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ABSTRACT

The stability of the classical Norwegian polar front model is investigated, using a numerical techniqt}e
to supplement the more precise conclusions which are possible in the limiting cases of zero density dif-
ference or zero wavenumber, The feasibility of the numerical technique depends on a careful formulation
of boundary conditions at the limits of the frontal zone, The numerical results cover the region of Rossby
number (Ro)<3 and Richardson number (Ri) <3, but their interpretation is unclear at Ri>2 and Ro>1,
Unstable waves exist at all wavelengths; Rayleigh shear instability at small Ri, Helmholtz shear instability
at large Ro and small Ri, shear instability and geostrophic baroclinic instability simultaneously at small
Ro and Ri>2, and a combination of geostrophic and Helmholtz instability when Ri>2 and Ro<1 (but
not too small). The previous conclusion of Kotschin that this frontal model is stable for Ri<2 is therefore

incorrect.

1. Introduction

Due to the difficulties involved in studying the
general circulation of the atmosphere as a whole,
investigators have studied each atmospheric pheno-
menon separately. Examples are: baroclinic instability
(Charney, 1947), conversion of energy in the mean flow
and perturbations (Fjgrtoft, 1951), transformation of
energy of baroclinic waves in a two-layer model
(Phillips, 1954), and formation and development of
atmospheric fronts (Bjerknes, 1919; Solberg, 1928;
Kotschin, 1932). In order to give quantitative esti-
mates of the processes involved, simplified mathematical
models are frequently used in these studies.

One approach to the formulation of a unified theory
of the basic processes involved in these phenomena
would be to try to identify the energy sources which
support them: the modifications produced in the mean
flow by the perturbations, and the energy transports to
different latitudes which may act as energy sources for
new types of instabilities. From this general point of
view, the problem of fronts plays an important role,
because large transformations of energy as well as
intense local effects are involved.

The theory of fronts originated with the Norwegian
school, when in 1920, V. Bjerknes suggested that the
extratropical cyclone is an amplifying wave motion
which develops on the sloping frontal surface as a result
of some kind of instability. Solberg (1928) investigated
theoretically a system consisting of two statically
stable, barotropic layers of different density moving
zonally at different speeds. To avoid the singularity
associated with the intersection of the frontal interface
with the ground, he introduced two rigid bounding
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planes which were not horizontal but were paralle] to

“the undisturbed sloping frontal surface. With this con-

straint he found that two types of amplifying waves
were possible, one at short wavelengths and one at
wavelengths of the order of 2000 km. The latter wave-
length corresponds to the horizontal scale of extra-
tropical cyclones.

Bjerknes and Godske (1936) gave a physical inter-
pretation of the long unstable waves found by Solberg,
attributing them to shearing instability. This inter-
pretation was later questioned by Hgiland (1948), who
showed that long unstable waves of the same nature as
those found by Solberg may appear as a result of an
interaction between the shear and the internal static
stability of the two layers. In this way the long unstable
waves would not be a simple manifestation of shearing
instability, but the result of a more complex process.
From an energetic point of view Solberg’s model gives
a contribution from both the mean potential and
kinetic energy to the growing perturbation energy. On
the other hand, it is known that the long-wave pertur-
bations in the atmospheric westerlies on the average
lose energy to the kinetic energy of the mean flow while
gaining energy from the potential energy of the mean
flow. Theoretical analyses by Charney (1951) and
Pedlosky (1964) have shown this process to occur in
a quasi-geostrophic model in which the basic current
varies with latitude and height.

The problem of frontal waves was also studied by
Kotschin (1932), who considered two incompressible
homogeneous fluids with a shear and a slight density
difference, bounded above and below by two rigid
horizontal planes. He found a stability criterion relating
the frontal slope with the wave number. Eliasen (1960)
studied a similar model but with the simplification of
a vertical wall at the northern boundary, so that the
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frontal surface did not intersect the rigid top surface.
He extended Kotschin’s results by computing the
unstable modes for particular values of the frontal
slope.

As the density difference in these models is reduced,
the sloping front becomes more vertical. Because of the
shear, however, one would still expect to find unstable
solutions in this limit. Nevertheless, Kotschin’s stability
criterion does not admit this possibility. (Eliasen also
does not find this kind of instability. But this may be
due to his introduction of the side wall, a restriction
which reduces the lateral extent of the frontal zone as
the slope steepens.)

The idea of the existence of a second kind of frontal
instability distinct from that found by Kotschin and
Eliasen, the desirability of understanding the complete
features of these two different instabilities in the whole
spectrum, and the location in spectral space as a func-
tion of Richardson (Ri) and Rossby (Ro) numbers of
the regions of pure baroclinic, pure barotropic, and
baroclinic-barotropic instabilities,? led to the investiga-
tion which forms the basis for the present paper. The
frontal model is the same as that used by Kotschin.

Following a formulation of the steady state and
linearized perturbation equations in Sections 2 and 3,
Section 4 is devoted to the limiting case of pure shear
instability. In this case the densities are identical and
the frontal surface is vertical. Unstable waves exist
(Rayleigh instability), together with neutral inertial

waves. This situation exists when the Richardson
number
gH (p1—p2)
Ri=
p1tp2
o

vanishes. (H is the total depth, and p; and py, Uy and U,
are the densities and undisturbed basic currents in the
two fluid layers.) A study of long waves, in which the
x wave wavenumber k vanishes, but the phase velocity
is finite, is presented in Section 5. This is a slight exten-
sion of Kotschin’s work and demonstrates that new insta-
bilities appear as Ri becomes successively greater than
2, 6, 12, etc. Kotschin concluded from his analysis of
this limiting case that the frontal surface was stable if
Ri<2. The non-dimensional statement that k=0 is
expressed by the vanishing of the Rossby number,

(Uz— Ul)k
2f

where fis the Coriolis parameter. It is shown that these
instabilities are similar to the quasi-geostrophic baro-

Ro=

2 The adjectives barotropic and baroclinic, when used in this
paper, refer to instabilities whose energy source is the kinetic
energy or potential energy of the mean flow. Barofropic in this
sense does not necessarily imply flow patterns which are invariant
with height.
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clinic instabilities found by Charney (1947) and Eady
(1949). In Section 6 a brief analysis is made of the
location, as a function of Ro and Ri, of frequencies
corresponding to neutral waves which move with the
mean flow, (Uz+ Uy)/2. Section 7 contains the major
contribution of this paper and consists of a numerical
determination of the unstable wave eigenfrequencies in
the region 0<Ro0< 3, 0<RiLS. In addition to the two
instability types mentioned above, it is found that
Helmholtz (hydrostatic, with shear and gravitational
stability) instabilities exist at large Ro, while at Ro<1
the shear instability and the geostrophic instability
coalesce into a mixed type. The net result is that un-
stable waves exist at all values of k. In particular,
Kotschin’s conclusion that the frontal surface is stable
if Ri<2, is incorrect. Furthermore, the differing
simplified interpretations by Bjerknes-Godske and by
Hgdiland of the Solberg waves may therefore both be
correct.

The paper concludes with a discussion of the kine-
matics and energetics of the waves, with primary
emphasis on the mixed instability waves at Ro<1 and
Ri>2. At small Ro these waves receive energy from the
potential energy of the mean flow, but return some to
the kinetic energy of the mean flow. As Ro becomes
closer to 1, however, they receive energy from both the
mean flow potential energy and kinetic energy, partak-
ing thereby of the characteristics of the geostrophic
instability and Helmholtz instability.

Stone (1966) has analyzed the instabilities present in
the continuously stratified model of Eady in the absence
of lateral boundaries to the basic current. Several of his
results, although they apply to a model with continuous
density stratification, and with different geometry and
boundary constraints than the classical frontal model
used here, carry over to the results of the present paper
—geostrophic instabilities are dominant when Ri is
large, and Helmholtz instabilities dominate when Ri 1s
small.

2. The unperturbed steady state front

We consider two layers of incompressible homo-
geneous fluid in a rotating coordinate system with
constant Corlolis parameter f. The motion in each layer
is hydrostatic and independent of the vertical coordi-
nate z, and the two fluids are bounded above and below
by rigid horizontal planes at z=0 and z=H. The
interface between the layers at z=h(0<A<H) is

z=h(x,y,l)=1nterface height. (2.1)
Let k be a vertical unit vector, and V the horizontal
gradient operator. Let v;=(u;9;), with j=1 and 2,
represent the horizontal velocity in the lower (j=1)
layer and upper (j=2) layer. Pressures p, and p, are
given at z=0 and z=H, respectively. The equations
governing this model, which satisfy the dynamic and
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F16. 1. Frontal surface model.

kinematic conditions at z=0, k and H are as follows:

0 1
[+ six === @2)
at ;i
p1=pat (p1—p2)gh+tp:gH, (2.3)
oh
—_— V'hv1= A\ (H— ]Z)Vz. (24)
ot

The density p; of the lower layer is not less than its value
p2 of the upper layer.

The basic state consists of a uniform velocity U; in
the positive x direction in each layer. For a steady
solution of this nature, (2.2)-(2.4) require that

dh f(poUs—p1U4)
tanf=—=—"—-——,
dy  glor—p2)

(2.5)

d
'_(151+52)= _f(P2U2+P1U1). (2.6)

dy

The first of these is the well-known Margules formula
for the slope of a front. We may note here that in
meteorological interpretations of this model, (U.—Uy)
+ (Uy+Uy) will normally be much larger than (p1—ps)
=+ (p1t+p2); (2.6) then simplifies to

Jo(Ux—Uy)
tan&z———?—l, 2.7)
g(p1—p2)
where p is the mean density,
p=1%(prtp2)- (2.8)

This also results directly if p; in (2.2) is replaced by 5,
an approximation frequently associated with the
“Boussinesq” model of incompressible heterogeneous
flow.

It is convenient to place the origin of ¥ where the
undisturbed frontal surface intersects =0 (Fig. 1).
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This gives i
h=1y tans. (2.9)

The undisturbed front intersects the upper boundary at

y=L=H coté. (2.10)

3. Perturbation equations

We allow the steady flow described in Section 2 to
be perturbed by a wave-like disturbance, having a small
amplitude e, say. The perturbation variables will be
of 1st and higher orders in e:

U;= Uj+€ Re‘u]-ew-f—O(eQ) ]
V= 0+6 Re’OjeW—i—O(e‘*) i
pi=Pi+e Re®;e+0(e)
h=h+e Rede¥4-0(e)
Yy=kx+tatl

(3.1)

In the above, U; are the constant values of Section 2;
k and p; are the values defined by (2.5) and (2.6); and
Uj, Vj, @, and JC are in general complex functions of y;
k is the x wavenumber, and o the frequency.

The 1st order forms of (2.2) are (for =1 and 2),

ik
i(o’-l—k U,-)‘u]-—f”()j= —-—(Pj, (3.2)
Pj
) 1 de;
(e+kU )+ fUy= —— ~——, (3.3)
p; dy
while (2.3) and (2.4) yield
®1— 2= (01— p2)gC, (34
AU,
(o+EUNYK=—y tan6<ik‘ul+—d—)—’01 tans, (3.5)
: y

a0
(o+kU)3C=(H—y tan&)(ik‘ug-l—d—z)—’og tand. (3.6)
y .
Egs. (3.2) and (3.3) allow U; and U; to be expressed as
linear function of ®; and d®;/dy, i.e.,

d®;
i[fkoz— o+ U»—]
dy
V= X 3.7
pil f2— (e+kU )]

(i(Pj
k(e+kU;)®— f—
dy

U;= . (3.8)
piL f*— (o+kU;)?]

Substitution of these expressions in (3.5) and (3.6),
followed by elimination of 3C by means of (3.4), results
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in two equations for ®; and ®:

@?®, dey [k2 kf ]0)
ydy2 * dy a (o+kU1) '
1] 2— g kUl 2
P Lrz (et )](@1—@2), (3.9)
g(p1—p2) tand
(y—1L d20)+ > l:kz( L+ ]
b I
of f2— (6+kU>)?
kSt )](@1—@2). (3.10)

g(p1—p2) tand

These apply in the frontal region 0<y<L. Outside of
this range in y, the horizontal velocity must be non-
divergent, i.e., kU;4+dV;/dy=0. This leads to two
simpler equations for @, and ®,:

d2

(u-{—kUl)l:——— —kﬂ@l] 0 for y2L, (3.11)
dy?
@@,

(a+kUg)[—i~2—k2(?2]=0 for y<0. (3.12)
dy

Eqgs. (3.9)-(3.12) agree with those used by Kotschin.

Egs. (3.9) and (3.10) have singularities at y=0 and
y= L, respectively. Finiteness of U; and U; at y=0 and
L require that we keep only those solutions of (3.9)
and (3.10) which are regular at y=0 and L. Thus,

®; regular at y=0

®; regular at y=L|" (3.13)

In addition, we require that U;, which is given in terms
of ®; by (3.7), be continuous at y=0 (for V) and
y=L (for Vy).

Except for the singular frequencies o= —kUj,
finiteness of ®; at y= o and @, at y=— o requires the
solutions of (3.11) and (3.12) to be taken as

C1(y2 L)ae™® (3.14)

®2(y<0)aetv. (3.15)
Continuity of ®; and U; at y=0 or L now imposes the
following restrictions on the solutions of (3.9) and
(3.10):

d®,
—=—k® at y=1L, (3.16)
dy
d®,
—= k@, at vy=0. 3.17)
dy

The mathematical problem is the solution of (3.9)-
(3.10) subject to (3.13), (3.16) and (3.17). Before
investigating this most general problem, however, it
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F16. 2. Shear model.

is useful to consider two special limiting cases: (a)
the pure shear waves which are possible when p1=p,
and the front is vertical (6=/2), and (b), the case of
small k.

4. Shear waves

When p;= ps, the front is vertical (Fig. 2), and L in
(3.11) is zero. The waves now produce a wave-like
displacement in v of this vertical interface, i.e.,

A(x,t)=ReDet, 4.1)
where D is a constant. The pressure perturbations are
asin (3.14) and (3.15):

CP1(y20)=4Ae™, (4.2)
®2(y<0)=Be", (4.3)

where 4 and B are two constants. The dynamic bound-
ary condition is

(@1— @) ymo=A—B=—fp(U:—U)D. (44)

The kinematic conditions are
i(o+kU)D= (V1) y=o, (4.5)
i(c+kU2)D= (Vg)y=o. (4.6)

Using (3.7) with ®; given by (4.2)-(4.3), we obtain
ik [f+o+kU.]

1 y=0=— " y 4.7
© p [f*— (6+kU*] D
fpk [f—o—kU>]
9)yo=——""——"=B (4.8)
0 o [f— (o+RUT

These, together with (4.4)-(4.6), provide three simul-
taneous homogeneous equations for the three constants
D, A and B. Vanishing of the determinant determines
¢ as a function of Uy, Us, f and k.
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The algebra is simplified by defining and a non-dimensional y coordinate,
Ur+U. 2y
¢=o+k ), (4.9) p=——1 (5.2)
2 L
- —Uy 4 The frontal region is located between n=—1 and +1.
U= P (4.10)  Kotschin’s criterion for stability at % (i.e.,, Ro)=0,
- reproduced in (4.14), corresponds to Ri<2 implying
and the non-dimensional parameters stability in the notation of (5.1). .
p Egs. (3.9)-(3.10) may be written as
kU .
Ro=— @11 ¢ Ri
f ’ - (n+ 1)— RiZRo*(p+1)+ 3
n dn (r=1)
=_0,= + (U +U ) LU,—U ) (4 12) ngl(pr‘pz>
T kU 2\U1 2 2\U2 1). . — [1—R02(T—1)2]<(P1—(P2)
2(paU = p1U1)*
Ro is a Rossby number based on the shear of the Ri
unperturbed flow, and 7 is the negative of the phase ~—[1—Ro(r—1)2](®1— @), (5.3)
velocity relative to the mean flow, divided by half the 2
shear. .
Vanishing of the determinant referred to above occurs _d_ (— 1)@_)_2 [ RiRer— 1)+ Ri K
for four values of 7: dy 1 dn ! (r+1) ?
1 ) Hps(p1—p2)
=i<1———) and 7=1. (4.13) =i—2—;[1—Ro2(1—+1)2](@1—(§>2)
Ro 2(p2U2"‘plU1)2
The first pair represent stable inertia waves.® The root Ri
7= —1, on the other hand, gives an unstable solution— z;[l‘RO%T-I- DZ)(C1—®y). (5.4)

the well-known phenomenon of shearing instability in
homogeneous, incompressible fluids of the same density
(Rayleigh, 1879).

Kotschin concluded from his analysis of ‘the general
case (3.8)—(3.11) (but for small k) that only stable
solutions would exist if the criterion

gH (p1—p2) gH (p1—p2)

<2 (4.14)
(U—Un%  (20)%

is satisfied. The above analysis of the pure shear waves
" shows quite clearly, however, that instability can exist
even when (4.14) is satisfied.

5. Instability of very long waves

We examine here the behavior of the general problem
(3.9)-(3.10) for small 4. This will be done, not by putiing
k=0 in (3.9)-(3.10), but by letting £ go to zero only
after replacing ¢ by the “phase velocity” 7 defined in
(4.12), i.e., x-propagation at very small Ro.

It is convenient to define a Richardson number,

. gH P1—p2 fL ..
" Ri=———— (5.1)
(U, 0\ P 2U
¢ The similar problem analyzed by Haurwitz and Panofsky

(1950, p. 726) does not allow the inertia waves because these
authors imposed boundaries at finite values of y.

The approximation introduced here (also used by
Kotschin) is based on the assumed smallness of
(p1—p2)/p. It is equivalent, to replacing 5; by  in the

original horizontal equation of motion (2.2). The
boundary conditions (3.16)-(3.17) are

d(Pl A

——=—RiRo®; at 79=1

dn

at n=—1
dr .
®; and @, regular at n=41J

The instability of long waves, the subject of this
section, is studied by letting Ro— 0 with £ in (5.3)-
(5.5). Thus

d®, Ri Ri
l:(ﬂ+1)_j|‘[ :|6’1=—'((5’1—(P2), (5.6)
dy dn T— 2
d d®, Ri Ri
—[(n—l)——]—[ ] =——(<Pl @), (5.7)
dn dn‘ 1
d®, d®,
—=0 at 9=1; —=0 at n=—1. (5.8)
dn dn
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1Tl
Gl
S
A
3k
2 .
A
S 1
l 2 7] 5 R,
F1G. 3. |7] as a function of Ri for Ro=0. The branch for Ri>2 has imaginary r, the branch
for Ri<2 has real 7. The solid curves are the numerical results, the dashed curves are the
empirical formula (5.16).
Addition of (5.7) and (5.8) after they have been only if
multiplied by (r—1) and (r+1) shows that Ri=Ri,=n®n+1), #»=123---. (5.14)

d®, d®s
(=) +1)—— -+ EH—1)—
dn dn

=constant=0, (5.9)

the zero result being forced by (5.8). It is therefore
possible to define

d(P] d@Z
o(n)=(1—7)(1+n)—=(1+7)(1—n)—. (5.10)

dn dy

Substituting this in (5.6), differentiating, and substitut-
ing (5.10) again, results in the following equations
for ¢:

¢
—+ (r+smeo(m=0; ¢(x1)=0, (5.11)

(1—7)—
dn

where the constants » and s are

1+ 72 —27
r=Ri( —); s=Ri< ) (5.12)
1—7 1—72
The case of 7=0 is simple, i.e.,
)
(1——7]2);{—2—{—Ri¢=0; o (£1)=0. (5.13)
7

The solutions are the integrals of Legendre poly-
nomials, with the boundary conditions being satisfied

If Riis not equal to 2,6, 12, etc., 7=0 is not a solution
when Ro=0. Kotschin derived his criterion for stability,
(4.14), by analyzing the behavior of 72 in the vicinity
of the first of these neutral solutions (Ri= 2).

I have used a numerical variational method (see
Appendix) to solve for 7 in (5.11) in the range
1.5<Ri<35. Fig. 3 illustrates the results. They agree
with Kotschin’s conclusion that unstable waves exist
for Ri>2. The indication from this figure and (5.14)
is that two values of |7;| will be valid for Ri>6, three
when Ri>12, etc., but that the |r;] of Fig. 3 will
always be greater than the new |7,|.

The dashed curve in Fig. 3 is a plot of

1
7' =—{a?— 40 cotha+471},

(5.16)
2o
4,798
o= . (5.17)
Ri

It agrees very closely with the numerical values. The
mathematical form of (5.16) is significant in that it
agrees with the form of the phase velocity expression
derived by Eady (1949) for his continuously stratified,
baroclinic, quasi-geostrophic model. We might expect
this since quasi-geostrophic motion is characterized by
small Rossby numbers. The qualitative agreement goes
even further, however. If one allows a sinusoidal varia-
tion with y in Eady’s model [see Phillips (1963, pp.
149-150)], with the flow bounded by walls at y=0 and
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o ] 2 3 Ro

FigG. 4. Location of the roots r=0 (solid curves) with dots show-
ing individual computed values. The light dotted curve is the
asymptote Ri=2 Ro™. The light dashed lines indicate several
constant values of the aspect ratio kL.

Lg, the criterion for instability when k=0 can be

written as
gH ( Ap\ mPx?
—-<~—-> <(2.3994)2,
2\ p /2Ly

where m is the number of half wavelengths between
y=0 and Lg, and Ap is the density difference from
2=0.75H to 2=0.25H in Eady’s Boussinesq fluid. If
we set Lgp equal to the L of (2.10) and (5.1), and
Ap= (p1—p2), this may be written as

m?<1.17 Ri, (5.18)
where Riis defined by (5.1). Increasing this Ri (keeping
L fixed) allows additional wavenumbers in y to become
unstable, for £=0, in the Eady model. By noting that
for large #, Ri. in (5.14) is equal to #?, we may not only
recognize the physical similarity of the 7, of Fig. 3 to
the now familiar phenomenon of quasi-geostrophic
baroclinic instability, but we may conjecture that as
Ri increases (with Ro small), additional unstable roots
will appear as Ri=6, 12, etc., and these will have shorter
“wavelengths” in the y direction than those unstable
roots which have already appeared. Their growth rates
will also be less.

It is useful at this point to anticipate some later
results. Fig. 10 is an attempt to show the distribution
of |7;| as a function of Ri and Ro, for the general
system (5.3)-(5.5). The results of the present section,
in which Ro=0, appear on this diagram in the plane
Ro=0 forming the back of the figure in its upper right
portion. This plane has an intersection with a curved
surface (E)- which exists at Ri>2 and small Ro. This
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intersection, which is the Ro=0 boundary of (E), is
the curve for Ri> 2 on Fig. 3. The surface (E) on Fig. 10
thus represents the continuation for Ro>0 of this part
of Fig. 3. A second surface, labelled (R), represents
additional permissible values of |r;| as a function of
Ri and Ro. It overlies (E), and a portion of it has been
“cut away” to show the (E) surface. (The detailed
shape of these surfaces is determined in Sec. 7). Con-
cerning surface (R), we note first that along the plane
Ri=0, it coincides with the pure shear instability
(4.13), |75/ =1. Along the plane Ro=0, i.e., the region
discussed in this section, surface (R) also corresponds
to |r:|=1. However, in distinction to the physically
meaningful |7;|=1 of surface (R) for Ri=0, |r;|=1
for Ro=0 has meaning only as a limiting case of small
Ro. This is because it corresponds to the trivial solution
¢=0 of (5.11), in which ®; and @, are each constant,
ie.,
(14 7)®1=constant= — (1—71)®,.

Since k=0, and d®;/dn=0, U, and U; vanish identically
in this limit, and the “perturbation” is only a redefini-
tion of the basic state.

6. The eigenvalue t=0

7=0 corresponds to waves moving with the average
speed 3(U;+U,) and undergoing no amplification.
We have seen in Section 5 that when Ro=0 this is
possible only for Ri=n(n+1). As a check of my
numerical method, I have computed the values of Ri as
a function of Ro which allow 7 to vanish in (5.3)-(5.5).
These are shown by the heavy dots in Fig. 4. The general
shape of the curve formed by smoothly connecting
these points agrees with the quantitative description
of this curve, with its singularity at Ro=1, which
Kotschin was able to arrive at by analytic means. From
Kotschin’s analysis, it is also readily shown that the
right branch approaches Ri=2 Ro2 for large Ro. This
asymptotic curve is indicated by the series of light dots
in the figure. It should be pointed out, however, that
there are presumably an infinite series of such paired
curves, the left-hand member of each pair beginning
from the Ri axis (Ro=0) at Ri=2, 6, 12, etc. The
light dashed curves in Fig. 4 are values of the “aspect

ratio”
kL=2 Ri Ro. (6.1)

7. The general case

I have computed solutions of the general problem
(5.3)-(5.5) by a numerical method which requires that
the regularity conditions for ®; at n=—1 and ®, at
n=-1 be translated into a quantitative rather than a
qualitative statement. Consider, for example, (5.3) at
n=-—1. ®; and d®;/dn must be regular at n=—1 in
order that Uy and U, be finite. Aty= —1, we can there-
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F1c. 5. Continuation into Ri>0, at Ro=0.6 and Ro=1.5, of the pure imaginary = corre-
sponding to pure shear instability at Ri=0. They are part of the (R) surface of Fig. 12.
fore write Thus,
@¢, dey Ri d®s  Ri Ri
() —— Py=—[1—Ro*(r+1)7](@1— ®)
dp* dy 1—1 dy  7+1 2

Ri
=—2-|:1— ROZ(T— 1)2]((91—(?2). (71)

The first term is not necessarily zero. since d?®:/dy?
might be infinite at = —1. To show that it should be
set equal to zero, we consider the vertical velocity w
at the interface %. In this case w is related to V-v; by

W= —2V-v1; wy=(H—2)V-vo (7.2)
For the perturbation w in layer 1 in the frontal zone,
we find

) dUy
wi(z=h)=—9y tan6Re|:<ik‘u1+————>ei¢:|
dy
[ RGO+
=—Im -
| 250R[1 - Ro(r—1)2]

&0, _
X[ —RiZROZ(Pl:|e"”}. (7.3)
dn?

At y=—1 the front intersects z=0, and w; at z=%
should approach zero. The above expression shows
that this implies (p+1)d*®1/dn*=0 at p=—1. Eq.
(7.1) is thereby reduced to a quantitative boundary
condition relating ®; and ®,, i.e.,

d®, Ri

Ri
1= ‘[1— ROZ(T— 1)2] (G)l—' (Pz)
dp 1—1 2

at p=—1. (7.4)

In a similar way, (5.4) will yield a condition at n=-1.

at 9=+4+1. (7.5)

We now have the two second-order equations (5.3)—
(5.4), with the four homogeneous boundary conditions
(5.5) and (7.4)-(17.5), for the variables ®; and ®,. Being
interested in complex 7, we expect that ®; and @, will
be complex.

I have explored the solutions of this system by a
numerical method (Appendix A), for the general range
0<RiL3, 0<RoX3, and with primary emphasis on
non-real values of 7. Fig. 19 in Appendix A shows the
location of the Ri-Ro points studied. Appendix C lists
all the 7-values for these points. Fig. 10 summarizes
graphically the location of the [r,| surfaces which I
have found in this region of Ri-Ro space. This figure
will be more intelligible, however, if the values of =
along certain cuts in Ri-Ro space are first described.
This is done in Figs. 5-12.

In one part of this Ro-Ri region—small Ro and
Ri>2—the computations give two distinct values of
|7:] for each Ro-Ri point, where 7; is the imaginary
part of 7. In the remainder of this Ro-Ri region, only
one value of |7;| for each Ro-Ri point is discovered by
the numerical work. (It should be noted that if 7=r,
Is a solution, — 73, 71*, and — 7,* are also solutions. The
change r— —1 corresponds to interchanging ®; and
®, and changing the sign of #, an intuitively obvious
symmetry.)

Fig. 5 shows, at constant Ro, the continuation into
Ri>0 of the pure shear wave instability described in
Section 4. This 7 root remains imaginary for some range
in Ri. When Ro>1, it vanishes along the right-hand
curve, =0, of Fig. 4. At this point, although not shown
on Fig. 5, a complex value of 7 appears. An example of
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Fic. 6. (Upper diagram) transition from the pure imaginary r
root of (R) to the complex 7 root of surface (H) as Ri increases
when Ro=3. The lower diagram shows a separate real root co-
existing with the imaginary = of (R), and the real part of the
complex 7 of (H).

this behavior is shown on the upper part of Fig. 6.
(The lower part of Fig. 6 shows a coexisting real root
at small Ri.) In anticipation of Fig. 10, it will be con-
venient to refer generally to the |r;| surface of which
a portion is shown in Fig. 5 and the small Ri portion
of the upper part of Fig. 6 as the (R) surface, and to
refer to the complex |7,| appearing on the right side of
Fig. 6 as the (H) surface.

Figs. 7-8 show the 7 behavior with Ro at successively
larger constant values of Ri. Fig. 7 contains curves of
|7:] at three values of Ri (1.9, 2.03, 2.1) near the
critical value Ri=2 discussed in Section 5. At Ri=2.03,
we seé a new phenomenon, the appearance of a second
|7;| at small Ro. This is the extension into Ro> 0 of the
unstable curve shown on Fig. 3. This root is pure
imaginary, as it was on Fig. 3. We shall refer to this
I7:] surface as surface (E).

A further increase in Ri to 2.1 shows (on Fig. 7) that
(E) and (R) now coalesce into a new surface. This
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surface will be referred to as (B) where 7 is complex.
Therefore, the progression from Ro=0 to Ro=0.5 at
Ri=2.1 does not involve a change in the number of
roots for which |7;|==0; to the left of the intersection
of (R) and (E) there are four pure imaginary roots,
while surface (B) represents four complex roots having
equal |r;|. Surface (B) goes to zero on the left-hand
curve of Fig. 4. At larger Ro (still at Ri=2.1) the
surface is again like that of (R), with two pure imaginary
roots.

Fig. 8 reproduces in its upper part the Ri=2.1 curve
of Fig. 7. It extends to larger Ro and shows the (H)
surface which appears at Ro>1.1. The collection of
roots in this figure correspond to four consistent solu-
tions. At 0.4<R0<0.5 and Ro> 1.1, the four roots are
complex (consisting of 7, —r, 7* and —7*). They are
dashed and are part of surfaces (B) and (H). Between
these are located two imaginary roots (r and —r=17%)
of surface (R) shown as solid curves and two real roots
(dotted). At Ro<0.4, the four roots consist of two
pure imaginary roots on each of surfaces (R) and (E).
The roots pass through zero at the intersection of the
=0 curves of Fig. 4.

At Ri2 2.2 a more complicated behavior appears at
Ro>1. The (R) surface, which until now has repre-
sented two pure imaginary roots of equal magnitude,
seems to represent complex 7’s at Ro>1.05. Repeated
attempts to find numerically additional 7’s at this Ri
were made, but did not succeed. On Fig. 8, the inter-

7o

- Ry = 1.9

o.9r i

08

0.7

06

05

04

03

02

Ol

1 A\ | 1

o] 0.2 03 04 0.5

J
IRo

Fic. 7. Values of |r;] as a function of Ro for 3 values of Ri in
the vicinity of the critical value Ri=2. All r; are pure imaginary
except the curve (B).
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section with the 7=0 curves of Fig. 4 (at Ro~0.5
and 1.1) are clear. At large Ri, however, no indication
of the second of these intersections was found. The
numerical method I used is sensitive in the neighborhood
of 7=0 (Appendix A), and this may be the reason for
this behavior. Another possibility is that the seemingly
clear-cut roots at smaller Ri are really multiple roots.

Fig. 9, at Ri=35, contains all the non-real = values
that I was able to discover by the numerical method.
Pure imaginary 7’s were found only at very small Ro,
where the (E) and (R) surfaces may be seen on the
left side of the upper half of this figure. The complex
7 of (B) is still present.

We are now prepared to examine Fig. 10, which is a
three-dimensional plot of surfaces of |7,| as a function
of Ro and Ri. Four separate surfaces are shown, labelled
(R), (H), (E) and (B). These surfaces occupy mutually

exclusive regions of this Ri-Ro space, except where Ro -

is small and Ri>2. In this region (E) lies underneath
(R), and a portion of the latter has therefore been
“cut away” to allow (E) to be seen.

The shape of (R) and (H) is indicated by the shaded
profiles at constant values of Ri (0, 0.5, 1.0, 1.5 and
1.9), and by the isolines of |7;]. (R) and (H) are
separated by an isoline |[7;] =0 (the right branch of
7=0 in Fig. 4), but this isoline is hidden in the figure
by the intervening (H) surface. The separation between
(R) and (H) is unclear at Ri>2 and Ro> 1, where the
numerical method converged poorly. The value of
|7.] on (H) decreases with increasing Ri and Ro for
large Ri and Ro. The imaginary part of o, the growth
rate, is proportional to (Ror;). At constant Ro (con-
stant k), an increase of Ri can be achieved by increasing

ol
(R)
R; = 2.
o5
(E) \
8w
\\[\’\\(H)
00 T i '
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R = 2.
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- a
1
o0 05 0 5 Ro

Fig. 8. Absolute values of the imaginary and real parts of a
consistent set of four roots =, as a function of Ro at Ri=2.1.
Imaginary roots are solid, complex roots are dashed, and real
roots are dotted.
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I1c. 9. Absolute values of the imaginary and real parts of =
as a function of Ro at Ri=S5. Imaginary roots are solid, complex
roots are dashed. Points I and II identify the Ro and Ri points
for which kinematic and energy computations are described in
Sections 8 and 9.

(p1—p2)/p. From a physical point of view, this increase
in static stability is therefore consistent with the
generally decreasing value of the numerically computed
| 7| of surface (H) as Ro (i.e., k) is kept constant and
Ri is increased. At Ri=constant <2, the growth rate
has one maximum associated with (R) and one with
(H). The latter is larger.

Surface (H) is labelled as such because it seems to
correspond to Helmholtz instability, modified, of course,
by the Coriolis force and frontal geometry. [See also
comment a. later.] In the absence of rotation (so that
the front becomes horizontal) hydrostatic Helmholtz
instability has the 7 formula,*

7?=Ri—1, (7.6)

for waves in which 9/dy and v are zero. This expression,
which one would expect to be valid at large Ro, gives
stability at Ri>1;and |7;| — 1 for Ri— 0. The latter
limit seems to be a reasonable one for the max |7;| on
the (H) surface of Fig. 10 as Ro — «, where the (H)
surface extends to Ri=0 (Fig. 4). Eq. (7.6) also suggests
the possibility of a curve Ri=Riy(Ro) extending in
from Ro=- =, along which the |7;| of (H) vanishes,
but the corresponding |7,| does not. This would not

correspond to one of the Kotschin 7=0 curves, and, if

¢ The small density ratio approximation introduced in (5.3) and
(5.4) is also used here.
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3 (Ro)

Fic. 10. The main figure is a three-dimensional diagram showing |7;=growth rate+kU as a function of Ri=gHAj/p4U? and
Ro=*kU/f. Isolines of |r;| are shown by labelled (heavy) solid curves on the four surfaces (H), (R), (E), (B). Profiles of (H)
and (R) are shown by the shaded sections at several constant values of Ri (0. 0.5, 1.0, 1.5, and 1.9). A portion of (R) has been
cut away to show the underlying (E) surface. Light solid (and dotted) lines are not isolines of |r;}, but indicate boundaries of the
surfaces and profiles. In three cases—between (R) and (H), to the lower left of the symbol (B), and at the left-most extension of
(E)—these light solid lines represent the silhouette boundaries introduced by the perspective view rather than the actual limits
of the surfaces. The small figure illustrates a different view (arrow) of the right corner of the main figure. Lines of constant |7;| and
their orthogonal curves are shown. :

present, might explain, at Ro~1, the difficulties axis (Ro=0) it corresponds to the trivial solution ¢=0
encountered on Fig. 9. described at the end of Section 5.

The (R) surface in Fig. 10 extends to both coordinate The third instability surface (E) is visible in the
axes where it takes on the value |7,/=1. On the Ro right corner of Fig. 10, where a portion of the (R)
axis (Ri=0), it corresponds to Rayleigh shear in- surface, which overlies (E), has been cut away. (E)
stability as described in Section 4, while on the Ri begins, at Ro=0, from the right branch (Ri>2) of the
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curve in Fig. 3. (This part of the Ro=0 plane is lightly
shaded in Fig. 10). From this position it generally slopes
up with increasing Ro, eventually intersecting the
oppositely sloping (R). This intersection of (R) and
(E) is shown by dotted lines in the uncut portion and by
a light solid line where (R) has been cut away. This
intersection curve has positive d Ri/d|7;| and negative
d Ro/d| 4], at least for Ri<S5 (Fig. 9).(E) is bounded
at |7;] =0 by a portion of the left branch of the r=0
curve in Fig. 4.

The fourth surface (B) extends from the intersection
of (R) and (E) down to the remaining part of the left
7=0 curve in Fig. 4. In distinction to the (H), (R) and
(E) surfaces, which represent pure imaginary =, (B)
represents complex 7 values.

The |7:| =0 boundary of (B) and (E), like its com-
panion curve separating (H) and (R), is not visible in
Fig. 10, being hidden by intervening surfaces. It is
located close to the light continuous solid line marking
the silhouette boundaries of (R) and (E). The critical
point on it which marks its intersection with the curve
separating (B) and (E) is located near Ri=2.05,
Ro=0.35. This point is also hidden in Fig. 10, but
would be located close to the point where the |7;| =0.2
isolines of surfaces (R) and (B) give the appearance of
meeting. (All three surfaces are steep near this point.)

The growth rate o, is equal to

o;= f ROT-;,,

A graph of this is shown for Ri=3 in Fig. 11. There are
two maxima. At Ro<1, the maximum is on surface
(B). At larger values of Ri, this maximum remains on
(B), decreasing slowly in magnitude. (R) and (E) are
confined to even smaller values of Ro and growth rates
at larger Ri. The nature of the second maximum at
Ro=1.1 on Fig. 11 is not completely clear. The numer-
ical computations indicate that it moves to larger Ro
as Ri increases. It appears to be a continuation of the
(R) surface from smaller Ri.

The numerical method computes the eigenfunctions
®; as the value of 7 is determined, and the kinematic
character of the different wave motions can then be
determined by using (3.7), (3.8) and (7.3). (This is
not unique, however, since Ri and Ro are insufficient
to specify U;, V; and W; as a function of ®;; & or U/f
is also required.) My computations indicate the follow-
ing typical features of the kinematics.

a. For Ri<2, we have only the (R) and (H) in-
stabilities. The particle motion in the wave for (R) is
generally quasi-horizontal, even in the frontal zone.
As Ro is increased at constant Ri< 2, by increasing £k,
this motion tends to become less horizontal. As the
curve 7= 0 separating (R) and (H) is passed, the motion
becomes more vertical. Whereas (R) waves in the limit
of zero Ro or zero Ri are characterized by zero vertical
velocity and a balance between du/dx and dv/9y, the
waves for (H) become characterized, at large Ro, by
zero meridional velocity and a balance between du/dx
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TF1c. 11, Growth rate o;/f=Ror; as a function of Ro for Ri=3.
The corresponding doubling time in “days” (1 day=4nf) is
shown on the right scale. A wavelength scale is shown on the
abscissa for U=10 m sec™, f=107* sec™™.

and dw/dz. We may therefore characterize surface
(R) as representing quasi-horizontal wave motion which
is unstable due to horizontal shear. Surface (H) repre-
sents Helmholtz instability (see Lamb, p. 374) with a
stabilizing effect of gravity and a destabilizing effect
of vertical shear.’

b. When Ri>2, there is a region at small Ro where
two distinct instability surfaces, (R) and (E), exist.
The wave for (R) has particle motion which is more
horizontal than that in the wave for (E) (at the same
Ri, Ro and k). The former still has a near balance
between du/3x and dv/dy. At Ri only slightly greater
than 2, none of the three contributions to du/dx
+8v/9y+0w/dz are negligible for surface (E). At
Ri=5, however, there is also quasi-horizontal motion for
surface (E), as shown in the next section. The interface
is deformed only slightly for (R) waves compared to
the deformation present in the (E) waves. This is
related to the different energy sources for these waves.
1t is shown in Section 9 that the transformation of mean
potential energy to wave energy is proportional to the
interface deformation. The smallness of the latter in
(R) waves means that these can only obtain energy from
the mean kinetic energy, and may be referred to then
as barotropic instabilities. Surface (E) waves on the
other hand, receive energy from the mean potential
energy and are baroclinic instabilities.

A detailed example of the kinematics for surface (B)
is presented in the following section for large Ri (=35)
and small Ro (0.1). The wave motion at this point on
(B) is quasi-horizontal, in that du/dx and dv/8y tend
to cancel. This is not necessarily true for all points on

5 At large %, the hydrostatic assumption used in (2.2)-(2.4) is
of course a poor one. For example, Helmholtz instability (Lamb,
1936, p. 374) exists for all Ri at sufficiently large & in the non-

hydrostatic case, but does not exist for any k if Ri>1 where the
hydrostatic assumption is used.
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F16. 12. Continuation into Ro>0 at Ri=1.8 of the real =
root of Fig. 3.

surface (B), however; larger Ro and smaller Ri reduce
the quasi-horizontal nature of the motion.

Because of the difficulties experienced in the numerical
method for Ri>2 and Ro>1, the kinematics in this
region are not very clear.

The emphasis has been placed here on imaginary and
complex values, but the numerical method can compute
real 7’s as well. An example is shown in Fig. 12, for
Ri=1.8. This root is the continuation for Ro>0 of the
neutral branch (the left-hand curve) in Fig. 3. This real
 surface also appears on the lower left side of Fig. 6,
where it presumably joins up at Ri=0 with the neutral
inertia waves of (4.13) in the shear model.

A final remark pertinent here concerns the instability
described by Fultz (1952) in an experimental two-fluid
system. Using (2.7) and (5.1) we may write

H

] = ~——

g(pr—p2) tan®

The instabilities found by Fultz seem to have occurred
with tandé~1, f~0.4 sec™', H~5 cm, gAp/p~35. This
gives Ri=0.16, suggesting that these instabilities may
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be closer to a barotropic shear instability thah to a
true baroclinic instability. '

8. Kinematics of a meteorological frontal wave

In this section I describe the velocity, pressure and
divergence fields associated with an unstable frontal
wave. The parameters are:

Us=15m sec™?
Uy=—5m sec!
f=10""* sec™!
(p1—p2)=2X10"° ton m™?

p=10"% ton m™®
H=10'm

k=2r/A=10"% m™

g=10 m sec?

These give the following derived parameters:
U= (Us—Uy)/2=10 m sec™
Ro=kU f1=107"

. gH (p1—p2)
j=———=3
45U
dh 2fpU
—=tané= =102
dy g(p1—p2)

L=H coté=10%m
N=27k1=6.28 X108 m

The values of Ro and Ri place this point in surface

(B), with a numerically computed 7 value of
7=0.30281—0.59574. (8.1)

(This is the point labelled I on Fig. 9). The growth

L

F1c. 13. Total pressure field at =1750 m (perturbation plus basic state) in the frontal zone,
0<y<1000 km. Layer 2 (the “upper” layer) is in the bottom of the figure, layer 1 (the
“lower” layer) is in the top of the figure. The deformed frontal surface is the heavy curve.

Units are in millibars.
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rate, kU|r;| is equal to 0.5957X10~% sec™!, corre-
sponding to a doubling time of 32.5 hr. The real part of
the phase speed is 1.97 m sec™! in the positive x direction,
approximately 3 m sec™! slower than the mean flow of
5m sec.

The above numbers were chosen to coincide roughly
in magnitude with the parameters which have been
thought of as characterizing the ‘“cyclone” unstable
wave, by earlier writers.® Ri is the same as that used by
Eliasen in his example (with a wall at y=L/2), but he
used a slightly larger Ro of 0.3. The amplitude of the
perturbation is arbitrary, but the units given in the
figures are consistent.

Fig. 13 shows the total pressure field (perturbation
plus basic flow) at 2=1750 m in the frontal zone,
0<y<L. The intersection of the deformed frontal
surface with this constant height surface is shown by
the heavy line. Fig. 14 shows the real and imaginary
parts of U; and Uy, in the frontal zone, by solid curves.
The dashed curves are the “geostrophic” values, defined
by neglecting all terms in (3.7) and (3.8) not containing
the Coriolis parameter f, i.e.,

’I:k(Pj
U= y
ip
1 de,
Uj= ———,
fpdy

The agreement with the actual U; and U; is very close,
undoubtedly a reflection of the large Ri and small Ro
characterizing this example.

Fig. 15 presents the fields of —(H/2)V-v, and
+ (H/2)V-v,. These quantities have the same sign as
the wvertical velocity w in each layer, and correspond
in magnitude to the vertical velocity that would exist
at z=H/2 in each layer, if the layer extended above
(or below) z=H /2. The location of the pressure trough
(—) and ridge (+) are shown also. From these we see
that in the lower layer horizontal divergence is posi-
tively correlated with perturbation pressure and the
opposite in the upper layer. Fig. 16 shows that the
perturbation amplitude is largest in layer 2, especially
at y~L.

A significant feature of the perturbation velocity
field is the relative magnitude of du/dx, dv/dy, and
their sum, V-v= du/dx+ dv/dy. The maximum value of
V-vy from Fig. 15 is somewhat less than 2X 107 sec™.
The magnitudes of d%/dx and dv/dy can be estimated
from Fig. 14 as 9X 1077 and 6X 1077 sec™?, respectively,
showing that there is partial compensation between
dui/dx and dvi/dy. The same quasi-balance occurs in
layer 2, where the two-fold increase in V-v apparent on

6 At this value of Ri (5.0), the maximum growth rate occurs at
Ro=0.3, the point labelled IT on Fig. 9. This would have a wave-
length A of 2090 km, but the general kinematics would be similar
to the present example, although less geostrophic.
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Fic. 14. Graphs of the real and imaginary parts of the velocity
amplitudes 91:(y) and {.(y) in the frontal zone (solid curves),
in c¢m sec!. The dashed curves are the geostrophically evaluated
functions.

Fig. 15 is accompanied by a corresponding increase in
® and v (Fig. 16).

A second unstable solution, with r equal to the
negative conjugate of (8.1) also exists, since (B) repre-
sents complex 7. Thus,

r=—0.30281—0.5957:. (8.2)

The corresponding eigenfunctions are the conjugates
of those belonging to (8.1), with the subscripts 1 and 2
interchanged, and 7 replaced by —». This wave has a
phase speed greater than the mean flow of 5 m sec™,
and has a maximum amplitude in layer 1.
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Fic. 15. Fields of +3HWV -v. (upper) and —3HV -v1 (lower)
in the frontal zone. The series of +’s and —’s show the location
of the pressure ridge and trough in each layer. Units are 107 m
secL.
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F1G. 16. Pressure amplitudes ®; and ®; in the frontal zone. Units are millibars.

9. Energy transformations

The energy equation for this model can be derived
from the fundamental equations (2.2)-(2.4) as follows.
Multiplication of (2.2) with piv; for j=1 and
po(H—h)v, for j=2, followed by addition of (2.4)
multiplied by 3p1v:? and 3p.v2?, gives

19
- —[pxllV12+P2(H— h)V22]
2 ot

=—V-[hvi(prt3pv®)+ (H=h)vao(prt-3p2vs?) |
+[(P1"Pz)gh+P2gH][V'th]- (.1)

The boundary conditions are cyclic continuity in x
and that v vanish at |y|=cc. An area integral over a
wavelength in ¥ and — o <y<w will be denoted

simply by
/ ( )da.

19
——/[plhvf"—}—pz(H—h)vf]da
20t) :

Thus,

= (Pl—P2)g/hV‘hV1da. (9.2)

Multiplying (2.4) by (o1— p2)gh and integrating, we find

14
55}/ (pl—p2)gh2dd———‘ (p1—‘p2)g/hV'hV1dd. (93)

The interpretation is obvious: left sides represent the
time rates of change of kinetic and potential energy in
the system, while the right sides represent a transforma-
tion between kinetic and potential energy.

Let us now introduce the concept of an x average,
denoted by angular parentheses, and a deviation from
that average, denoted by a prime:

<f>=§ / fas,

9.4)
[=7=H; (fH=0)
We define
K jr=kinetic energy of mean motion
1
(Lot =) Tds, O
P=potential energy of mean motion
1
[ =gttt 0.6

K r=interaction kinetic energy of deviation from mean
flow

= /[pl(v1> B vy pvay - (Ve ) Jda, (9.7)

K g=quadratic kinetic energy of deviation from mean
flow

1
=3 / Coxll)(vi®)+pa(H — (B))v2™) Jda, (9.8)
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Pg=potential energy of deviation from mean flow

Y (oi—po)g f H*)da. ©.9)

The interaction kinetic energy Ky is, in general, not

zero. This can be easily demonstrated in the case of

the unstable hydrostatic Helmholtz wave which exists

in this model when f,dh/dy, v/ and 9/dy are put equal

to zero. The same type of interaction energy also exists

in the limiting case of pure shear instability (Section 4).
The sum of all five energy forms is constant, i.e.,

d
E(KM+PAI+KI+KE+PE)=O. (9.10)

The equations are now to be interpreted in terms of our
linearized small amplitude expansion (3.1). (We have
an unstable wave in mind.) K, K¢ and Pg are of order
2. We must therefore allow for changes in K 3y and Py
of order ¢2. That is, we must consider the variation of
(v,;) and (%) to order &% This requires a more detailed
expansion of (3.1).

In order to avoid the use of additional subscripts to
indicate orders of ¢ (subscripts already denoting layers
1 and 2), we iniroduce the following special notation,
which differs slightly from (9.4):

w,= U+ eu+&(U,"+X), (9.11)
v=0+ev/+&(V+X), (9.12)
h=h+eh' &'+ X), (9.13)
wy=—hV-v1=0+ew/+&(w,""+X), (9.14)
wa= (H—h)V-vy=0+ews'+&(wy’+X), (9.15)
pi=Dbitep/+e(p) +X). (9.16)

In these equations %, U; and §; are the parameters o
Section 2 describing the basic unperturbed state, and
are not functions of ¢. The terms #;, v/, #, p;/ now are
the firsi-order perturbation quantities defined in (3.1),
and no longer represent the total deviation from
{u;), etc. The terms w; and w, are the vertical velocities
at the interface. The ¢ terms have been divided into
two parts—a part which is independent of x and denoted
by U/, Vi, k"', w/" and p;’, and a part which varies
with « but has a zero x average (formerly included in
u, etc.). The latter part will not appear in the second-
order x-averaged equations, and the symbol X is
written in (9.11)-(9.16) merely to indicate that it is
present in principle.

The procedure now is as follows. (A detailed deriva-
tion is given in Appendix B.) The notation of (9.11)-
(9.16) is first introduced into the definitions (9.3)-(9.9)
of the five energies, to order 2. The resulting expressions
are differentiated with respect to ¢ introducing various
9/9¢ terms in the five integrands. These d/9¢ terms are
then evaluated by substitution from the equations
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which result by substituting (9.11)-(9.16) into the
original equations (2.2)-(2.4). The result is that the

five time rates of change of the energies are each equal
to certain energy transformation integrals W . Thus,

dh
W= / [d_(PlU 24101} — poU o(022))
y

- (P1U1<%1'w1'>—p2U2(Mz'wz’))]da, 9.17)

Wy= —f/[PIUlﬁVIH“I‘thZ(H—}-L) Ve lda, (9.18)
Wg'—"f/ [plU1<h'7)1,>—p2U2<h’1}2'>]d(1, (919)
oy apy
W= / [U1<h’—1>— U2<h'—z ]da, (9.20)
ox ox
W5= - /[ﬁ(Vll . VP1,>+ (H—FL)(VZ’ . sz')]d(l. (921)
The time rates of change of the energies are:
1d
——Ky=W1—W,, 9.22)
€ di
1d
- —‘PM‘—: Wz“' W;,', (9.23)
€ di
1d
'——Kzz Wg— IV4— W;, (9.24)
€ dt
14d
— —Pp=W,—Ws, (9.25)
€ dt
14d
e di

This energy flow is illustrated graphically in the
upper part of Fig. 17. This diagram appears strange in
that it is unsymmetric, with no energy flow between
Krand Kg. A more general arrangement is obtained by
adding an arbitrary quantity 4 to Wy, W5 and W3 and
any quantity B to W, and W5, as shown in the bottom
diagram of Fig. 17. [Note that this does not disturb
the relations (9.22)-(9.26).] A more conventional
diagram now results if we combine K; and Kg and
choose 4=0, B=W;—W,. This is shown in Fig. 18.
(This combination of K and K g is not arbitrary, since
they both arise from the same physical quantity—the
kinetic energy integral.)

The physical meaning of Wy, W, and W3 is (almost)
clear. The integrand of W, has the general appearance
of the Reynolds stress terms —(u)[d(u'v')/dy
+ &{w'w’)/3z] which appear in a continuous model for
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Pu Wo K
w Wi
Ky
Wq
PE Wsg Kg
Py [—Wo+A L)
WatA Wi+ A
K
Wy +B B
Pg  f—————WgtB ——> Kg

Fi6. 17. Energy flow diagrams for the frontal model, in which
K g and K; are kept distinct.

the transformation of eddy kinetic energy intc mean
kinetic energy. (The signs seem to be determined by
the progression from layer 1 to 2 by proceeding in the
positive z direction, but negative y direction.) It should
be emphasized that both the (#'v’) and (u'w’) stresses
are included in W;. We can think of (#/v') as typical of
the shear instability waves of Section 2, and (#'w’)
as typical of Helmholtz instability.

W, depends on the mean meridional circulation,
V. If AV were the negative of (H—h)V,” (which it
is not, in general), we could write the integrand as
ﬁVl”f(pQUQ_plUl) = (ﬁVl”)g (pl—pz)dﬁ/dy. This could
be transformed by partial integration with y into the
integral of —g(o1—p2)hd(AV+")/dy. The y derivative
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in this expression can be thought of as a mean vertical
velocity , say, giving the more familiar form of a
correlation between A and 0.

W3 can be given a heuristic interpretation by noting
that if py~ps~p, and U,= — U= U, say, the integrand
could be written as

— FBUH (v +2y).

Let us take fU as positive, so that dk/dy is positive.
Suppose %’ is negatively correlated with (vy'425").
W3 is then positive; the average of 4’2 must increase
from this process. If particles moved strictly hori-
zontally, with no divergence, they would carry with
them their total value of %#. The hypothesized negative
correlation of %' with (vi’+v,") would then mean that
at places of positive 4’ particles on the average are
arriving from higher latitudes bringing with them even
larger % values; at places of negative 4’ particles on the
average are arriving from lower latitudes bringing with
them even smaller values of k. In this way, (4?) will
increase. This process of increasing disturbance poten-
tial energy by horizontal advection processes is char-
acteristic of the quasi-geostrophic baroclinic instability
discovered by Charney (1947) and Eady (1949). It
depends on the slope di/dy, which, in turn, is possible
in the steady state only when f is present.

The sum Wy+W;—W, does not have a clear kine-
matic interpretation yet because of the p’ terms. In
appendix B, however, it is shown that these combine
to give

WitWs—W,

9.27)

f
=—— | [p1Ux(wi'h')— poUn(wy'h') Jda.
tané

(9.28)

Again choosing U,=—U;=U=1g(p1—p2) tans(fp),

M W Km

T

),

t

4

Pe

WgtW3 -Wg———> KE + KI

Fic. 18. Energy flow diagram for the frontal model com-
bining Kz and K;. The extra arrows indicate the direction of the
transformations W, and W3 in cases I and II.
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this may be rewritten as

Wst+Wy—W,

~—g(p1—ps) f <<wl—:w2)h>da (9.29)

Ppg is therefore transformed into (Kr+Kg) by a
correlation in x of descending motion with positive 4,
which decreases Pg by reducing the average magnitude
of 42 and increases the magnitude of K;+Kg by an
equal amount.

I have computed numerically the energy transforma-
tion integrals W, and W3 for the two cases I and I
indicated on Fig. 9. Case I was described kinematically
in Section 8. Case II also has Ri=35, but Ro=0.3,
(a wavelength A=2,090 km compared to A=6,280 km
for case I). As mentioned in the footnote following
(8.1), Ro=0.3 has the largest growth rate for this value
of Ri (at least for Ro< 3), with a doubling time of 19.7 hr
compared to the 32.5 hr of case I.

If W3 is normalized to unity in both examples, the
values of W, are

Case I: W= +0.07}. (9.30)

Case IT: W= —0.76

The more rapid growth rate of case II is evidently
associated with a supply of energy to the growing
perturbation from both potential and kinetic energy of
the mean flow, whereas the more slowly developing case
I waves returns to the mean kinetic energy some of the
energy it receives from the mean potential energy. From
the details of the numerical computation, it is apparent
that the negative value of Wy in case II vs its positive
value in case I is due to the (#'w’) terms in W;. Case II
then partakes of geostrophic baroclinic instability
and Helmholtz instability.

Although I have not made any further computations
of Wyand W3, I believe they would show the following
features:

1. Surface (H) corresponds to Helmholtz instability,
with negative W, due to (#'w’).

2. Surface (E) is baroclinic instability with positive
W3 and negligible W,.

3. At Ri<2, surface (R) has negative W; due to
(u'v'), and is a barotropic (i.e., shear) instability of the
Rayleigh type.

4. At Ri>2, surface (R) becomes more complicated.
At very small Ro it retains feature 3, but as Ro increases
and (R) and (E) approach one another, (R) also
becomes baroclinic, with W;>0. However, the growth
rates are small on (R) as soon as Ri becomes appre-
ciably greater than 2.

5. Surface (B), which occupies most of the range
0<Ro<1 when Ri is appreciably greater than 2,
always has baroclinic instability (W;>0). At small Ro
it may have barotropic stability, as in case I above, but
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at larger Ro it will, as in case II, have barotropic
instability as well, of the Helmholtz type.
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APPENDIX A

The numerical method is an extension of the tech-
nique described by Fox (1959). I describe it for the
general case, whose results are discussed in Section 7.
The same technique was also used for the simpler cases
of Ro=0 and 7=0 discussed in Sections 5 and 6.
Consider a fixed value of the pair Ro, Ri. We set
®:(—1)=1, and, formally, ®;(—1)=D. The constants D
and 7 are unknown, as are the values of ®1(y) and ®:(n)
for —1<9<1. Egs. (5.3) and (5.4) are, symbolically

9“1((?1,(?2; T)=0, (Al)

E)T(Q (@1,@2; T) = 0, (AZ)

where 9, and 9N are second order differential opera-
tors. At n=—1 we have (7.4) and (5.5), i.e.,

oy {  1—Ro(r—1)
&)= b
d"l p=—1 7'""1- 2

Ri
_—2-[1—R02(T~1)2], (A.3)

a®
(—) =RiRo. (A.4)
dﬂ p=—1

At n=-1 we have (7.5) and (5.5). These we choose to
write as

d®,
F= [—-{—RiRO(Pl] =0, (A.5)
dn p=1
a® Ri
= l———— @2
dy  +1
Ri
—?[1—R02(r-|- 12 (@1— @) =0. (A.6)

7=1

The interval from n=—1 to n=+1 is divided into 40
intervals and d®/dn and d*®/dn? are expressed in finite
differences where they appear in (A.1)-(A.6). ®; and @,
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F1G. 19 Location of all Ri-Ro points for which the computa-
tions were made.

could then be computed at successive discrete n values,
n=—0.95, —0.90, ..., up to n=-1, for a pair of trial
values 7,, D,. The values of ®; at n=1 so obtained will
not satisfy (A.5)-(A.6), in general, and a revised guess
must therefore be made for 7 and D.

A logical way to correct 7 and D is as follows. Let the
numerical solution be viewed (for fixed Ro, Ri), as a
function of 7 and D. Introduce 8; and 7; for the dif-
ferential coefficients

o®,

67',

o®;

oD

(A7)

8; J

Partial differentiation of (A.1)-(A.2) with respect to
7 and D produces four new second order differential
equations of the form

M (T1,Ta; 7)=0, (A.8)
M (Ty,Te; 7)=0, (A.9)
M1 (81,82; 7) =T (@1, ®2; 7), (A.10)
Mo (81,82; 7) = Mo (P2, P2; 7). (A.11)

9%; and N, are the second-order differential operators
appearing in (A.1) and (A.2). 9, and 9T, are the first-
order differential operators which appear when the
coefficients in 91; and 9, are differentiated with respect
to 7. A similar treatment is given the four boundary
conditions (A.3)-(A.6).
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Step-wise integration from »=—1 can now be per-
formed simultaneously for ®;, §;, and 7;. F and G will
not be zero, but will equal F,, and G,, say, when =1
is reached. We obtain a correction to the guessed con-
stants 7 and D by using Newton’s method of finding
roots. This amounts to solving the simultaneous set of
(complex) equations

oF oF
(—)AT+ <—)AD= —_ Fy’
a7 aD

oG oG
T —
ar oD

for Ar and AD. [The differential coefficients here are
the expressions involving ®;, 8; and 7; obtained when
(A.5) and (A.6) were differentiated with respect to
7 and D.] The process is then repeated (for the same
Ro, Ri pair) with 7,3=7+A7 and D,;,=D,+AD,
until satisfactory convergence is obtained. I used the
criterion that |Ar| and |AD| must be less than 1075,

I also made several tests with 200 intervals between
n===1. The results differed insignificantly from the
40-interval results for the smoothly varying ®;(n)
associated with the particular values of Ro and Ri I
have investigated.

The convergence was more rapid in 7 than in D.
A more flexible system, in which ®.(—1) is allowed to
vary instead of being fixed at 1, might have better
convergence. Most of the = values were obtained by
using as initial guesses for 7 and D numerical values
previously obtained at neighboring Ro-Ri values. This
procedure was unsatisfactory in the vicinity of point
where 7=0, because D= @1 (5= — 1)+ ®s(n= — 1) passes
through infinity there (Kotschin, 1932).

The location of all possible 7 values (for fixed Ro, Ri)
by this method is not guaranteed, although by using a
wide range of initial guesses, as I have done, considerable
confidence can be placed on the numerical results.

Fig. 19 shows the location of all Ri-Ro points for
which these computations were made. Appendix C
lists the 7 values.

(A.12)

(A.13)

APPENDIX B

The energies defined in (9.5)-(9.9) are of order ¢
and ¢, plus higher order terms. The zero order terms
are constant, according to (9.11)-(9.16). Differentiat-
ing with respect to ¢, and introducing the special nota-
tion of (9.11)-(9.16), we have, for the ¢ contribution,

1 dKxu _8UY" U2 oh”
LN P

e di ot 2 a¢
U U ok”
+P2[(H—h)U2 —_—:Id07 (B.1)
at 2 at
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1 dPy on'"
PR (p1—p2) h—da

e

(B.2)

1 dK;

ad 9
—_—— /|:p1U1—<M1’hI>—szz—-(’uzl}l?]da, (B3)
¢ dt at ot

6v1

e e
+p2(H—ﬁ)<v2'-i§:—l>]da, (B.4)
02) / <h ——>da

The original equations (2.2)-(2.4) to first order in e are

1 dPg

———=g(n—

=7 (B.5)

a a 1
| AU ===, ®Bo)
ot ox Pj
' =ps'+ (p1—p2)gh’, (B.7)
1% o' dh
—_— l: U1——+211’—]— hV. V1'
at x dy
oK' dh
= - I:Ul—--l- v;'—]—{-w;', (BS)
ox dy
o’ ok’ dh
—= —'I:Uz"—-+7)2 —:|+ (H h)V Vg
at dx dy
1/ dh
=— [ Ur—tv'— ]+w2 (B,Q)
ox dy

To second order in ¢, the x-averaged equations [again in
the special notation of (9.11)-(9.16)] are

aU,‘" a(u;v;’) ,
=— ' Vv VS, (B.10)
ot dy
ann F.) . ) ) . 1 6?;‘”
= ——(v;'v; )+ (v V-v,)— fU;/" ———, (B.11)
at dy pi 0y
ah” 6 [}ZV ,,+<h' 1>:|
— = 1 U1
al dy
a3
=5‘[(H—h)V2"—(h'v2')]. (B.12)
y
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Eq. (B.11) is included only for completeness, since
dV,;’/dt does not appear in (B.1). The following
expressions result from obvious manipulation of
(B.6)-(B.9):

vy
<v, it =——<v, o), (B.13)
ot
3 1, apf
S e Gy
at pPj %
dh
—(ui'viy—+(uw;). (B.14)
dy

These are now introduced into (B.1)-(B.3) to eliminate
the time derivatives.

To derive (9.22) we substitute (B.10) and (B.12) into
(B.1). Thus,

1dKy )
-— /pl{hUl[fVl"-i-(u{V-vl')

e dt
9 U a N
- 5;(%1’01’)]— -5— 5;[V1"h+<h"v1'):| }
_ a
+p2 { (H—h) UzI:sz"-I‘(Mz'V' Vzl)—g—(u‘z'w')]
y

U234 _
———-——[Vg”(H—h)—(h'vz')]}da (B.15)
2 39y

The two Coriolis terms give —W, according to the
definition (9.18). At this point, we specialize to the
frontal model, in which U; and U, are independent of
y. The U terms then vanish in the y integration. From
(9.14) and (9.15) we have

w1’= - EV'V].’, (B16)
= (H—R)V-v¢. (B.17)
Thus,
1 dKy 9
———=—W,+ /plUx[—'<u1,wll>'~h—<u1’1)1’>]
€ dt dy

.0
+ p2U2|:<u2'w2')—|— H- h)a—<u'21)2'>jlda
y

=—Wt+Wy, (B.18)
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the last step being based on partial integration of the
d(u;'v/)/ 8y terms.

To derive (9.23) we first substitute (B.12) into
(B.2) to obtain :

1 dPy _a _
el / TRV (1]
€ d dy

+p[(H=R)Vo"—(W'vy) }da. (B.19)

Now, from (B.12), with the boundary conditions that
V" and v/ vanish at |y|= «, we have

RV "+ (oY= (H—R)Vy"'— (W) (B.20)
Eq. (B.19) is integrated by parts with respect to v,

dh/dy is replaced by (2.5), and then free use is made of
(B.20). The result is

1 dPy

—_——= /{mUl[’-lVl"-l‘(h'”l'ﬂ
e dt

+p2Us[ (H—}-L) V{’—(h'-u{)]}da

The derivation of (9.26) from (B.3) and (B.13) is
trivial, as is the derivation of (9.24) from (B.4) and
(B.14). The truth of (9.25) is established by inserting
(9.20) and (9.21) into (9.25) and using (B.8) and (B.9).
Thus,

apy _
W4—- W5=/I:U1<h’ 3 >+k<V1I'VP1’):|
X

- [ U2<h'-‘?§:>— (H—Fyve- Vpg’):lda. (B.22)

The (v,/-VP,) terms are transformed into (V-p,v,’)
—({p;/V-v,) and the V-v,” terms are replaced from the
left hand parts of (B.8) and (B.9). The integrand in
(B.22) becomes

U1<%(Pl'h')>+£;[@1'”1'>5]— U 2<£; (Pz'h')>

3 ) o
+—[<pz'v2'>(H—h)]+<(pl'— ;bz’,)<—>.
dy at
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The first four terms vanish on integration. From (B.7)
we then obtain

/% 1 dPg
W4— W5= (pl—‘pz)g/ W— Yda=——.
ol ¢ dt

(B.23)

The proof of the critical equality (9.28) amounts to
establishing that

on'
(p1—p2)g tand / <h’a—>da
¢

=— f/ LoaUxwi'b'y— poUxwe' k') Jda
1 tand [ Gl )=l o do.

The validity of this follows from the right parts of
(B.8) and (B.9) and the relation (2.5) for tans.

APPENDIX C

Ri Ro ]'r,-l I‘r.’l
0.1 0.1 — 0.9968
0.1 0.6 — 0.9943
0.1 1.5 — 0.9557
0.1 3.0 — 0.8242
0.2 3.0 — 0.4676
0.21 3.0 — 0.2790
0.22 3.0 — 0.2947
0.22 3.0 0.4606 —
0.2205 3.0 0.4550 —
0.235 3.0 0.2646 0.1153
0.24 3.0 0.3326 0.2421
0.25 3.0 0.3645 0.2903
0.3 3.0 0.4281 0.3739
0.4 1.5 — 0.6721
0.5 0.3 — 0.9569
0.5 0.6 — 0.8968
0.5 0.8 _ 0.8414
0.5 0.95 — 0.7925
0.5 1.5 — 0.5726
0.5 1.9 — 0.3229
0.5 3.0 0.4648 0.3344
0.8 1.5 — 0.2588
0.8 3.0 0.6604 —
0.9 1.5 — 0.1643
0.98 1.5 — 0.0465
0.99 1.48 0.0394 0.0465
0.99 1.5 0.0999 —
1.00 0.3 — 0.7570
1.00 0.6 — 0.7050
1.00 1.5 0.3261 —
1.5 0.8 — 0.3627
1.5 3.0 0.4274 —_
1.8 0.001 -— 0.9550
18 0.01 — 0.9478
1.8 0.01 0.2131 —
1.8 0.05 — 0.9071
1.8 0.2 — 0.7450
1.8 0.2 0.2643 —
18 0.4 0.3575 —
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Ri Ro |7+ |74] Ri Ro |7+ |74
1.8 0.6 — 0.3525 2.1 0.7 0.4107 —
1.8 0.6 0.4896 — 2.1 0.9 — 0.0703
1.9 0.01 0.1450 — 2.1 0.9 0.0888 —_—
1.9 0.05 — 0.9210 2.1 0.99 — 0.0272
1.9 0.1 — 0.8613 2.1 1.05 — 0.0259
1.9 0.2 -— 0.7359 2.1 1.1 0.0488 0.0510
1.9 0.3 — 0.6056 21 1.2 0.1215 0.0401
1.9 0.4 — 0.4792 2.1 1.3 0.1780 0.1089
1.9 0.45 — 0.4225 2.2 0.1 -— 0.8202
19 0.5 — 0.3730 2.2 0.1 - 0.2282
1.9 0.55 — 0.3315 2.2 0.2 — 0.6204
1.9 0.6 — 0.2975 2.2 0.2 — 0.2756
1.98 0.1 — 0.8511 2.2 0.25 — 0.5035
1.98 0.15 — 0.7839 2.2 0.25 — 0.2191
1.98 0.2 — 0.7143 2.2 0.28 0.0553 0.3883
1.99 0.1 — 0.8497 2.2 0.3 0.1014 0.3725
1,99 0.15 — 0.7819 2.2 0.4 0.1917 0.2841
1.95 0.15 o 0.7809 2.2 0.5 0.2504 0.1769
2.00 0.1 — 0.8484 2.2 0.55 0.2655 0.0929
2,00 0.15 — 0.7798 2.2 0.6 0.1678 —
2.00 0.2 — 0.8086 22 0.65 0.4203 —_
2.00 0.3 — 0.5594 22 0.70 0.3535 —
2.00 0.6 — 0.2339 2.2 9 — 0.1091
2.00 0.6 0.4542 — 2.2 1.0 — 0.1117
2.00 0.7 —_ 0.1992 2.2 1.05 — 0.0810
2.00 0.8 0.2352 — 2.2 1.06 0.0135 0.0611
2.00 1.5 0.3054 — 2.2 1.08 0.0388 0.0579
201 0.01 — 0.9415 2.2 1.10 0.0566 0.0554
201 0.01 — 0.0456 2.3 0.8 0.1356 0.0763
2,01 0.1 -— 0.8471 2.35 0.8 0.1426 0.0843
2.02 0.001 — 0.0657 2.40 0.8 0.1479 0.0903
2.02 0.05 — 0.0800 2.45 0.8 0.1521 0.0951
2.02 0.07 — 0.0806 2.50 0.8 0.1554 0.0991
2.02 0.1 — 0.0805 2.50 0.87 0.0795 0.0253
2.02 0.15 — 0.0776 2.50 0.90 0.0528 0.0490
2.02 0.15 — 0.7567 2.53 0.87 0.0761 0.0311
2.02 0.18 —_ 0.0730 2.55 0.87 0.0848 0.0349
2.03 0.05 — 0.0854 2.59 0.87 0.0880 0.0396
2.03 0.1 — 0.0862 2.60 0.87 0.0887 0.0406
2.03 0.15 — 0.0833 2.60 0.94 0.0283 0.0667
2.03 0.15 — 0.0807 2.61 0.87 0.0893 0.0415
2.03 0.19 — 0.0769 2.62 0.87 0.0899 0.0423
2,03 0.20 — 0.6998 2.63 0.87 0.0905 0.0431
2.03 0.21 — 0.0715 3.00 0.001 — 0.3987
2.03 0.24 — 0.0588 3.00 0.01 — 0.4071
2.03 0.27 — 0.0327 3.00 0.05 — 0.4568
2.03 0.28 — 0.0085 3.00 0.1 0.0612 0.5979
2.03 0.30 — 0.5429 3.00 0.2 0.2566 0.5054
2.03 0.35 — 0.4610 3.00 0.3 0.3227 0.4256
2.03 0.40 — 0.3807 3.00 0.4 0.3582 0.3313
2.03 2.00 0.4786 — 3.00 0.6 0.3788 0.0676
2.04 0.4 — 0.3694 3.00 0.65 0.5549 —
2.05 03 — 0.5311 3.00 0.65 0.3556 0.0593
2.05 0.4 — 0.4440 3.00 0.70 0.3995 —
2.05 0.4 — 0.3566 3.00 0.80 0.1892 —
2.1 0.01 — 0.1418 3.00 0.82 0.1497 0.0323
2.1 0.02 — 0.1481 3.00 0.85 0.1195 0.0518
2.1 0.05 — 0.1587 3.00 0.88 0.0912 0.0631
2.1 0.05 — 0.8843 3.00 0.89 0.0823 0.0658
21 0.1 — 0.8454 3.00 0.90 0.0735 0.0682
2.1 0.1 — 0.1672 3.00 0.92 0.0565 0.0721
2.1 0.2 — 0.6778 3.00 0.94 0.0401 0.0749
2.1 0.2 — 0.1751 3.00 0.95 0.0319 0.0671
2.1 03 — 0.4963 3.00 1.0 — 0.0891
2.1 0.3 — 0.1911 3.00 1.1 0.0675 0.0772
2.1 0.32 0.0001 0.2224 3.00 1.2 0.1231 0.0704
2.1 0.35 0.0004 0.2596 3.00 1.5 0.2475 0.0240
2.1 0.40 0.0669 0.2381 5.00 0.1 0.3028 0.5957
2.1 0.45 0.1493 0.1829 5.00 0.3 0.4344 0.3626
2.1 0.48 0.0050 0.0586 5.00 0.4 0.4389 0.2466
2.1 0.5 0.1702 0.0757 5.00 0.5 0.4225 0.1132
2.1 0.51 —_ 0.1294 5.00 0.9 0.0714 0.1171
2.1 0.55 —_ 0.1446 5.00 1.0 0.0560 0.1280
2.1 0.55 0.3625 — 5.00 11 0.0697 0.1308
2.1 0.6 0.6629 — 5.00 1.2 0.1242 0.1298
2.1 0.7 —_ 0.1106 5.00 1.3 0.1711 0.1271
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