might
expect them to correspond to rapidly growing modes
of the system. However, past instability studies have
found no such mode. While the most unstable mode
analyzed by SWB for January climatological 300-mb
flow was reminiscent of certain teleconnection patterns,
it had no apparent westward propagation. For Decem-
ber—February climatological conditions, Zhang (1988)
and Anderson (1991) did calculate a westward prop-
agating unstable mode, but its period was twice that
reported by Branstator (1987) and Kushnir (1987) in
their observational studies. We have tried November—
March climatological conditions and found a mode
much like Zhang’s (1988).

Simmons et al. and Anderson (1991) have reported
instability calculations with the barotropic vorticity
equation to be rather sensitive to reasonable changes in
the basic state. For example, spectra calculated for var-
ious basic states equal to the mean states of individual
winters can be qualitatively and quantitatively differ-
ent. By including the effects of interannual variability
in the modal calculation, we have found that unstable
westward propagating modes with temporal and struc-
tural characteristics like those of the observed 25-day
pattern can be produced. We have calculated the fastest
growing modes for background states derived from No-
vember—March mean conditions for each of the 15
winters 1976/77 through 1990/91.2 Based on their ei-
genperiods, which are listed in Table 1, these divide
into two categories, those with periods longer than 100
days (and thus, essentially stationary) and those with
periods less than 100 days. The average period of the
ten modes in the latter category is about 29 days, which
is fairly similar to the period of Branstator (1987) and
Kushnir’s (1987) observed pattern, especially when
one considers the uncertainties in our model mentioned
in section 2. Furthermore, the structures of these ten
modes have a good deal in common with each other
and with the observed 25-day pattern. This can be seen
by using the method described in appendix A to con-
struct synthetic data that represents an atmosphere
whose evolution is completely determined by these ten
modes and then performing a complex empirical or-
thogonal function (CEOF) analysis (Barnett 1983) of
the data. Sixty percent of the variance of the synthetic

2 All basic states used in our study are based on the 300-mb stream-
function as derived from the operational analyses of the National
Meteorological Center (1976/77 through 1984/85) and the European
Centre for Medium-Range Weather Forecasts (1985/86 through
1990/91).
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FiG. 1. Leading CEOF of data artificially generated from the ten fastest-growing modes of the nondivergent barotropic vorticity equation
linearized about various November—-March 300-mb streamfunction means between 1976/77 and 1990/91. Shown are two phases, separated
by 90 degrees, of the CEOF. The structure in panel (a) tends to lead that in panel (b).

data can be explained by a single CEOF, which is con-
centrated in the Northern Hemisphere; it is shown in
Fig. 1. By definition, the CEOF represents a pattern that
evolves from the structure of Fig. 1a to that of Fig. 1b
and then to a structure like that of Fig. 1a but of the
opposite polarity, and so on. Consisting of a westward
propagating disturbance whose midlatitude variance is
concentrated in the Western Hemisphere, this pattern
is quite similar to the observed 25-day mode. In fact,
after transforming the CEOF to geopotential heights
using the linear balance equation, it has a complex pat-
tern correlation® of .68 with the 25-day mode that Bran-
stator (1987) isolated from 21 winters of Northern
Hemisphere analyses (his Fig. 13).

As listed in Table 1, the growth rates of the ten
modes that contribute to the pattern of Fig. 1 differ by
as much as a factor of two. Perhaps even more impor-
tant, for certain of these winters, the growth rate of the
most unstable mode is very dominant over other modes,
suggesting that its role in determining the structure of
that winter's long-wave variability might be more read-
ily apparent than is typically the case. The clearest re-
sult we have obtained occurs for the winter of 1979/
80. Figure 2 shows the spectrum obtained, as in SWB,
by linearizing a nondivergent barotropic model about
the 300-mb flow in this particular winter. A single
mode stands out very clearly in the growth rate spec-

* The complex pattern correlation of two complex fields ® and ¢
is [®*, y1/([®*, ®I[Y*, ¥1)'?, where [, -] is the standard inner prod-
uct, and the asterisk stands for complex conjugation.

trum. At 7.6 days, its e-folding time is one-quarter that -
of its nearest competitor. For no other winter’s basic
state does the most unstable mode have such an advan- .
tage. The structure of this mode, whose variance is pri- .
marily in the Northern Hemisphere, is shown by the
two streamfunction plots in Fig. 3, with (b) following
(a) by one quarter period. This mode has many simi-
larities to the CEOF of Fig. 1, which was based on ten
unstable modes. It also bears a strong resemblance to
a westward propagating feature that was observed dur-
ing the winter of 1979/80, the winter that Branstator
(1987) found to have the clearest signal of the 25-day
oscillation among the many years examined. This re-
semblance is apparent if Fig. 3 is compared with Fig.
4, which contains the leading CEOF of twice daily 300-
mb hemispheric streamfunction from this winter only.
The phases, separated by one-quarter period, about 6
days, have been chosen so as to emphasize the simi-
larity with Fig. 3. The global complex pattern correla-
tion that measures the similarity between Figs. 3 and 4
is .61. In all three displayed renditions of this mode
(Figs. 1, 3, and 4), one phase (b) resembles the PNA
pattern (Wallace and Gutzler 1981), but the westward
propagation in the Pacific sector is distinct from the
standing structure generally associated with the PNA.
The strongly unstable, westward propagating modes
that are captured by our barotropic model with 300-mb
basic states taken from many individual winter mean
flows seem to be likely counterparts to the westward
propagating 25-day pattern of observations. On the
other hand, in the introduction we pointed out that be-
cause of similarities in structure and timescale, the 25-
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FiG. 2. Eigenspectrum of the nondivergent barotropic vorticity
equation linearized about the mean Nov—Mar 1979/80 300-mb
streamfunction plotted on linear scales. Real parts of eigenvalues,
which represent frequency, are plotted on the abscissa, while imag-
inary parts, which represent growth and decay, are plotted on the
ordinate. Except for pure imaginary eigenvalues, for every eigen-
value there is a corresponding one that is identical except for the sign
of the real parts; these are not plotted. The asterisk indicates the
eigenvalue of the mode that {1, 3} is connected to when tracked from
Z to the mean of Nov—Mar 1979/80. The arrow points to the eigen-
value of the most unstable mode. One high frequency, strongly
damped eigenvalue is off-scale, and not plotted.

day pattern might be related to Rossby mode {1, 3}.
These two notions are not necessarily contradictory, for
it may be that under the influence of the stationary
waves, mode {1, 3} may become an unstable mode. In
the next section we address this issue by considering
how a Rossby mode changes as the basic state of the
linear model is modified.

4. Mode tracking
a. Method

To determine the influence of nonresting basic states
on the structure and frequency of Rossby modes, we
have used a method that we refer to as mode tracking,
a technique sometimes used in fluid mechanics and
other fields to determine how a mode’s structure is
modified as one changes a system parameter. [For ex-
ample, Salwen et al. (1980) employed it to find how
the leading modes in Poiseuille pipe flow are affected
by the Reynolds number.] One calculates the modes of
a system for a series of configurations, each of which
is only slightly different from its neighbors and
“‘tracks’’ how the modes of interest gradually change
as the system configuration is changed. In our appli-
cation, we gradually change the basic state of our linear
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model. For example, we start with the modes of the
model when it is linearized about rest and determine
how they change as the basic state is gradually modified
until it consists of a climatological flow. The mathe-
matical foundation for this technique, as well as many
of the difficulties that can arise, are discussed in ap-
pendix B.

To understand the workings of the procedure, con-
sider two basic states A and B and the corresponding
operators obtained by linearizing the barotropic vortic-
ity equation about these states, L, and L. One can try
to identify an eigenmode of L, with an eigenmode of
Ly by computing the spectrumof L, = eL, + (1 — €)Lg
[or equivalently L, for S. = €A + (1 — €)B] for values
of € between 0 and 1. Starting with L, and focusing on
a particular eigenvalue, one chooses a small ¢ and
searches for that eigenvalue of L, closest to the eigen-
value in question. One then uses this eigenvalue as the
point of comparison for the next increment in ¢ and
proceeds in this way toward L. Increments in e are
chosen to be small enough that there is no danger of
accidently jumping to the track of a neighboring eigen-
value. (In our case we insist that the closest eigenvalue
be at least five times closer than the second closest ei-
genvalue at each step of the procedure. As a further
guard against track jumping, we examine plots of the
tracked eigenvalues and the second closest eigenval-
ues.) Dikiy and Katayev (1971) and Kasahara (1980)
tracked several modes from a resting to a zonally sym-
metric state. Zhang (1988) tracked some of the most
unstable modes on zonally asymmetric basic states to
zonally symmetric flows.

As pointed out in the discussion in appendix B, the
modes for operators L, and L, that mode tracking re-
lates to each other can be path-dependent. That is, if
one tracks a mode for L, to some operator, L¢, and then
continues to track that mode to Lz, there is no guarantee
that the final mode in the track will be the same if one
had instead tracked it from L, to L.+ (distinct from L)
and on to L. Because of this possibility, to definitively
pair eigenmodes using this procedure would require
that all possible paths through basic-state phase space
be considered. Not only is this impossible, but since
most paths are of no physical relevance, such an all-
encompassing approach would not be desirable for our
purposes. For example, we consider paths through
states with wind speeds orders of magnitude larger than
those observed in nature to have no bearing on the is-
sues we are interested in. Instead, as described below,
whenever we wish to relate the modes for two opera-
tors, we consider several paths through phase space that
we think are physically interesting. These will be paths
consisting of states that are physically realizable (like
observed time means), or that earlier modal studies
found to be relevant to observed perturbations (like
resting and zonal mean observed flows) or that are lin-
ear combinations of these two types. For some modes
our results are insensitive to the paths employed. Be-
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FiG. 3. Two phases of the fastest-growing eigenmode for the Nov—Mar 1979/80 300-mb basic state.
The structure of (a) leads that of (b) by one-quarter period.

cause we have not tried all physically relevant paths,
we cannot be certain that our results would not change
if some other path were used; but since we have tried
many paths, we think it is valid to consider the modes
connected by these paths as being related. For other
modes we find path sensitivity of varying degrees. Even
in these cases we think that it is meaningful to consider

two modes to be related to each other in the sense of
tracking, provided one recognizes that this relationship
is only valid in certain regions of phase space. The
more paths that can be shown to connect two modes,
the more relevant it is to consider them to be related. -
So, for those Rossby modes whose tracks turn out to
be highly path-dependent when they are tracked from

FiG. 4. Two phases, separated by 90 degrees, of the leading complex empirical orthogonal function of daily 300-mb streamfunction
during Nov—Mar 1979/80. The structure in panel (a) tends to lead that in panel (b).
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rest to a climatological state, the concept of Rossby
normal modes in the presence of climatological waves
is not very useful. For Rossby modes that are not sen-
sitive to the path taken, it is meaningful to speak of
Rossby modes in the presence of observed background
waves, though their structure and frequency have been
modified. In some cases the concept of a contorted
mode may only make sense for sectors of phase space.

b. Rossby mode tracks

Figure 5a shows the eigenspectrum of the nondiver-
gent barotropic vorticity equation linearized about a
state of rest (state Z). The imaginary part of the eigen-
values, which represents growth or decay and is plotted
on the ordinate, is due to the presence of diffusion,
which separates modes with different values of n. The
wavenumber-one 5-, 10-, and 16-day modes— {1, 1},
{1, 2}, and {1, 3} —are marked by asterisks. Figure
5b is an analogous plot when the basic state is the cli-
matological 300-mb streamfunction averaged over the
months November—March (state W). Note the very
different character of this spectrum from that for the
resting state: modes with substantial growth rates ap-
pear and strongly damped high-frequency modes are
present. Using the procedure outlined above, we have
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tracked modes {1, 1}, {1,2}, and {1, 3} of Fig. 5a to
the modes marked on Fig. 5b.

Tracks of these three eigenvalues as the basic state
is continuously deformed from Z to W are shown in
Fig. 6. We first introduce the zonal mean flow, without
any zonal asymmetries; this produces a shift in fre-
quencies of the modes, but no growth or decay. Intro-
ducing the zonal asymmetries, mode {1, 1} becomes
very weakly unstable, while mode {1, 2} becomes
weakly damped. Mode {1, 3} is weakly unstable for
low amplitude asymmetries but becomes weakly stable
by the time W is reached. The growth or decay is too
weak to have any physical significance in any of these
cases.

The structure of mode {1, 1} is only slightly affected
by the mean flow. The complex correlation between its
structure in states Z and W is C = .99. Mode {1, 2} is
more significantly modified, with C = .72, but its un-
perturbed structure, zonal wavenumber one with sym-
metric streamfunction about the equator and one node
in each hemisphere, is still evident as shown in Fig. 7.

Mode {1, 3} is more dramatically altered. Its two
phases on state W are shown in Figs. 8c,d. To help
appreciate how this structure emerges, we also show,
in Figs. 8a,b, the corresponding plot for a basic state
with the same zonal mean flow as W, but with the eddy
amplitudes at 70% of their W values. The correlation

growth

0.0 t—
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FiG. 5. Eigenspectra of the nondivergent barotropic vorticity equation linearized about (a) rest
and (b) climatological Nov—Mar 300-mb streamfunction. Each is plotted on a linear scale. Asterisks
indicate eigenvalues of the eigenmodes that tracking connects to modes {1, 1}, {1, 2}, and {1, 3}.
Of these three, the {1, 1} mode has the highest frequency on each panel, and the {1, 3} mode has
the lowest. The arrow points to the fastest-growing mode for the climatological basic state. At the
bottom of each panel, the region bounded by dashed lines is reproduced with a stretched ordinate.
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FIG. 6. Eigenvalue tracks, plotted with dots of increasing size, start-
ing from rest (arrow), and ending at the climatological Nov—Mar
300-mb basic state for (right) the {1, 1} mode, (center) the {1, 2}
mode, and (left) the {1, 3} mode. Dot spacing in these figures does
not reflect the increments actually employed in the mode-tracking
algorithm.

with the mode on a state of rest drops from .72 when
the eddy amplitudes are at the 70% level to .61 for the
full amplitudes.

Tracking all modes in this way, we find that the
modes listed in Table 2 can be tracked to the climato-
logical mean wintertime 300-mb flow, with C > .6.
These are the Rossby modes that are distorted weakly
enough that they retain their identity in the presence of
climatological conditions. If, rather than tracking each
of the modes in Table 2 from rest to W, we had cal-
culated which of the W eigenvectors were strongly cor-
related with the 13 Z modes of Table 2, we would have
matched the same i)airs of modes. Thus, in spite of
potential tracking difficulties like those discussed in ap-
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FiG. 7. Eigenmode for the climatological Nov—Mar 300-mb basic
state (W) to which the mode {1, 2} tracks. Two phases of the mode,

separated by 90 degrees, are shown.
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FiG. 8. Two eigenmodes in the track of the mode {1, 3} from rest
to the climatological Nov—Mar 300-mb basic state (W). (a,b) Two
phases of the mode when the basic-state waves have 70% of their
full value. (c,d) Two phases of the mode when the basic-state waves
have 100% of their full value.

pendix B, in these cases mode tracking has produced.
reasonable results. As summarized in Table 3, the effect
of the nonresting basic state on the periods of these
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modes is appreciable, especially for the lower fre-
quency modes. The zonal mean component of W is
primarily responsible for frequency shifts, just as we
saw in the tracks of Fig. 6.

[As recorded in Table 2, we find that the gravest
antisymmetric mode (r = 0) is not significantly dis-
torted for all m < 5. These waves have largest ampli-
tude in the Tropics, especially for the larger values of
m. In the presence of divergence, these antisymmetric
modes are mixed-Rossby gravity waves, and the non-
divergent model distorts them appreciably. We do not
discuss them further here.]

Most of the Rossby modes that do not meet the .6
criterion of Table 2 are related to continuum modes, a
class of modes discussed in appendix B. These modes
lose their identity even without the influence of basic-
state asymmetries. By comparing the phase speeds of
normal modes to the range of basic-state wind veloci-
ties (as in Kasahara 1980), we have found that for the
zonally symmetric W background state, all but 38 of
the modes are continuum modes. (This number of
‘“‘discrete’” modes is likely to be sensitive to resolu-
tion.) Thus, most of the eigenvalues in Fig. 2 are related
to approximations to these continuum modes, which
have no physical significance when considered individ-
ually. Such modes have singular structure and thus
would not have structures similar to Rossby modes and,
hence, do not appear in Table 2. Consequently, the ba-
sic-state asymmetries in W are at most responsible for
reducing the number of modes retaining their identity
from 38 to 13, the number of entries in Table 2.

TABLE 2. Information about modes of the barotropic vorticity
equation that are connected by mode tracking to Rossby modes with
indices m, n. ‘‘Correlation’’ is the complex correlation between the
structure of the Rossby mode and the mode it tracks to in W. Only
cases for which this correlation is greater than 0.6 are listed.
‘‘Average correlation’’ is the average of complex correlations
between a Rossby mode and the modes it tracks to in each of 15
states based on individual winter means. Only those winters where
the track continued to W end at the same mode at which a track
directly from Z to W ends are included in the average. ‘‘Number of
winters’’ is the number of winters with tracks that, when continued
to W, end at the same mode as a Z to W track.

m n  Correlation  Average correlation ~ Number of winters
1 0 1.00 1.00 15
1 1 .99 99 15
1 2 72 .63 8
1 3 .61 41 7
2 0 1.00 1.00 15
2 1 95 .87 13
2 2 83 .68 11
2 3 61 .37 5
3 0 99 99 15
3 1 90 .85 7
4 0 90 .37 13
4 1 85 ) 10
5 0 75 .84 12
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TABLE 3. Column Z contains the periods in days of Rossby modes
with indices m, n. Column [W1] contains the periods of these modes
when they are tracked to a basic state equal to zonal mean W. Column
W contains the periods of these modes when tracked to W.

m n z [W] w

1 0 1.0 1.0 1.0
1 1 3.0 2.9 29
1 2 6.0 9.0 8.9
1 3 10.0 18.2 16.6
2 0 1.5 1.7 1.7
2 1 3.0 33 3.3
2 2 5.0 8.7 8.4
2 3 75 20.2 18.7
3 0 2.0 2.5 2.5
3 1 33 4.6 4.6
4 0 24 35 - 35
4 1 3.8 6.8 6.8
5 0 3.0 45 42

In section 3 we noted that year to year variability in
the mean circulation can appreciably affect the baro-
tropic normal modes. As a test of the robustness of our
results with the W basic state and to check for path-
dependence, we have tracked each of the modes listed
in Table 2 from rest to each of the mean flows from the
winters of 1976/77 through 1990/91 and then on to W.
The paths through phase space for these tracks consist
of straight line segments from Z to the zonal mean win-
ter mean, from there to the complete winter mean, and
then to W. Entries in Table 2 report the number of such
tracks that end at the same W mode at which the tracks
directly from Z to W end. The larger this number, the
larger the region of phase space for which the notion
of that mode existing is valid. Some modes, like mode
{1, 1},* are completely path-independent. Others, like
mode {1, 3}, are well defined less than half the time.
(The winter of 1979/80 is one of the states for which
mode {1, 3} is not well defined by our criterion.) As
an indication of the robustness of the structure of a
mode, Table 2 lists the average complex correlation
between the structure of each resting mode and the
structures it tracks to in the individual winters for which
the mode can be defined. Generally speaking, those
modes that are found not to be definable in many win-
ters are also strongly modified in the winters when they
can be defined.

From the tracks summarized in Table 2, we can de-
termine which of the Rossby normal modes have the
potential to contribute to the observed 25-day westward
propagating pattern. None of these modes tracks to the
fastest-growing modes presented in section 3. In fact,

4 Where it is unambiguous, we use the term ‘‘mode {m, n}”’ to
refer to modes that are not Rossby normal modes of a resting state,
but instead are modes of a nonresting basic state that are related to
resting state mode {m, n} by tracking.
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in nearly all cases, these modes track to modes that are
essentially stable, either for W or for basic states taken
from individual winter means. (For example, the ei-
genvalue that mode {1, 3} is associated with when it
is tracked from Z to the 1979/80 state is marked in Fig.
2.) Thus, they do not appear to be related to the unstable
modes that we found to be structurally similar to the
25-day westward propagating pattern of observational
studies. However, the modes for a given basic state are
not necessarily orthogonal, so this does not preclude
the possibility that one of the modes of Table 2 might
also have a structure similar to the observed 25-day
mode. As Branstator (1987) pointed out, the observed
25-day mode has much in common with mode {1, 3},
so we have examined it carefully.

Even if we restrict our attention to those seven win-
ters (Table 2) when the tracks of mode {1, 3} are all
related to each other, there is variability in its structure
in different wintertime basic states. The leading CEOF
of synthetic data constructed from the modes linked to
{1, 3} for these seven winters yields the pattern of Fig.
9. It explains 52% of the variance of the synthetic data.
Like the mode of Branstator (1987) and Kushnir
(1987), its variance is concentrated in Northern Hemi-
sphere high latitudes and in the Western Hemisphere.
When the complex correlation between linear balanced
heights for this pattern and the 25-day pattern of Bran-
stator’s Fig. 13 is calculated, it turns out to be .51. Thus,
it is not as similar to the observed phenomenon as the
most unstable modes (whose correlation with the ob-
served pattern was .68). Two of these seven modes are
more than marginally unstable, but the growth rate for
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these modes is only about one-half the growth rate of
other available modes.

To check the robustness of these results, we have
also performed calculations with a quasigeostrophic
barotropic model with finite deformation radius. For
the W basic state, one can lengthen the period of the
{1, 3} mode to roughly 20 days (with the rather ex-
treme choice of a 3000-km deformation radius), and
the zonally asymmetric structure of the mode is en-
hanced. However, with this finite deformation radius,
the {1, 3} mode, which continues to be distinct from
the model’s most unstable mode, is no more similar to
the 25-day structure documented by Branstator (1987)
and Kushnir (1987) than it was for an infinite defor-
mation radius. Furthermore, the longer period achieved
with the finite deformation radius may be invalid. In
multilevel model calculations like those of Daley and
Williamson (1985), where a deformation radius need
not be explicitly chosen, the period of mode {1, 3} is
about 17 days. As documented in Table 3, our results
suggest that background waves are likely to actually .
shorten this period. Thus, most evidence suggests that
uncertainties about the appropriate specification of a |
deformation radius do not influence our basic result that
mode {1, 3} is distinct from the unstable barotropic
modes and is not as similar to the 25-day pattern as are
the unstable modes.

Based on its natural period, mode {2, 3 } would seem '
to be the only other entry in Table 2 that might be
related to the observed 25-day pattern. There are only
five individual winters in which mode {2, 3} exhibits
path-independence, and on average during these win-

FIG. 9. Leading CEOF of data artificially generated from those seven modes to which the 16-day wave tracks for basic states representing
the winters of 1980/81, 1983/84, 1985/86, 1986/87, 1987/88, 1988/89, and 1989/90.
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ters, its structure is even less similar to the observations
than are those modes that are related to the {1, 3}
mode. For one of these five, the mode is significantly
unstable and has a structure that is very similar to the
25-day mode.

c. Unstable mode tracks

As a final attempt to relate the 25-day pattern to
Rossby normal modes, we determine whether the most
unstable modes of wintertime flows that do seem to
contribute to this observed pattern can be consistently
tracked to any Rossby mode. When traced back to a
zonally symmetric state, and then to a state of rest, these
unstable modes evolve to different Rossby modes de-
pending on which winter state is used as the initial state.
Of these 16 tracks, one for each of the winters we have
considered plus W, eight evolve into the continuous
spectrum, three end at Rossby mode {2, 4}, two end
at mode {1, 4}, two at {1, 5}, and one at {2, 3}.
Though the most unstable modes on different winter
mean flows track to several Rossby modes, many of
them track to each other when the basic state from one
winter is gradually deformed to that of another winter.
Thus, links between the most unstable modes and
Rossby modes are highly path dependent. The impor-
tance of the continuum also prevents us from conclud-
ing that the most unstable modes emerge from the in-
teraction between the forced stationary waves and a
small, well-defined set of Rossby—Haurwitz modes.

Although there is no single Rossby mode to which
unstable modes of individual winters are always closely
related, these modes are closely linked to a well-known
eigenfunction, namely, the most unstable mode of Jan-
uary 300-mb climatological flow studied by SWB. As
listed in Table 1, when the most unstable mode from
the SWB basic state (which is based on a different da-
taset from that used in our winter mean states) is
tracked to W and then to each of the individual winter
mean states, in nine cases it ends at the most unstable
mode. A cross-check of these results with the modes
used to construct CEOF1 of Fig. 1 shows that 80%
track to SWB’s prime mode. Hence, this pattern, which
we have seen may be related to the observed 25-day
mode, can equally well be thought of as being the result
of the most unstable modes of individual winter mean
flows or as being the mode that SWB’s most unstable
mode evolves to under the influence of wintertime
mean states.

5. Conclusions

The primary goal of our study was to determine
whether the ‘‘25-day pattern’’ isolated by Branstator
(1987) and Kushnir (1987) could be related to Rossby
normal mode {1, 3}, the so-called 16-day wave, if the
effects of stationary background waves on this mode
were taken into account. Our results do not rule out the
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possibility that mode {1, 3}, as contorted by the quasi-
stationary flow, may have contributed to the distur-
bance isolated in these studies, but they suggest that a
second class of normal modes is likely to have made a
contribution of at least equal importance. The westward
propagating 25-day pattern is very well defined in the
winter of 1979/80. A stability analysis for the 300-mb
flow in 1979/80 yields a spectrum with one unstable
mode distinguished clearly from all others by its large
growth rate, and the structure of this mode resembles
the observed 25-day pattern. For two reasons, our find-
ings indicate this unstable mode should be considered
as being distinct from mode {1, 3}. First, when the
basic state is continuously modified, mode {1, 3} on a
state of rest tracks to an essentially neutral mode on the
1979/80 wintertime flow. This is true for all of the
paths through basic-state phase space we have tested.
Second, the 1979/80 state is a flow for which mode {1,
3} is not even well defined because tracks of {1,3} to
this state are markedly path-dependent. These same
facts are also basically true when 15 winter states are
considered. The most rapidly growing modes for many
of these states are westward propagating and have a
common structure that resembles the 25-day pattern.
Mode tracking provides no evidence that these unstable
modes are related to the {1, 3} mode. These unstable
modes then are an attractive alternative to mode {1, 3}
as a theoretical counterpart to the 25-day pattern.

The evidence that unstable modes could be largely
responsible for the 25-day pattern is balanced some-
what by the fact that the {1, 3 } mode is near the bound-
ary of the set of Rossby normal modes that can be
tracked unambiguously to wintertime mean flows. Its
structure is altered substantially, and this alteration dif-
fers from year to year. In 8 of the 15 years examined,
we found evidence of path-dependence for mode {1,
3}, but for those winters when a continuation of mode
{1, 3} does not seem to be path-dependent, we found
its largest amplitudes were over the Western Hemi-
sphere, just as in the 25-day pattern. Based on pattern
correlations, however, it is not as similar to the 25-day
pattern as are the most unstable modes, and it does not
have the advantage of being strongly unstable.

In addition to structural differences, modes linked to
mode {1, 3 } and westward propagating unstable modes
have distinct periods. For all of the winter basic states
in our study, the modes that mode {1, 3} tracks to have
periods between 15 and 21 days. This result is sensitive
to the choice of vertical level that we have used and to
the introduction of a finite-deformation radius, but
based on studies with multilevel linear models, the
range of periods derived in our study seems reasonable.
Thus, the {1, 3 } mode appears to have a characteristic
timescale that is shorter than that of the observed 25-
day pattern. The unstable modes on the other hand have
a broad range of periods. For the 15 winter states con-
sidered, for the most part the eigenperiods were evenly
distributed between 23 and 46 days. Hence, these
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modes provide no explanation for the preferred 25-day
timescale found by Branstator (1987) and Kushnir
(1987), though Ghil and Mo’s (1991) report of en-
hanced variance at periods of both 23 and 48 days for
a similar westward propagating structure indicates that
arange of periods may be consistent with observations.

Though from the standpoint of structure and insta-
bility the family of most unstable modes has some char-
acteristics that makes it more attractive than mode {1,
3} as an explanation for the 25-day pattern of Bransta-
tor (1987) and Kushnir (1987); any observational
study of large-scale westward propagating perturba-
tions concentrated in the Western Hemisphere is likely
to have contributions from both kinds of modes. If one
normalizes the ten most unstable modes that contribute
to the CEOF of Fig. 1 and then averages the squared
spherical harmonic coefficients across those ten modes,
the spatial power spectrum of Fig. 10 results. The larg-
est value in this spectrum corresponds to the spherical
harmonic that is mode {1, 3} for a resting basic state.
Given this large component, as well as a near overlap
in the range of periods that we found for the most un-
stable modes and for mode {1, 3 }, most analysis tech-
niques will not be able to separate the westward prop-
agating modes from modes linked to mode {1, 3} . For
example, Ghil and Mo (1991) found 17 and 23 days
to be preferred timescales for Northern Hemisphere
winter intraseasonal variability but reported the simi-
larity in timescales hindered their efforts to separate the
former signal from the data. An analysis like Madden
and Speth (1989) that keys on zonal wave one might
tend to emphasize mode {1, 3}, while a study like
Branstator (1987) that attempts to maximize variance
explained might be more influenced by the unstable
modes. Indeed, such a distinction could explain the
shorter timescales in the former study.

Our study finds that when linearizing about zonally
asymmetric flows in a barotropic model on the sphere,
there are two very distinct types of robust normal
modes. As we showed in section 4, there are several
modes that retain the structure and distinct westward
propagation of Rossby normal modes on a resting back-
ground. The modes of this sort that we found (Table
2) are in close agreement with the Rossby and mixed
Rossby—gravity modes that Venne (1989) and Ham-
ilton and Garcia (1986) found evidence of in nature.
The other type consists of the unstable modes of the
kind discovered by SWB. These modes bear no simple
relationship to resting state modes, at least in the sense
of tracking. However, they are robust enough that they
can usually be tracked from one winter’s mean flow to
another without exhibiting path dependence even while
their phase speeds change between near stationarity and

distinct westward propagation. They cannot be tracked -

to modes of the resting state in any simple way; indeed,
they often track to the continuous spectrum if the sta-
tionary -eddies are removed while retaining the zonally
symmetric flow. The mode {1, 3} falls in neither of
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FiG. 10. Average squared amplitude as a function of Rossby mode
index (n, m) (see footnote 1) for the ten fastest-growing modes used
in the construction of Fig. 1. The thickest line is for m = 1, the second
thickest line is for m = 2, etc.

these classes. It never tracks to the most unstable mode,
yet the tracking still exhibits path dependence in more
than half of the cases analyzed.

Our results, together with those of SWB, Frederick-
sen (1983), and others, suggest how sensitive the struc-
ture and timescale of unstable barotropic modes can be
to modifications to the background state. After all, it
was because we used individual November—March
means rather than climatological January means that
our unstable modes tended to be westward propagating
rather than quasistationary like SWB’s unstable modes.
Our investigation has not considered what factors de-
termine whether the most unstable mode for a partic-
ular basic state will be westward propagating or quasi-
stationary. Zhang (1988) found that quasi-stationary
modes become westward propagating when he severely
reduced the amplitude of basic-state waves, as expected
for modes that track to the discrete rather than contin-
uous part of the spectrum. Preliminary calculations we
have performed suggest that subtler modifications to
the phase and amplitude of very large scale stationary
waves is enough to cause this transition. From the re-
cent work of Nakamura (1994), we know that there
does exist a strong relationship between the seasonal
mean flow in a particular winter and the variance of the
intraseasonal, low-frequency variability in that winter.
One is tempted to try to explain this relationship by the
differing barotropic instabilities of the seasonal-mean
flows in different winters. We have not attempted to
verify such a relationship and are wary of placing too
much emphasis on the structure of the most unstable
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mode in individual winters. Yet, at least in the one sea-
son for which the most unstable barotropic mode stands
out most clearly from all others, namely winter 1979/
80, this mode appears to leave its mark on the observed
variability.

From the perspective of a modal decomposition, it
is clear that there are several distinct low-frequency
““modes’’ in the atmosphere; their structure is sensitive
to the basic state, and their excitation is dependent on
the details of the forcing or interaction with higher fre-
quencies. A different perspective may result from re-
turning to linear initial value problems with asymmetric
basic states and distinguishing between those states and
initial conditions that excite westward propagation ver-
sus those that excite quasi-stationary patterns. As one
moves away from normal modes, however, one loses
any simple capacity for explaining spectral peaks in
frequency.
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APPENDIX A
Synthetic Data

To make it possible to determine what structures a
family of N complex eigenfunctions have in common,
we construct a dataset that represents an atmosphere in
which each of the family members make an equal con-
tribution and no other patterns are present. The dataset
consists of 12 000 maps. Maps k = 1, 12 000/N are
equal to

ﬂ'(k - 1) ay . ﬂ'(k - 1)
T ;  sin T ,

where (" and 4" are the real and imaginary parts of
the first complex eigenfunction and T’ is its natural
period expressed in days. This represents the neutral
evolution of the first eigenfunction. Similarly, the re-
maining maps are assigned values based on the neutral
evolution of the rest of the N eigenfunctions. Equal
contributions from the eigenvectors are assured by nor-
malization of the eigenvectors and by letting each one
contribute to the same number of maps. The number

Y cos
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12 000 is somewhat arbitrary but has been chosen to
be large enough that each eigenvector undergoes sev-
eral oscillations in the synthetic dataset. This ensures
that discontinuities at the transitions points do not have
a significant impact on the subsequent CEOF analysis
of the synthetic data. The construction is intended to
mimic a situation in which the first eigenfunction in the
family dominates for a period of time and then the sec-
ond eigenfunction dominates, etc. Alternatively, one
can construct a dataset in which maps are calculated as
the sum of the contributions from all members of the
family, each mode evolving in an independent, neutral
fashion. This alternative produces the same CEOFs.

APPENDIX B
Mode-Tracking Pathologies

That one is able to follow the evolution of an eigen-
value as incremental changes are made to its operator
is a familiar concept in many fields and has been for-
malized by researchers such as Li et al. (1992), who
have developed homotopy algorithms for finding the
eigenvalues of real nonsymmetric matrices. Using re-
sults from algebraic function theory, for example, one
can prove that if L, and L; are real matrices, and if one
tracks an eigenvalue from L, to Ly by considering the
eigenvalues of

L.=(1—€)L, + €Ly (B1)

as ¢ is varied from O to 1, then if the spectrum of L,
has only simple (i.e., nonrepeating) eigenvalues, the
values of the eigenvalues will form piecewise smooth
curves. The only places where the curve is not smooth
is where that eigenvalue has multiplicity greater than
1, but this can only happen a finite number of times.
Though the paths through phase space that we use in
our study are, in general, functions of more than one
parameter, they can all be decomposed into a few seg-
ments of the form (B1). Thus, if all eigenvalues are
simple for the endpoints of these segments, then the
results of Li et al. indicate that the tracks we are fol-
lowing are smoothly varying. Therefore, if € is chosen
to be small enough, we can follow the changing values
of a given eigenvalue as the basic state is changed. The
only exception to this will be for values of ¢ for which
the track of some other eigenvalue overlaps the track
we are following, but this can only happen a finite num-
ber of times. For all of the paths we consider, the ei-
genvalues at segment endpoints are simple (including
that for a resting state because of our scale-selective
diffusion), so we do not find it necessary to perturb our
starting matrices, as described in Li et al., to produce
well-behaved tracks.

The one difficulty that can, and does, arise in the
tracking technique is that the tracks formed by different
eigenvalues can coincide for a finite number of values
of the parameter ¢. This causes both practical and in-
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FiG. B1. Plots of the real and imaginary parts of two eigenvalues of the 4 X 4 matrix given in
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panel, line textures for b > 0 are different from those for b < 0 to reflect the fact that either branch

VoL. 52, No. 2

is a valid continuation of the tracks through b = Q.

terpretive problems. Tracks are not necessarily
smoothly varying at a crossing point, so following
tracks in their vicinity can be hazardous. To avoid this
the usual procedure is to add a small imaginary part to
€ in the vicinity of the crossing, thus avoiding the point
at which the eigenvalue has multiplicity greater than
one. We rarely encounter such crossings, but when we
do we simply increase e slightly to pass beyond the
point of crossing, make sure that no other eigenvalues
are nearby, and then continue to follow both paths. (In
fact, in our problems we have found crossings only
when an eigenvalue coalesces with its negative conju-
gate pair; that is, the eigenvalue becomes pure imagi-
nary, corresponding to formation of a stationary dis-
turbance. Beyond the point of coalescence, the eigen-
values from the crossing tracks again split into
conjugates, so it is not necessary to follow two tracks
beyond the crossing since they both represent the same
mode.) . :

Aside from track-following difficulties, the more
serious problem caused by the potential for nonsim-
ple eigenvalues is that they produce ambiguities as
to which eigenvalues are related to each other in the
sense of tracking. It is obvious that if one is tracking
an eigenvalue and at some point the track is crossed
by the track of a second eigenvalue, then beyond the
crossing point a continuation down either track is
equally valid. As just explained, this ambiguity in the
track forces us to follow both tracks beyond a
crossing point, should they not turn out to be con-
jugate pairs. This ambiguity is not avoided by mov-
ing into the complex plane in the vicinity of the sin-
gularity since in general tracks lead to different ei-
genvalues depending on which half of the complex
plane the detour passes through. A more subtle and
difficult problem arises because ambiguities in tracks

are not just restricted to track crossings or near cross-
ings. From perturbation operator theory (Kato
1966), it is known that if a linear operator that is a
function of a complex parameter has a nonsimple ei-
genvalue for some value of the parameter, then if one
continues an eigenvalue of that operator by changing
a parameter along a path in the complex plane that
encircles the point at which the eigenvalue is nonsim-
ple, then one need not return to the same eigenvalue
and mode with which one started. In general, we must
pass around this point a number of times, equal to
the order of the degeneracy, to return to the original .
mode.

Path-dependence is also seen in problems like ours
where more than one real parameter is varied.’
(Whether one is varying one complex parameter or two
or more real parameters, there are many paths that con-
nect starting and ending values of the parameters, so in
either case there is the potential for path-dependence.)
A low-order example of this can be seen for the family
of real matrices:

6 -5 b 0
5 6 10 0
0 -2 6 —9
0 a -9 -6.

When a and b are both zero, this matrix has two ei-
genvalues equal to 3 + 6i and two equal to 3 — 6i;
that is, there are nonsimple eigenvalues. The center
panels of Fig. B1 show the real and imaginary parts
of the eigenvalues for this matrix when «a is zero and
b is varied between —.01 and .01. As expected from
the homotopy theory, the values change smoothly as
b increases from —.01 to near 0, so it is straightfor-
ward to track the evolution of the eigenvalues. How-
ever at 0, where the degeneracy in the eigenvalues is
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present, the changes are no longer smooth, and since
the real and imaginary parts of the eigenvalues co-
alesce simultaneously, there is no means of choosing
which branch a particular path should be continued
along. If a slightly different path is employed, like
one for which a is held equal to —.0001 (left panels
of Fig. B1), then unambiguous tracks can be iden-
tified. In this case, the imaginary values cross, but
since the reals do not, they can be used to do the
continuation. However, when a third nearby path is
used, one in which a is held equal to +.0001 (right
panels of Fig. B1), the influence of the nonsimple
eigenvalue on paths with no degeneracy can be seen.
In this case unambiguous paths result but the eigen-
values for b = .01 that are connected to the eigen-
values for b = —.01 are reversed from what was
found for the path with a set to —.0001. A 4 X 4
matrix is the simplest that possesses such path-de-
pendence as a function of two real parameters.

A consequence of the presence of nonsimple ei-
genvalues in a family of operators used in mode
tracking is that if a track comes close to a point of
degeneracy the structure of the associated eigenfunc-
tion can change rapidly. That this will happen can be
seen from our example in Fig. B1. Once b is larger
than 0, the values of the eigenvalues on the dashed
line of the path with a = +.0001 are very similar to
the values that the eigenvalues on the solid line had
for the a= —.0001 path. Thus, their eigenfunctions
also will have taken on the structure of eigenfunc-
tions associated with the solid line of the a = —.0001
path. In effect, the eigenvalues and eigenfunctions
will have reversed identities for b greater than 0.
Craik (1985) discusses this interchange of identities
that can happen if two tracks come close enough to
a point of degeneracy and relates it to the coupling
of modes in physical systems. Since eigenvalues
can come close to each other, even if they do not
coalesce, and since the consequences of jumping
from one track to another are large, we have taken
the precautions explained in section 4a to make sure
that we do not inadvertently jump from one track to
another.

One other factor that must be kept in mind while
tracking is that in the presence of barotropically stable
zonal shear flow for the inviscid problem, the spectrum
is known to consist of neutral discrete modes, possibly
infinite in number, propagating westward with respect
to the mean flow at all latitudes and a continuum of
singular modes with critical latitudes somewhere in the
flow. For moderately viscous problems like the ones
we consider, modes that are qualitatively similar to
continuum modes will be present. It is possible for a
discrete mode on a realistic, zonally asymmetric basic
state to track to the continuum as the asymmetric part
of the basic state is slowly removed. The continuum
will be discretized by one’s finite dimensional matrix
approximation and by the introduction of dissipation,
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but the exact mode of the zonally symmetric state that
is identified with the discrete mode of the asymmetric
flow has no physical significance in this case. One can
recognize this behavior by looking for singular struc-
ture in the eigenfunction or by watching for phase
speeds that produce critical layers in the mean flow, as
the amplitude of the stationary wave in the basic state
is reduced to zero.
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