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ABSTRACT

The stability of a two-layer model is analyzed using a numerical method taking into account the effect
of bottom topography. A jet in geostropic equilibrium exists in the upper layer and baroclinic instability
may occur. It is found if the bottom topography has a large amplitude relative to the total depth, that it
has a destabilizing rather than a stabilizing influence. Applying the model to the Gulf Stream, it is found
that the most unstable disturbances, corresponding to the basic flow upstream from Cape Hatteras, are
markedly different in wavelength and period from those corresponding to the basic flow downstream from
Hatteras. The baroclinic disturbances in the model are consistent with the limited observational evidence

on momentum transfer by Gulf Stream eddies.

1. Introduction

The purpose of this paper is to investigate the sta-
bility of a jet in a baroclinic, two-layer system and to
determine the influence of bottom topography on the
dynamics. Although analysis has been made of two-
layer models in order to describe the dynamics of baro-
clinic waves in the atmosphere, there is not much known
about the influence of bottom topography on such mo-
tions. There are several areas of geophysical fluid dy-
namics in which the above effect is relevant, e.g., the
instabilities which occur in the atmosphere over the
continental coast of Antartica, and the irregularities in
the Kuroshio and Gulf Streams in the ocean. The ex-
tensive measurements in the Gulf Stream suggest the
consideration of the latter example as a prototype in
this paper. The meandering behavior of the Gulf Stream
may well be explained by a stability analysis of a jet
flowing over bottom topography which has a strong
variation across the stream.

Early papers (Haurwitz and Panofsky, 1950; Stom-
mel, 1953; Stern, 1961; Lipps, 1963) examined this
problem by a simple stability analysis. They arrived at
the conclusion that only barotropic instabilities are
possible. In a later section, we will show that they
arrived at this conclusion by neglecting the dynamics
of one of the layers (the deep layer) and the effect of
the bottom topography. We can predict this result from
the necessary condition of instability for a two-layer
system (Pedlosky, 1964) in which the dynamics of one
of the two layers is neglected. The only possible insta-
bility in this simplified case occurs when the gradient of
the mean potential vorticity of the active layer changes
sign, i.e., when the horizontal shear of the jet allows

barotropic instability. We will show that the assumption
of neglecting the dynamics of the lower layer and the
botfom topography were not justified and that it is
necessary to include both layers in the stability analysis
for an adequate description of Gulf Stream behavior.

Following a formulation of the steady-state equations
and the linearized perturbation equations in Sections
2 and 3, two cases are investigated in Section 4, one,
Case A, being devoted to determining the eigenvalues
corresponding to a cross stream variation of the bottom
topography. A similarity is found between the effects
of the latitudinal gradient of the Coriolis parameter and
a sloping bottom topography. Under some circum-
stances both have a stabilizing effect on the waves, but
this feature is very sensitive to the particular configura-
tion of bottom topography considered.

In Case B the analysis will show first how the unstable
mode varies when changes in the mean velocity, the
wavenumber and the bottom topography are made
separately. Then attention is focused on the meanders
of the Gulf Stream. The large differences in bottom
topography along the stream suggest the consideration
of two regions (I and II). Regions I and IT have repre-
sentative bottom configurations similar to those in the
areas upstream and downstream from Cape Hatteras,
respectively. The most rapidly growing baroclinic wave
has a quite different wavelength in Regions I and II.

A derivation of the energy equations and an analysis
of the energetics is given in the two final sections. It is
found that the mean potential energy is the source of
energy for the waves, but the release of potential energy
takes place in such a way that in the simple two-layer
system the source of potential energy is in the deeper
layer.
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Oort (1964) found a countergradient heat flux in the
surface layer of the Gulf Stream in Onslow Bay. Al-
though a rigorous comparison between the two-layer
model and the continuously stratified case cannot be
made, the existence of an analogous source of potential
energy in deeper layers of the Gulf Stream may well be
possible. The solutions also indicate a small transfer of
kinetic energy from the disturbances to the mean flow
in complete agreement with the analysis of surface mea-
surements in Onslow Bay made by Webster (1961a).

2. The unperturbed steady-state motion

We consider two incompressible, homogeneous fluid
layers in a rotating coordinate system with constant
Coriolis parameter f. The motion in each layer is hydro-
static and independent of the vertical coordinate. The
two fluids are bounded above the rigid surface, z=Hr
and below by rigid surface, =/%5(x). The interface be-
tween the layers is at e=hi(x,9,t); hs<hr<Hr. Letk
be a vertical unit vector; V the horizontal gradient
operator; V;=(U,,V;) with j=1, 2 the horizontal ve-
locity in the upper and lower layers, respectively; and
P; and Ps the pressures in both layers. The equations
governing the model are:

d 1
I:_+V7 V+ka]Vj= ——Vpi, 2.1)
ot p;
pa=p1+ (p2—p1)ghr+gp:Hr, (2.2)
Dhr
‘) =Hr—h)V-Vi=W,, (2.3)
Dt /4
Dhy
—-—) = (hB—hz)V'V2+V2‘ VhB=W2, (2.4)
Dt /,
where
D <]
—> =_+V;' V’
Dt/; ot

and W; are the vertical velocities in both layers at the
interface. The basic state consists of a velocity V; in the
positive y direction in each layer

Vi= [.O:Vl(x)]’ (25)
V,=0, (2.6)

where V1 is only a function of x. For steady solutions of
this nature, (2.1) and (2.2) require that

(P2—P1)z=g(p2—p1)ki1s, 2.7
gloa—p1)hrz=—p1fV1(x). (2.8)

Let us assume for V1(x) a jet profile of the form
Vi(x) =0V'e>'. 2.9

Here U is the amplitude of the mean velocity and «’ the
dimensionless coordinate &’=x/L, where L, is a char-
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Fi16. 1. The lower part of the graph shows the two-layer model
with an arbitrary bottom topography (Region I). The upper
part of the diagram shows the velocity profile of the jet.

acteristic scale. Replacing (2.9) in (2.8) and integrating
with respect to x, we find the interface 4y is

L.fo
hr=hyt+——(1+42")e =, (2.10)
gl

where g’ is the reduced gravity, g'=(p.—p1)g/p, and p
is the average density, p= (ps+p1)/2.

Hereafter, p; will be replaced by 5 in the momentum
equations, an approximation frequently associated with
the Boussinesq model of incompressible heterogeneous
flow. We will consider two different cases for the bound-
aries in the x direction:

1) A semi-infinite region,0<x< «,denoted as Region
I, with a wall at x=0 and an interface which does
not intersect the free surface, (Hr—hr)>0 (see
Fig. 1).

2) An infinite region, — o <x< , denoted as Region
1T (see Fig. 2).

3. Perturbation equations

We allow,the steady flow described in Section 1 to be
perturbed by a wave-like disturbance having a small
amplitude ¢, the perturbation variables being of first and
higher orders in e:

#;=0-+ ¢ Real (Uje)+ € Reall;/4+0(e?), (3.1)
v;=V;+ ¢ Real (Ve¥)+ & RealV/'+0(&), (3.2)

A

z Xo___ Hi= Rigid Top
VA h,= Interface
zoA"E ?, ZONE B
%»hiﬂonom Topography
el REGION 11 X = e

F1c. 2. The two-layer model shown in the lower part of the
figure has an interface which intersects the free surface (Region
II).ﬁiI‘he upper part of the figure shows the corresponding jet
profile.
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pi=P;+ ¢ Real(@je)+ & Real®;’+0(¢¥), (3.3)
hr=F1-¢ Real(30e)-+ & Reald¢”’+-0(¢),  (3.4)
¥=(ky+oat), (3.5)

where V,- is the mean velocity defined in Section 2; hr
and P; are the values defined by (2.9) and (2.2); U,
Vj, ®; and 3C are, in general, complex functions of x; &
is the y wavenumber; and ¢ the frequency.

The first-order forms of (2.1)—(2.2) are:

@2—P1=g(p2—p1)3C, (3.6)
i(e+EV Ui~ fO;= —®;s/b, 3.7)
_ _ th®;
i(o'-i-ij)’Uj-f-f‘llj-*-‘ujij =, (3.8)
p
h[=ﬁ[+(}€. (3.9)

The kinematic boundary conditions at the interface are:
(o+kV)H+ Uik, = (Hr—hr) (U +ikVy), (3.10)
1:0’H+U27L1‘z=(hB—ﬁI)(U2,+ikV2)+U2th, (311)

where 4g(x) is the height of the bottom topography. The
dynamic boundary condition at the interface is
@2 —@®1=g(p2—p1)3C. (3.12)

The horizontal boundary conditions in Region I are:

x=0, x=FEp—w
u1=0, ‘ul, U1 and ®1—0 s (313)
u2=0, cuz, ;-02 and Py — 0

where E; is the eastern wall.
In Region II the corresponding conditions are:

o —Zone A—x=xy—Zone B—x=E; —w

@y =finite, AU, V1, ®1— 0 , (3.14)

3, U, and ®;— 0, [U2 and @;] continuous,
Uz, V2 and @,—0
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where x, is the point where the interface intersects the
free surface.
Eqgs. (3.7) and (3.8) allow U; and U; to be expressed as

linear functions of ®; and d®;/dx, i.e.,
W= —i{®s(o+kV )+ k7] )

oL (fHVim)—(a+EV)H], (3.15)
V= I:G)jk (‘7+kVJ‘>+ (f'l"Viz)G_)jz] _

+pLf (Vi) = (o+kV)Y].  (3.16)
Substitution of these expressions in (3.10) and (3.11),
followed by elimination of 3¢ by means of (3.12) results
in two equations for ®; and ®,, i.e.,
Fl(x)(})lm-I—F2(x)(Plz—I—F3(x)(§’1=F4(x) (@1—0)2), (317)
G1(%) P2 G (¥) P20 tG3 ()P =Ga(2) (P2 — @), (3.18)
where the variable coefficients are defined as follows:

Fl(x)=—(HT_7‘I) -
Fg(fXI) = ——Fl(x)[fVuz—Z(U—f—le)le,]

XLF(f+Vi)— (0+k?1)2]_1+711x ,  (3.19)
Fy(x) = —F1(x)k*+k fFo(x) (o+kV 1)
Fu(2) =g [f(f+V1z)— (o+kV1)*]
Gi(%)=—(hz—h1)
G2(x)=—(h3—hz)$ (3.20)

G3 (x) = —G1(x)]€2—ka2 (x)/o )
Gy(a) =g (0%

If %r were a linear function of #, then ¥; would be a
constant, and the system (3.10) and (3.11) would reduce
to the appropriate equations used earlier in an atmo-
spheric frontal model (Orlanski, 1968, hereafter referred
to as FMO068).

It is convenient to define some dimensionless
parameters:

Ro=V/(L.f); 7=0/(kV); Ri=g'Hr/V?; u=EkL,

where Ro is the Rossby number based on the shear of
the unperturbed flow, r the negative of the phase ve-
locity divided by the shear, Ri the Richardson number,
and p the dimensionless wavenumber. The coefficients
defined in (3.19) and (3.20) thus become

1 N
Fi(x)=— I:l —/Zo—RoRi(l-l-x)e "]
Fals) = —Fl(x)[(x—Z) —2(Row)r+xe*)(1—x) JRoe™ xe~> F, 3.21)
[1+Ro(l —x)e=—(Row)?(r+2x¢7%)?] RoRi
Fy(x) = —p?F1(x)+F2(x)/Ro(r+xe7)
Fy(x) =[14+Ro(1—x)e~*—(Rou)*(r+xe=)2]/RiRo? J
G1(x) = —[}IB—ko— (1—|—x)e"/(RoRi)]
Gao(x) = —xe*/(RoRi) — /5, 3.22)

Gs(x) = —u*G1(x)+Ga(x)/ (RoT)

Gu(x) =[1—(Rour)?]/RiRo?



NovEMBER 1969

where %y and %p are now defined, respectively, as the

amplitude of the interface at x—c and the height of

the bottom topography divided by the total height Hy.
The boundaries conditions for Region I are:

x=F—o
¢1=0 . (3.23)
®;=0

x=0,
0)112—@1/(ROT),
6)2;.;= _(PQ/(ROT),

For Region I (side rigid wall) we now have the two
second-order equations, (3.17) and (3.18), with the four
homogeneous boundary conditions for the variables ®;
and @. Since we are interested in complex values of 7,
we expect ®; and @, to be complex.

We have explored the solutions of this system by a
numerical method (FMO068) for the ranges 20< Ri< 80,
0.1<R0<0.5, 0.4 < 2y<0.8; primary emphasis has been
placed on the nonreal values of r=r,4irs.

Because of the range of variation of the many param-
eters involved in this system, we consider it convenient
to present the results in two parts. In Case A we are
interested in the stability of an atmospheric polar jet.
In particular, we are interested in the westerly flow over
Antarctica where there is a strong variation in topog-
raphy. The stability of this jet will be examined through
the use of the two-layer model, assuming a rigid wall at
a latitude close to the pole. This is characterized by two
layers of nearly equal depth separated by an interface
with a variable slope as a function of Ri. We consider
small values of Ro with and without bottom topography.

In Case B we will consider the case in which the pa-
rameters and the bottom topography are similar to the
Gulf Stream.

4, The unstable mode
a. Case A

With a constant value of Rossby number (Ro=0.1)
and varying the Richardson number (20<Ri<80), the
eigenvalues r and the eigenfunctions ®; were computed
for the case in which the interface divides both layers
nearly equally (h,=0.4).

Fig. 3 shows isolines of the time [ Tp =1n2/(4muRo7;);
in pendulum days, 47/ f] for the disturbance to double
its amplitude as a function of the shear of the mean flow
(U/Hr) and a dimensionless wavelength L,/L,=2m/pu.
The variability of V/Hz is a result of modifying the
Richardson number and keeping (p:—p1)/p=2X10"!
and Hy=8X10® m. With U/Hr=2 m sec? km™,
V=16 m sec™), and the horizontal scale fixed at L,=0/
(fRo)=1.6X10% m, the most unstable waves for this
shear of the mean flow corresponds to wavelengths of
the order L,/L,=4, so that L,=6400 km. We can see
that when 27/u> 1, the system becomes unstable, equiv-
alent 'to Eady’s (1949) results.

The dashed lines in-Fig. 3 indicate the growth time
‘Tp where there is a small bottom topography (in this
case bottom topography is kp= ke~ where 42=0.05).
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FiG. 3. Contour lines of the time T'p, in days, required to double
the wave amplitude are shown as a function of the mean shear and
the wavelength. The dashed lines correspond to the case with
bottom topography, solid lines to the case without bottom
topography.

We note a small influence for medium wavelengths but
a remarkable effect for larger wavelengths. The isoline
Tp=8 pendulum days for which 2x/p<5.5 is more or
less the same with or without bottom topography. How-
ever, in the case 2r/u>35.5, the system becomes more
stable with increasing bottom slope. We can identify
this effect as similar to the B-effect which stabilizes the
longer wavelengths (Charney, 1947). The stabilizing
effect of the bottom topography was also pointed out by
Pedlosky (1964) in his analysis of the stability of a two-
layer system with a small bottom topography. He con-
cluded from the necessary condition of instability that
a slope in the bottom topography will work as a stabi-
lizing mechanism. It will be shown here, for cases in
which the slope of the bottom topography is a stabi-
lizing factor, that the amplitude of the bottom topog-
raphy is a destabilizing factor where it appears as a
coefficient. It is the amplitude of the bottom topography
related to the vertical shear by Vy=V1/(Hy—hg) which
is the destabilizing factor. The combination of both
slope and amplitude of the bottom topography may or
may not force the system to become more stable. We
will show this in two simple experiments. In the upper
part of Fig. 4 the imaginary part of the eigenvalue of 7
is shown as a function of 25(0) with Ri=30, Ro=0.1,
ho=0.6 and p=0.8. This imaginary part 7; decreases
where kp(0) increases and the system becomes more
stable. The relative position of the interface and the
bottom topography is shown in the lower part of
Fig. 4. Fig. 5 shows ; as a function %5(0), kz(x) being
a tangent hyperbolic function of x. Now 7; increases
with increasing %5(0), and the system becomes more
unstable. There is no contradiction between the two
results, if we remember that V,(x) has a maximum at
#=1. The perturbed motion also has a maximum at
x=1, and decays exponentially for larger x. In Fig. 4
the amplitude of the bottom topography increases be-
low the jet, but the effect of the large bottom slope is
much more important. Consequently, the perturbation
motion becomes three dimensional and the increased
static stability is more important than the increase of
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F16. 4. The upper graph shows the variation of the absolute
value of the imaginary part of = vs the maximum amplitude of
the bottom topography. The lower graph shows the corresponding
bottom topograph where (X) denotes the position of the jet center.

the vertical shear. The result is a stabilizing effect. In
the second case (Fig. 5) the result is quite different.
Below the jet (x=1) the slope of the bottom topography
is relatively small and the depth of the lower layer
[Hr—#hs(1)] is also relatively small compared to the
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Fic. 5. Same as Fig. 4, except for different bettom topography.
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F16. 6. The absolute value of 7, computed with Ro=0.1 and

#=0.8, without bottom topography, is shown as a function of the
Richardson number.

previous example. The vertical shear is much more im-
portant now in destabilizing the system. It is true that
for x=3 the slope is large, but in this region, as men-
tioned before, the disturbed motion for large x is weak.
The stabilizing effect near x=3 is not great enough to
oppose the increased instability in the region of maxi-
mum baroclinicity near x=1; overall the system be-
comes more unstable. We must expect from these results
that the bottom topography will indeed play an impor-
tant role in the energetics and kinematics of unstable
waves which occur in jets flowing over steep bottom
topography.

The behavior of 7; as a function of Ri without bottom
topography is shown in Fig. 6 for a particular wave-
number x=0.8 and Ro=0.1. Here r; is a decreasing
function of Ri which, in fact, is a parameter involving
only the ratio of static stability and the baroclinicity
of the mean flow.

To show that the two-layer system contains the same
features for baroclinic waves as the continuously strati-
fied model, we may go back to a simple example. If one
allows a sinusoidal variation in Eady’s model (see
Phillips, 1963, pp. 145-150) with the flow bounded by
walls at =0 and x=Lg, the criterion for instability,
when k=0, can be written as

Hy/Ap\min®
TN < (23004,
f2 L 2

B
where m is the number of half wavelengths between
=0 and z=Lg, and Ap is the density difference from
2=0.75H7 to 2=0.25H7 in Eady’s Boussinesq fluid. A
complete analogy occurs in a two-layer system with a
steep slope in the interface. One may make the conjec-
ture that as Ly increases (Ri increases in the frontal
case due to the relation between Ri and Ly from Mar-

p



NoveMBER 1969

gules’ formula) additional unstable roots will appear,
and these will have shorter “wavelengths” in the x direc-
tion than those unstable roots which have already ap-
peared. Their growth rates will also be less (FMOG6S,
p- 184).

In this model the horizontal scale is involved only in
Ro. The appearance of additional unstable roots when
Lg is increased is illustrated in Fig. 7, constructed for
Ri=30, £5(0)=0, 1=0.8. When Ro=0.3 an unstable
root will appear. When Ro decreases, this root increases,
allowing a new root to appear. This new root is always
maintained below the first one. Fig. 8 shows one of the
eigenfunctions for roots I and II for the case Ro=0.2.
The new root has a higher wavenumber in the x direc-
tion, confirming the previous conjecture.

b. Case B

In view of the results of the previous section in which
the stability of a jet depends on the kind of topography
over which it flows, we are encouraged to attempt an
application of the theory to the case of the Gulf Stream.

Fig. 9 shows the geographic position of the axis of the
Gulf Stream (heavy line) and the contours of the bottom
topography (thin lines). Notice that the stream is
parallel to the contour lines over two regions from 28N
to about 35N (Region I) and then again above 36N
(Region II). Near Cape Hatteras (35.5N), however, the
jet crosses a strong slope downstream. Our model will
not apply to this region because we assume in the model
that the bottom topography has no variation in the di-
rection of the jet.

T
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0.02+ 11
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T T L LIRS L
0.150.160.17 018 0.19 0.20 0.21 0.220.230.240.250.260.270.28 RO

Fic. 7. In the upper part the absolute value of 7 isshown as a
function of the Rossby number (Ri=30, u=0.8, no bottom
topography). The two roots are indicated by I and II. The lower
part of the graph shows 7, vs Ro.
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Fic. 8. The eigenfunctions @y, corresponding to roots I and II at
Ro=0.2, are shown as a function of X.

Before going into the details of previous stability
studies of the Gulf Stream we will briefly mention some
theories connected with the meandering behavior. There
are two main ideas to explain this phenomenon: 1) the
Gulf Stream is a free jet controlled by the bottom topog-
raphy, and 2) the Gulf Stream is an unstable jet.

Warren (1963) has investigated the effects of topog-
raphy on the Gulf Stream north of Cape Hatteras
(Region IT). He shows that the current, a free jet in the
region, can indeed be controlled by the topography.
Warren also shows that the meanders of the Guif
Stream can result from depth variation and that they
are an inherent feature of a steady-state theory. The
steady theory may be applied to the actual time depen-
dent case if the changes are of low frequency. That is to
say, conditions at the entrance region must change
slowly enough to provide time for the flow to achieve a
near steady state before the entrance condition sub-
stantially changes. As pointed out by Greenspan (1963),
the exact causes of the slow oscillation in the initial
position of the meander pattern are unknown; there
may be some kind of instabilities connected with them.
Extending Warren’s ideas, Robinson and Niiler (1967)
considered a baroclinic jet and obtained quite good
agreement with some observations. Even if we recog-
nize that quasi-steady finite waves are well described
from these theories, the fact that meanders south of
Cape Hatteras and meanders with considerable time
dependence are not described by the above theories,
shows, we feel, that some other dynamic process is
involved in the formation and posterior development of
the meanders in the Gulf Stream.
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Fic. 9. The geographical position of the mean axis of the Gulf Stream is shown by the heavy solid line among the
bottom contours. The dashed line indicates Region I. The dashed-dotted line indicates Region II.

In the second group, as previously mentioned, there
are few theories based on stability analysis because of
the mathematical complexity of the nonconstant co-
efficients in the differential equations when considering
the interaction of both layers. As we see in (3.17)-(3.18)
this feature makes it impossible to make a complete
study from an analytical point of view. Many authors
(Stommel, 1953; Stern, 1961; Lipps, 1963) studied a
simpler model considering only the dynamically active
upper layer. Duxbury (1963) considered a two-layer
model but had no interaction between the layers.

We will show now that this simplification not only
neglects the effect of the bottom topography in the solu-
tions, but also changes the character of the possible in-
stabilities that may occur in a two-layer system. For
this purpose let us consider the simpler case of quasi-
geostrophic perturbations in a two-layer system. Ac-
cordingly, we must rewrite the expressions defined in
(3.21)-(3.22) so that only that part which is of first
order with respect to the Rossby number is retained.
The conditions for the validity of this simplified model
are Ro«'1 and Ri~0O(Ro™%). The latter condition is
needed to assume that the slope of the interface given
by (RiRo)™! will be of the O(Ro). The corresponding

coefficients are:
Fy=—(1—hy)+0O(Ro)
F,=0(Ro)
(A —ho)(x—2)e=
(r+ae®)

Fy=p*(1—ho)+
M

xe*

Ro™Ri(r+e~2)

Fy= +0(Ro)
Ro%Ri ]
Gi=— (hz—hq) ]
G2 = —th
x€"  hpe
Gs=p*(hp—ho)— ——+O0(Ro) 7.
o’Ri Ro
1
G4= +O(RO)
Ro?Ri

VOLUME 26

(4.1)

(4.2)



NoVEMBER 1969

We must limit the bottom slope so that it will also be
consistent with the quasi-geostrophic assumption. This
requires that %p,~O(Ro) and that the term %z./Ro in
G; is of the order of unity. Rewriting the system (3.17)-
(3.18) to the first order in Ro we have

F1®10:HF3@1=F4(®:—Py), (4.3)
G1P22z Gy =G4 (P — 1), (44
with the boundary conditions
x=0, x—>0
(4.5)

(Pl=(P2=0, @1=F:—0 '

If (4.3) is multiplied by the complex conjugate of @,
and (4.4) by the complex conjugate of ®;, and the re-
sults, integrated with respect to x over the interval
0<x< o, are then subtracted from one another, we
have

/w [F1]| @1z ]2 —=G1| @op | - F 3| ®1|2—G3 | @] 2 ]dx

= —/w [F«t(l (5)2[ 24 l(P1 ’ 2)++-Fy Real(®,®,) Jdx. (4.6)

Since only F; and G; are complex, we have the condition
that

Imag /m [st@llz—-Gs[(Pg]z]dx=0. (47)

Combining (4.1), (4.2) and (4.7), we have
° xe™? [@]2
n/ {I:Fl(x—2)e"~'+ :I—————
0 Ro?Ril |7+xe=|2

l: xe® Ith] | ®y]2

Ro’Ri Rod [r]?

}dx=o. (4.8)

If 7520, the integrand in (4.8) must be zero, i.e.,

[ {0 o

T q2x

Here ¢1.H, and ¢2.H, are:

(V1—Vs) xeT
Qo =F1V b ————=Fy(x —2)e~"4——,
Ro2Ri Ro?Ri
( V2 - Vl) hBJ: th xe—*
szH2=F2V2u'T = .
Ro’Ri  Ro Ro Ro?Ri

A necessary condition for instability is that g1, and ¢»,
have opposite signs. A similar contition for a quasi-
geostrophic two-layer model was derived by Pedlosky
(1964). If g1.>0, the necessary condition for instability
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is ¥1>0, allowing a baroclinic instability. However, if
in (4.3) we neglect the dynamics of the lower layer, ®;
is zero and the necessary condition of instability is that
¢1. must change sign, consistent with the Stern and
Lipps criteria. This is possible due to the horizontal
shear of the flow producing a barotropic type of in-
stability. Therefore, the assumption made in the pre-
vious works of neglecting the dynamics of the lower
layer allows only one type of instability and therefore
may not be appropriate to describe the meandering
process in the Gulf Stream.

Now we are able to present our results. The charac-
teristic parameters for the Gulf Stream are as follows:
Hy(1—h,), the depth of the upper layer is, 1000 m, and
the total depth Hp is ~5000 m. The ratio of density
difference Ap/p is 2)X1073, the horizontal scale L, is
50 km, and the maximum amplitude of the jet (V) is
1.5 m sec™. With these values the range of Ri and Ro
are: 20<Ri<80, and 0.2<R0<0.5.

Fig. 6 in the previous section shows the behavior of
7; as a function of Ri. Here we will only look at Ri=20
or 30.

Before going into the details of the analysis, we will
briefly describe the general characteristics of regions
shown in Fig. 9. Region I is characterized by a bottom
topography varying from a few hundred to a few thou-
sand meters in depth over a lateral distance of <200
km. The interface is always below the free surface and
bounded in the horizontal by a wall at £=0. In Region
IT the bottom below the jet is about 4000 m deep and
the interface intersects the free surface.

5. Analysis of the two regions

a. Region I

Fig. 10 shows 7 vs the dimensionless wavenumber u
for a constant Ri=30, Ro=0.3, /%,=0.79, and the bot-
tom topography Ap=hs1—tanh(x—3)], where &
=0.35, and 43 is such that for =0, 45(0) is 0.7. In the
upper part of Fig. 10 7; is plotted as a function of u. A
monotonic decrease of 7; with the wavenumber u is
shown; 7,~~0 evidently occurs approximately at u~~2.2.
In the lower part of Fig. 10 the dimensionless phase ve-
locity 7, is shown as a function of g, having a smooth
maximum for p=1.6. Note that the growth rate is
ri=Rour;f, and (for f=10"*% sec™!) the maximum
occurs With 7;mex=2.3X107% sec™l, p=1.4. The wave-
length corresponding to this maximum is L, = (27/u)L,
=220 km and the period of the most unstable wave is
Tp=(2Rour,)'(4r/f)=10.02 days.

The variation of 7" with Ro (Ro is the ratio between
the shear and earth vorticity) for a constant wavelength,
corresponding to u=1.8, Ri=20 and #%g(0)=0.6, is
shown in Fig. 11. As before, the ordinate in the upper
part shows 7; but the abscissa is now Ro. We can see
that 7; decreases when Ro increases; the lower graph
of 7, vs Ro shows a maximum for Ro=0.315.
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to see that for larger amplitudes of bottom topography
the system is more unstable.

Fig. 13 shows the behavior of r when introduc-
ing a bottom topography of the type hp=/ly=

Fig. 12 shows the variation of = when the position of
the maximum shape of the bottom topography is
changed. The parameters u=1.8, Ro=0.25, Ri=20,
ho=0.79 are held fixed and two different amplitudes of

the bottom topography (0.6 and 0.7) are considered. 7,
The shape of the bottom topography is given by NI
hp=hy[1—tanh(x—x)]. 0.084 \‘\\\
The position of the jet is at x=1. We notice that for « S
(position where the maximum slope appears) larger than 006 ™ h3=04
5, 7 remains practically constant. Again, it is possible '
7, 0.044 h32035
0.08-
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Fic. 11. The upper graph shows the variation of the imaginary F16. 13. The variation of the imaginary and real part of =

part of 7 as a function of the Rossby number Ro for Ri=20,4=1.8, when the amplitude of the bottom topography is changed
bottom topography as described in text. The lower graph shows  {hp=hee~24h;[ 1—tanh(x—35)], Ro=0.3, Ri=20, u=18,
thefvariation of the real part of 7. ho=0.8}.
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—+h{1—tanh(x—5)]. The fixed parameters this time
are Ro=0.3, Ri=20, u=1.8, %,=0.8. Cases I and II
correspond to /%3=0.35 and %;=0.4. Here 7; and 7,
decrease when /gp(0)>~(h:+2k;) increases. It is clear
that the system becomes more stable now because of
the influence of increasing the slope of the bottom topog-
raphy below the jet. Case II is more unstable than Case
I because Case II has a larger mean value of the ampli-
tude of the bottom topography.

b. Region I

In this case —o0 <x< o and the interface intersects
the free surface at & =uo[r(xo) =17, which is a singular
point for the differential equations (3.17) and (3.18).
In order to find the eigenvalues for this case we must
divide the region into two zones: Zone A, — o <x< xy,
in which we consider a single barotropic nondivergent
layer with a constant bottom topography (Fig. 2), and
Zone B, defined by xy<x< . As in the previous case
this is a two-layer system with a variable bottom
topography. In Zone A there is a nondivergent field
allowing analytical solution of the pressure field of the
form

G)z=0)2(xo)8k(”_2°), (51)

satisfying the boundary condition in x=—w. For
matching the solutions of Zone A and Zone B we must
satisfy continuity at x=x9 of the normal velocity U,
the pressure @, and finiteness of @1, U; and V;. From
(3.14) the boundary conditions are

oz = k(P2
(5.2)

. at x=ux,.
@, and @y, finite

We used the same system as in the general case for com-
puting = and the eigenfunction, but instead of starting
from #=0, we start from x=X, with the boundary con-
ditions (5.2). We must point out that all parameters
defined before have the same meaning, except Ro=0/
(Lsf), which was defined as the ratio between the hori-
zontal shear and Coriolis parameter. It is evident from
Fig. 2 that the horizontal length is L*= (1—a)L, and
the new Rossby number is given as Ro*=Ro/(1—x,)
and, of course, this will become physically important,
keeping Ro as the relevant parameter in our model.
Fig. 14 shows the behavior of 7 vs the wavenumber u
for Ri=30, /#;=0.8, #3=0.05 and Ro*=0.46. In this
case x9=0.7, r; has a maximum at u~1.4, and 7, in-
creases with u. [For the case Ro*=0.46, Ro will be
given by (1—x9)Ro*=0.138, corresponding a horizontal
scale L, of 120 km. Here 7; has a maximum of 1.6X10~¢
sec! at p=2.2, corresponding to a wavelength L, =365
km and period T',=37.42 pendulum days.] Comparing
with values computed in Region I (7,=10.02 pendulum
days and L, =220 km), we notice that there is a signifi-
cant increase in the period and the wavelength of the
most unstable waves. Physically, the variation of the
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bottom topography in Region I probably selects shorter
wavelengths due to the large vertical velocity in these
waves (in opposition to Region IT where the waves are
quasi-geostrophic) and the plane of the wave is more
quasi-horizontal, allowing much longer wavelengths.

6. Energy transformation

The energy equation for this model can be derived
in the same way as in the frontal case (FMO068) from
the fundamental equations (2.1)-(2.4). The procedure is
multiplication of (2.1) with py(Hr—hr)V, for J=1 and
p2(hr—hp)V, for J=2, followed by addition of (2.3),
(2.4) multiplied by %ps| V;|2 This gives

0 Vl 2 V2 2
—I:PI(HT—/H)i | +pz(hr—h3), | :l
al 2 2

=—V- l:(HT—hI)<P1+Pl l v ' 2>Vl
2

+(h1“h3)<?2+p2 | V; | 2>V2:|

+p1V-Vi(lHr—hr)FpV-Volhi—hsp).

The boundary conditions are cyclic continuity in v and
that # vanish at =0 and x=c for Region I and at
x=—o and x= o for Region II. An area integral over
a wavelength in y and over §<x< « (where §=0 or
— o, for Region I or IT) will be denoted simply

f ( )da.

(6.1)
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Thus

é] ]Vl]2 IV2,2
'a—t/[m(Hr—hr) . “+pa(hr—hs) 5 }da

=+/[Plv‘VI(HT‘}!I)+P2V'Vz(kx—-hs)]da. (6.2)

Multiplying (2.3) and (2.4) by p1 and ps, respectively,
and integrating we find from (3.6) that

Ohr
g(p2—pl)/hl~‘da
at

=—/EPIV'VI(HT—}II)‘f’PzV'Vz(/lz—hg)]da. (6.3)

The interpretation of (6.2) and (6.3) is obvious; the
left sides represent the time rates of change of kinetic
and potential energy in the system, while the right sides
represent a transformation between kinetic and poten-
tial energy.

Let us denote a y average by angular parenthesis and
the deviation from this average by a prime; thus,

(= / " iy

L, 6.4)
== () =0
We define
Ku=lp: / (Hr—e)(|Vi|2)da, (6.5)

Kg=%p1/‘[<HT—hI><,V1 f 2>—Z<V1> . (thO]da

o / Cr—hs)(| V| da, (6.6)

Par=g(pe—) / L (hn)da, (6.7)

Pa=glos—p) [ 0hs)0a
The sum of all four energy forms is constant, i.e.,
)
;(KM+KE+PM+PE) =0.
¢

The equations are now to be interpreted in terms of our
linearized small amplitude expansion (3.1)-(3.4), Kg,
Pg being of the order of €,. We must therefore allow for
changes in Ky and Py of the order of €. That is, we
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must consider the variation of (V;) and (4;) to the order
€%, Following the derivation in FMO068, we substitute
(3.1)-(3.5) into definitions (6.5)-(6.8) of the four en-
ergies and retain terms to the order €. The resulting
expressions are differentiated with respect to ¢, intro-
ducing various 9/9¢ terms in the four integrals. These
8/9t terms are then evaluated by substitution from the
second-order (€?) expansion into the original equations
(2.1)-(2.4). The result is that the four time-rates-of-
change of the energies are each equal to certain energy
transformation integrals, S'W.da, where the W, are:
Vi

o 2
Wi= {PI(HT—EI) V1z{uiv1) —p1 ) (hrus)

-plvl[ﬁhwio—(HT-ﬁ,szuu)]}, 6.9)

We=—g(pa—p1)(Hr—hn)hrUy", (6.10)
Wy=g(p2 —m)ilzlz(fz‘zm), (6.11)
W s=+g(o2—p1) (Hr —h){h1(s12+21,)). (6.12)

The time-rates-of-change of the energy integrals are:

a

:‘)—KM: —‘/W2dd+/Wlda, (6.13)
1

d

E'Pill:_ / Wada+ / Wada, 6.14)
!

a

—Kp=— / Wida-- / W da, (6.15)
at

a

—é)—PE: —/nga—/I/V.;da. (616)
[

The interpretation of these integrals is the same as in
FMO068. However, the inclusion in this model of a basic
current varying with x has introduced extra terms in
the transfer of energy by the Reynolds stresses, because
Vl:c?é O-

7. Energetics and kinematics for unstable waves
along the Gulf Stream

Figs. 15-18 show in their upper left part (a) the
velocity profile, the position of the interface and the
bottom topography in the model chosen to correspond
to the four latitudes, 29N, 31N, 33N, 37N in Fig. 9. In
their upper right portion (b) five curves are plotted
representing the terms Wi, W3, and o, 8, v in (6.9). In
the lower part (c) of the figures contours of the depth of
the upper layer (mean plus perturbation) are shown.
Values of the parameters and eigenvalues which charac-
terize Figs. 15-19 may be seen in Table 1. The wave-
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number u chosen was 1.8. This value does not correspond
to the most unstable waves (#=1.4 in Region I, and
p=2.2 in Region II) but allowed most of the dimension-
less terms to be kept constant. The total height for both
regions is Hr=>5000 m. We can notice that two main

differences prevail between Regions I and II. As we
mentioned previously, the wavelength and the period
of the maximum unstable wave correspond to meanders
observed upstream and downstream of Cape Hatteras.
The growth rates of the order of a few days are con-



1228 JOURNAL OF THE ATMOSPHERIC SCIENCES VoLUME 26

1.0__RiGID TOP

INTERFACE

B
Qvew@f\“&”\y\\
Bl NN

T
=
o

f
> » ®

o N

2NN, W g FUTSR )
L —.4.

L—.6
-—‘ 8

Y
FiG. 16. Same as Fig. 15 except for 31° latitude.

siderably larger than that which is observable in mean-
ders. However, we must remember that 75 decreases
with an increase of Ro; as an example we use here Ro
~0.3 which is small compared to Ro~0.6 for the Gulf
Stream and corresponds to a smaller growth rate. In

addition to this, in a viscous flow the dissipative effect
can become large for finite-amplitude waves and may
well reduce the growth rate of those unstable waves.
From Figs. 15b-18b (Fig. 19 shows Fig. 17b in detail)
we notice that the integrated value of W is positive in
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all cases, and the main contributions to it are from the
terms V1.(U1V1)=a and hz.(U,V,)= B, where a can be
identified as the eddy conversion by Reynolds stress,
(for the upper layer) and 8 as the eddy conversion by
Reynolds stress (from both layers); a and 8 at the left
part of the jet show a strong transfer of eddy kinetic

energy to the mean flow. This agrees with the observa-
tions made by Webster (1961a) in the upper layers in the
Gulf Stream south of Cape Hatteras. Curve v is the
transfer of energy due to the vertical Reynolds stress,
a transfer of mean kinetic energy to the eddies. The
contribution of v to the integral of W, is negative, op-
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TasLE 1. Baroclinic eigenvalues and parameters of Regions I and II.

f T
Fig- Re- (10 L, L, v (pendulum
ure gion Ro Ri M sec™) (km) (km) (msec™®) Ap/p T=TrF11; ai/f days)
15 I 0.3 30 1.8 0.7 66.6 226 14 1.18X10-3 —0.13—-0.07 0.038 6.9
16 I 0.3 20 1.8 0.74 66.6 226 1.48 0.88 X102 —0.11-0.09 0.049 8.18
17 I 0.3 20 1.8 0.81 66.6 226 1.65 1.0910-3 —0.08-0.086 0.046 11.62
18 II 0.3* 30 1.8 0.85 150 520 145 1.26X10-3 —0.04-0.05 0.014 45.52

* Corresponds to Ro*.

posite in sign to that of « and 8, and is small compared
with the sum of @ and 8. The sum of all these terms, W,
gives the net transfer of kinetic energy from eddies to
mean flow, The curve W3 is the transfer of potential
energy from the perturbation to the mean flow. The
transfer of potential energy is always negative and much
larger than the transfer of kinetic energy (the scale for
W3 is much larger than for Wy in Figs. 15-18; see Fig.
19) and shows a net transfer from mean energy to the
perturbation.

Oort (1964) has made heat flux computations for the
same region of the Gulf Stream studied by Webster.
Oort’s computations indicate a seaward countergradient
heat flux across the stream in the surface layer. If
baroclinically unstable waves are present, they must
release mean potential energy to the eddies. Thus, we
would expect that more complete measurements in
deeper layers of the Gulf Stream would show a net
shoreward heat flux, supplying the necessary potential
energy to maintain the baroclinically unstable waves.

To explain why a different transfer in the upper and
lower levels is physically reasonable, we consider a two-
layer system instead of the continuously stratified flow,
keeping in mind the limitation of such a system. It is not
difficult to show that if there is a loss of mean potential
energy in one of the layers, then there must be a gain
of mean potential energy in the other layer. The proof is
as follows:

The potential energy of the system is the sum of the
potential energy in each layer, i.e.,

Pr=P,+P,,

V¥4 Hr
P2=/ gpelz and Py =/ gpeiz.
h

B h1

(7.1)
where

Thus,
h[2—hB2 HT2—}lI2
Pr =gp2<—-3~—)+gp1<-——2——>, (7.2)

and the local time derivative of the mean potential
energy is

0P ;s £p2 a<h1>2 gpx/0—<}l1>2
=—( ) : ) (1.3)
a2\ o 2\ o

where the first term on the right-hand side is the time-
rate-of-change of mean potential energy of layer 2 and
the second term is the time-rate-of-change of the mean
potential energy in layer 1. Thus, any change in one of
the layers implies a change of the opposite sign in the
other layer. In the present study in which baroclinic
unstable waves exist, we have 8P /9t<0. Since p2>p1
we can conclude from 7.3 that at least for this simple,
two-layer system the lower layer is a source of potential
energy to the eddies, while the opposite is true in the
upper layer.

Figs. 15¢-18c¢ show the kinematics of these unstable
waves. (As mentioned earlier, these are not the most
unstable ones for each region. However, the kinematics

< © ©

> o

F16. 19. The relative magnitude of different types of
energy transfer (see text).
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will be similar.) Most of the figures show some slight
asymmetry in the cross-stream gradient of depth on
either side of the ridge. A similar asymmetry has been
observed in the currents of the Gulf Stream by Webster
(1961b). These two results can be related through the
geostrophic approximations, and the existence of this
phenomenon can be explained in the same way that
Starr (1948) has done for atmospheric waves—any kind
of motion where the eddies transfer kinetic energy to
the mean flow will have this structure, due to the posi-
tive correlation of U and Vy ({U1V1)>0).

As the eddy transfer of kinetic energy intensifies,
there will be a tendency to form a shingled structure
along the front of the Gulf Stream due to the nonlinear
interaction of the finite baroclinic waves with the mean
flow. This type of structure has been observed in the
Gulf Stream by von Arx et al. (1955).

In view of these results it appears that observational
efforts should not be centered on the surface dynamics
of the Gulf Stream alone, but should involve the whole
vertical structure of the Gulf Stream. Such observations
will enable one to compute these energy transfers (e.g.,
the conversions of mean potential energy to eddy poten-
tial energy, and mean kinetic energy to eddy kinetic
energy) which are necessary in order to gain a deeper
understanding of the behavior of the Gulf Stream.
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