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ABSTRACT

We can identify the diurnal oscillation of the atmospheric houndary layer as an important source of meso-

scale internal gravity waves in the lower atmosphere.

The oscillation period of these waves is a function of latitude. A definitive two-day period may be found
in the equatorial regions with scales on the order of a few hundred kilometers. In particular, for a situation
in which the mean stratification at any time of the day is unstable, the wavelength could be on the order of
100 km. This result suggests that some cloud clusters may be originated by this process.

1. Introduction

Most of the energy in meso or smaller scales is due
to internal gravity waves in the free atmosphere and
and it has been recognized that they play a major role
in the dynamics of such scales (Lilly, 1972). Through
interaction with the mean ambient conditions, they
remove energy from the larger scales and are the
mechanisms by which energy is transported to smaller
and smaller scales. In addition, they can trigger local
storms, produce cloud clusters a hundred times the scale
of a single cloud, maintain a large-scale jet due to some
absorption mechanisms (Bretherton, 1969), or produce
turbulence in remote places from the input source of
energy (Gossard et al., 1970). Obviously, it is important
to try to identify all the mechanisms that can generate
such waves. Most of them are well known but they are
very localized. It is known that internal gravity waves
will be generated by:

1) Shear unstable flows. If the unstable-shear effect
overcomes the stabilizing-buoyancy effect due to strati-
fication, the process is primarily important for gene-
rating Kelvin-Helmholtz waves in the atmosphere with
scales smaller than 100 km (Scorer, 1969).

2) Convective cells penetrating into the stable atmo-
sphere. This process is equally important for generating
internal gravity waves and again the scales are on the
order of a few tens of kilometers (Deardorff ef al. 1969).

3) Large storm systems, fronts, hurricanes, etc. The
generation of internal gravity waves by these mecha-
nisms occurs in a manner similar to that stated above
(Orlanski, 1968).

4) The topographic boundary, variable flows over
mountains, land-sea contrast, etc. These processes are
perhaps the most obvious ones for generating internal
gravity waves (Lilly, 1972).

In this paper I would like to present a different and
perhaps more general source of internal gravity waves
in the atmosphere, since we will consider a global
source rather than local sources as mentioned above.

In recent papers, Venezian (1969), Yih and Li (1972),
etc., the effects of unsteady flows on convective in-
stability are discussed. It has been determined that if
the fluid is gravitationally unstable and oscillatory in
time, the familiar convective instability which develaps
in such a flow can be modified so that it is either rein-
forced or dampened with control being exerted by such
parameters as the oscillation frequency and the un-
stable lapse rate of the fluid. The equations describing
the dynamics of this flow are the Mathieu equations
which are well known in physics and astronomy.
References to these equations in fluid dynamics can be
seen in Yih and Li (1972).

Let us discuss a problem closely related to those pre-
viously mentioned; however, the primary difference
between this work and the others is that in this one
the effect of oscillatory behavior in stable rather than
unstable systems will be considered. This case has pro-
found implications in the dynamics of the atmosphere,
particularly in regions where large portions of the
atmosphere have a persistent oscillation. The diurnal
boundary layer for the lower atmosphere and the ozone
layer in the upper atmosphere are two such examples.

It is well known that the diurnal temperature varia-
tion near the ground produces a noticeable effect in the
lowest kilometer of the atmosphere. In the daytime
when maximum heating occurs, strong convective cells
are generated in the lower hundred meters which then
rise by buoyancy, thus penetrating the stable layers
of the atmosphere to an order of a few kilometers. In
this process the heat exchange modifies the stable lapse
rates encountered at those altitudes to a neutral one.
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F1c. 1. Characteristic profiles of atmospheric temperature for
different times of the day as a function of height. (After Lettau
and Davidson, 1957.)

[Fig. 1 shows the temperature for different times of the
day (after Lettau and Davidson, 1957).] This process
continues until sunset when turbulence due to convec-
tive instability decays. Since the ground as well as the
lowest layers of the atmosphere cool due to radiation,
the lapse rate is effectively increased to a more stable
value. On the average we might say that the lower
atmosphere is characterized by a static stability that
oscillates with a diurnal period. If we define 8 to be the
potential temperature, then for the boundary layer
we can write

0,=00,461. coswyl,

where 0¢,>6,,>0 and wo is the diurnal frequency. In
general, for mean average values the atmosphere will
be statically stable but obviously less stable during the
day than at night.

On the other hand, at an altitude of 40 km the diurnal
variation of temperature is mainly due to the absorption
of heat by ozone. In this case the system is also statically
stable with a strong diurnal component (Chapman and
Lindzen, 1970).

The response in a stable atmosphere is oscillatory
motions called internal gravity waves. Our main concern
is to look at the modification of such waves when an
oscillatory part is included in the main stratification.
We know that other variables such as the wind may
also have an oscillatory behavior. However, the con-
vective cells that are responsible for heat transfer are
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not directly connected with momentum transfer and T
believe that the oscillatory behavior of the wind will
occur as a result of the wave generation we intend to
discuss here. Although we are considering a stable lapse
rate at any time, the waves could become unstable.
Before discussing the mechanism of this instability, let
me describe a simple experiment which will clarify the
concept.

Almost everyone knows that a trapezist moves his
body harmonically to increase the amplitude of the
trapeze oscillation; the same is true of a child using a
swing. In both cases a constant increase in the total
energy system is expected from the input work done by
periodically changing the radius from the center of
gravity to the support of the trapeze or swing. In
a more physical experiment, we can describe the
trapeze or swing as a pendulum of variable length
(Fig. 2) in which the pendulum with length / is sup-
ported by a pulley (at a) and the string is connected
to a motor. When the motor is turned off, the pendulum
will oscillate with a frequency w=(g/l)?, where g is
gravity and /o the mean length of the string from a to o;
the system thus obeys the equation for the displacement
of the pendulum:

.. 8§
X+—X=0.

Iy

If we turn on a motor that rotates with a frequency of
wo and the radius & of the driver wheel is far smaller
than /o, the above equation to the first order is

. £ b
X +—(1—— coswd)X =0.
lo Lo

This is the Mathieu equation which for certain values
of we and b/l becomes unstable, or in this case is in

Fic. 2. A schematic diagram of a pendulum with a variable
length. The amplitude of the variable length pendulum is given
by the radius b of the driver wheel. The pendulum is supported
by a pulley at a.
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resonance. From the theory of the Mathieu equations
it is known that the first instability will occur if
4g/(Jowe®) =1 which is equivalent to saying that the
system will be in resonance if the frequency of the
pendulum is equal to § the frequency of the forcing.
As we shall see later, this is a very important result
which we will apply to unstable internal gravity waves
m the atmosphere. The mathematical discussion of
Mathieu equations can be found in many text books
(e.g., Morse and Feshback, etc.). It is noteworthy to
say that the next unstable solution occurs when the
frequency of the pendulum equals the frequency of the
forcing. In fact, the infinite unstable branches of the
Mathieu equations could be described as exponential
growing solutions with frequencies that are multiples
of wo/2 or wo.

As mentioned earlier, the application of these equa-
tions to the atmospheric case will allow us to consider
a new type of instability (trapeze instability) that could
have primary importance with respect to the diurnal
variation of the atmosphere.

2. The equations for an unsteady flow

We assume that the atmosphere has a lapse rate that
is periodically modified by a non-specific process (small-
scale convection, radiation or absorption, etc.), homo-
geneous in the horizontal spaces, and in constant rota-
tion with angular velocity f/2. For simplicity let us
consider the case without wind. Then the linear equa-
tions that describe the dynamics of very small dis-
turbances are given by the anelastic equations:

BU— fV)=—~0qs, (2.1)
BVt fU)=—bm,, (2.2)
BW = —fom,+p8, 2.3)
(poU) s (0oV )+ (0oWW) . =0, (2.4)
0,4+T7,=0, (2.5)

where U, V, W are the %, v, 2 velocity components;
7 is the non-dimensional pressure (P/pq)X, where pg is
the reference pressure and X=R/C,; 8 is the perturba-
tion of the potential temperature [=7/(6¢)]; po is
the reference density; and 8=_gd/(Cp8y).

From the horizontal divergence of (2.1) and (2.2)
combined with the equation of the vertical vorticity
components, we obtain an equation for the vertical
velocity and :

8 (POW) zu+ﬂf2 (PGI/V) 2= poﬁovzuﬂ't-

We now differentiate (2.3) with respect to time and
substitute 8, from (2.5) to obtain

ﬁPOert = “‘poeo’n’z:—ﬂgpoI'Véz, (27)

and differentiate (2.6) with respect to z and take the
horizontal Laplacian of (2.7). Combining both, we

(2.6)
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finally have

3 po:
(Z"li)(wz,ﬁfzm)+v2H<W'u+NZW'>=0, 2.8)
Z  Po

where W’ is the reference density multiplied by the
vertical velocity (W' =peW) and N is the Brunt-
Viisdld frequency (N?=--g6z/6,). Notice that po/pe:
=H=C,H/g is the depth of an insentropic atmo-
sphere (~30 km); thus, for the motions with a vertical
scale smaller than # in which we are interested, Eq.
(2.8) can be simplified as follows:

W irest f2W oo Vil [W b N2(2,) W ]=0.  (2.9)

It should be understood that from here on that W=W",
In the next two sections a discussion of the solution
of (2.9) for different configurations of N2(z,) will be
treated.

3. Single stratified layer

We shall now discuss the response of the boundary
layer with parameter characteristic of the atmospheric
case; that is, a height of 1 km and a Brunt-Viisili
frequency defined as N = (Ng@+N* coswii)?, where N2
and Ny are constant in height and are such that
N@+NP2=V2~10"* sec™? and No*—~N2,,¢>0. In this
case Eq. (2.9) can be written as
Wizt f2wse— (k*+1)

X{wut (N +N2? cosw)w =0, (3.1)
where w is now a single horizontal Fourier component
{W=2% ws, exp[4(k.+1,)]}. The boundary conditions
for this simple case are that the vertical velocity
equals zero at the ground and at the top of the boundary
layer. In the next section, however, we will remove
these artificial constraints. Since N? is independent of

3, a solution which satisfies the boundary conditions
will be

w='Wo sinmw/h)z 1.
Substituting this equation in (3.1), we obtain
B2 N g2 (i
o [ KBt (/)2
(k2412 N,*
R (/)

3.2)

coswot:lw= 0. (3.3)

If we redefine new parameters

2T

b

wy wed  [R24-124(mr/H)Y)
2(R2H12)N 2
wotL k24124 (mr / 1))

4 (2N P (mr/h)2 2

, (34)
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Eq. (3.3) is transformed into a Mathieu equation

wrr+(a—2g cos2T)w=0, (3.5
whose general solution is
w=C1e*T¢(T)+Coe#Top(—T). (3.6)

Here ¢(7) is a periodic function and g could be com-
plex (the general solution is obtained by the Floquet
theorem) depending on the values of ¢ and ¢. Our
interest is to show for certain values of a and ¢ that u
is real and allows for unstable solutions. Unfortunately,
it is very difficult to find roots of u; however, since
¢(T) is periodic, it can be decomposed into Fourier
components. Thus by substituting into (3.5), an infinite
set of algebraic equations can be obtained for the
Fourier coefficients. This homogeneous system defines
an infinite determinant called a Hill determinant which
is convergent. The roots of the determinant are a
solution for u as a function of ¢ and ¢. Zaroodny (1955)
numerically computed the growth rate as a function
of @ and ¢ for the first unstable branches; these are
shown in Fig. 3. Through our definition, the physical
parameters are related to ¢ and ¢ as follows:
2q

(k212N 2
o (RPN /b
2 (BN @+ (m?/B) 27|
2_[ [EERTE—, ]

Before discussing the physical implications of this in-
stability, let us briefly examine Fig. 3. It is only the
first four branches in which the growth rate has a
positive real part. The contour lines where the growth
rate- equals zero define periodic solutions known as
Mattieu functions. It is of particular interest to note
that the maximum growth rate in each branch increases
with o when values of —2¢/a¢>1. For values of
—2¢/a<1, the maximum growth rate decreases with a
and reaches a maximum when ¢ is close to 1. We will
relate these differences to two processes that excite
those instabilities. Let me simplify the discussion by
considering the case where f=0. Then

(3.7

1
a-z
Wy

—~2¢/a=N*/N¢, (3.8)
2 (R+INg
a,%=—-[———————————] . (3.9)
wol (k212 2mm/ ke

If we are looking for values of —2¢/a>1, the implica-
tion is that N2> N¢* which corresponds to the case for
certain times of the day when the system has an un-
stable lapse rate or the Brunt-Viisili frequency is
imaginary. This type of convectively unstable system
was discussed by Yih and Li (1972) and, as stated
earlier, the growth rate for the inviscid case that we
are treating will not have a cutoff wavelength; i.e., the
growth rate will become larger as the wavenumbers
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become larger. However, our interest will be focused on
the second process where N¢>Ny?, —2¢/a<1. We
must remember that this case always corresponds to
stable lapse rates. Nevertheless, the system does become
unstable for values of @ close to 1. In this case

[ BAHDNE T ws
k2+12+(m7r/h)2] T2

2

This result is of primary significance since the left-hand
term represents the frequency of internal gravity waves
in the absence of forced oscillation, and the above
condition states that wave frequencies which are half
the forcing frequency cause the system to be unstable.
This instability has a large horizontal wavelength.
For example, if Vo is on the order of 1072 sec™ and 4
is 2000 m, then in the boundary layer case where Tp=1
day, the horizontal wavelength will be A=~600 km.
For the most unstable waves the period will be 2 days
and the growth rate will be about x=0.628/T. Our
analysis thus far has been carried out using a model
with an unrealistic boundary condition; however, the
next section will show that considering a more realistic
situation will render similar results. The difference in
the latter case lies in the fact that the unstable wave’
covers the entire atmosphere rather than the boundary
layer alone. In view of this, I should mention that a
very similar type of wave was found in the equatorial
regions by Murakami (1972). In his case, he stated
that there is a definitive wave in the equatorial regions
which has a wavelength of the order 1000 km and a
period of about 2.5 days. If we remove the Doppler
shift produced by the mean wind (U~ —35 m sec™) at
the observation time, the period and the 600-km
horizontal scales of the waves are in very close agree-
ment with those discussed here.

In concluding this section let us discuss the case
where 7520. The expressions for ¢ and —2¢/a in this
case are

4 (RN @+ (/B2 f?
we® (B2 (mw/h)?
__Zq ’ (k2+l2)N12
e (BHIYN2+(mm/h)2f?

It is easy to see for given values of &, / and m that there
is a unique relation between a and —2¢/a:

—2¢ e(@a—16 sin%)
o a[l1—(doo?/Ne®) sin?]

(3.10)

(3.11)

In this case f was replaced by f=2wo sinf and N.* by
eN 2. Knowing that N¢=> f? results in a further simplifi-
cation of (3.11):
—29 e .
——=—(a—16 sin%).

(3.12)
a @ .
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We can see that at the equator (f=0)
—*2g/0;= €=N12/A702,

and the relation is in agreement with (3.8). Since trapeze
instability requires that (—2¢/a) be larger than zero,
it is possible to conclude from (3.12) that the possible
values of a are those larger than

a.=16 sin%4.

In addition, the two main conclusions which can be
drawn from (3.12) concerning the behavior of the
trapeze instability at middle latitudes are that 1) only
the branches with large a’s are possible; and that 2)
for a given a the parameter —2¢/¢ will decrease with
increasing latitude (indicating a stabilization effect due
to the earth’s rotation).

4. Diurnal boundary layer of the atmosphere

If we remove the constraint of the top of the boundary
layer considering that a free stable layer is on top of it,
the problem becomes more difficult and non-separable
in z and ¢. However, Eq. (3.1) still describes the system
if we consider that

N2=Np¥z), if h<z<H' )
, 4
N2=N2(z)+N22(z) coswel, if 0<z<h

and numerically integrate (3.1) as a function of z and &

The numerical integration was carried out to an
altitude of H=10,000 m (with an equally spaced grid,
Az=30 m), using £2=1000 m as the height of the
boundary layer, and over 20 days (with a time step
of A¢=120 sec).

The numerical method used to integrate (3.1) with
boundary conditions (4.1) involved a function ¢ such
that

o=wu+t ffw. (4.2)
Using (4.2) on (3.1), we have
b2~ Vild+ Vi [N (2,t) — f£Jw=0. (4.3)

The boundary condition at 2=0 is w=0 or ¢(0)=0
at z=H. Since we must prescribe a boundary condition
for the numerical integration, we will consider two
different cases: A, a rigid lid where ¢{(H)=0 at z=H;
and, B, ¢,.(H) =0 at z=H.

a. A rigid lid af the lop of the tropopause: Case A

This unrealistic boundary condition will affect high-
frequency waves; however, the boundary condition is
quite reasonable for waves with periods on the order of
1 day or more. Although some unrealistic reflection
will occur due to the boundary condition, it would take
about 10-20 days for the results in the lower boundary
layer to be affected. This is the time required for waves
generated in the lower boundary layer to propagate
to the free atmosphere and be reflected. The solution
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of the normalized frequency a and

upTo/2, as a function of the square
—2g/a. (See text.)

the ratio between the unsteady to the steady stratification,

Fi6. 3. Contours of the non-dimensional growth rate, u
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clearly shows that the waves in the lower atmosphere
are growing exponentially due to the instability source
in the boundary layer sooner before any effects from
the reflected waves are noticeable. In this case the
boundary conditions are

¢(0) =0 and ¢(H) =0.

Since (4.3) does not involve any time derivative of ¢,
given w and V2 at each time, we obtain ¢ by integrating
(4.3) in z by a recursive method (Richtmyer and
Morton, 1967), using the boundary conditions of (4.4).
By utilizing a central difference method for the time
integration of (4.2), we obtain the vertical velocity

wh= (2— AL wr—wr 4 Afgr, 4.5)

(4.49)

where the superscript # determines the time integrations
and Al is the time step (1=nAf). Initially we perturb
the vertical velocity field, say by

w(2,0) =wq sin[ (er/H)z],

where wy=10"* in non-dimensional units and #=10.

As an example I will only show a few different
integrations of this instability and its behavior with
different parameters. I do not want to extrapolate the
quantitative results since the model- itself is very
simple. However, in Part IT (Orlanski, 1973) a com-
plete discussion of this new instability will be presented,
showing how much it is affected by a mean geostrophic
shear flow.

Figs. 4-8 represent the computed dimensionless
amplitude of the vertical velocity as a function of

(4.6)
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height and time. The different parameters which were
used for each figure are shown'in Table 1 and it should
also be mentioned that the graphs show the case for the
most unstable wavelength. Also, in each case we start
with the vertical velocity that has already been de-
scribed in (4.6) i.e., n=10.

The main difference between Figs. 4 and 5 is that
Fig. 4 has a neutral stratification (V,=N;) during the
day but in Fig. 5 the stratification is weakly stable
(N1=1.1N,). We can identify these parameters with
the graph in Fig. 3 in which we see that the case in
Fig. 4 has a value of 2¢/a greater than that in Fig. 5
and also that the system is more unstable (note that
in Fig. 4 the contour interval is five times larger than
that of Fig. 5).

Figs. 6 and 7 are similar but the difference lies in
the fact that the horizontal wavelength is 805 km in
Fig. 6, and 628 km in Fig. 7 which corresponds to a
maximum instability; thus the two cases illustrate
stable and unstable situations. Comparing the values
of a in Fig. 3 shows that ¢=0.74 for Fig. 6 corresponding
to the case of neutral stability and ¢=0.94 in Fig. 7~
which is very close to the maximum growth rate. Note
that while the Coriolis parameter is very small, 107%
sec™, the solution still has a period of 2 days.

Since f is very small, the main difference between
Figs. 4 and 7 is that the depth of the boundary layer
in Fig. 7 is three times larger than that of Fig. 4, thus
explaining the difference in the wavelength of the most
unstable wave. We can also notice in comparing these
two figures that they both have the same initial condi-

{in days)

Fi16. 4. Contours of the non-dimensional vertical velocity as a function of height and time. The parameters

are specified in Case 1 of Table 1 and the contour interval is 0.01.

{in days}

Fic. 5. As in Fig. 4 except for Case II and a contour interval of 0.02.
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F16. 7. As in Fig. 4 except for Case IV and a contour interval of 0.05.

tions; however, the depth of the cells is determined
mainly by the depth of the boundary layer.

In Fig. 8 the solution is a little different. There, as
we discussed in a previous section, the Coriolis force
has an important stabilizing effect and does not allow
solutions greater than 1 pendulum day. In this case
the instability chooses another branch and, as we see
in Fig. 3, it is closer to a=3.0. This is characteristic of
higher frequencies and generally the frequency of the
solution will be 3wy/2. In order to have an effective
value of 2¢/a around 1, NV, must be greater than N
which implies that in the middle latitudes this in-
stability will occur mainly when the mean static sta-
bility is unstable at certain periods of the day. This
solution is also applicable for very low values of f and
will define a secondary scale for these instabilities.
Perhaps this case is very important with respect to
cloud clusters found in the tropics which have scales
of a few hundred kilometers. It may also be, as we
will show in Part II, that this type of solution is
strongly connected with the appearance of the low-
level jet in the Great Plains.

b. A radiative condition al the top of the tropopause: Case B

In this case practically no reflection is observed and
the growth behavior of the waves in the lower atmo-
sphere is quite similar to that of Case A. For example,
in the upper part of Fig. 9 we can see the contours of
vertical velocity for the rigid boundary condition at
2=10,000 m and in the lower part of Fig. 9 we have
the corresponding solution for the radiation condition.

The only noticeable difference is that the waves grow
faster in the rigid boundary case.

A complete discussion of trapeze instability in an
open domain was made by Fels (1973) in which he
concluded that for very small values of N3/N, the
waves grow to a finite value in the lower boundary
layer. However, when Ny/Ne=~1 the waves will grow
exponentially. Let us now briefly discuss these results.

If we multiply poV by Eqs. (2.1)-(2.3) and use (2.4),
we can write the kinetic energy equation in the form

'V2
<ﬁp0f2—)t= —V{(BopoVm)+poBWH. (%))
Then, by defining the potential energy as
P=+3Bpogt?/b:, (4.8)

T 1 T - = + *
1 2 3 4 5 6 7 8

{in days)

Fic. 8. Asin Fig. 4 except for Case V and a contour interval of 0.1.
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TaBLE 1. Parameters used in Figs. 4-8.

Growth Period

i A time I° Relative
Case (sec™?) Hnm Ny hp N, N a? 2¢/a  (km) (days) (hr) frequency
I 0 10¢ 0.7X107t o108 0.7X 102 0.7X1072 1.0 1.0 392 5.5 48 wof2
II 0 104 0.7X10™2 108 0.7x10-2 0.63X 1072 1.0 0.8 392 6.0 48 wo/2
IIT 1X10°8 10t 1.0X 102 3IX108 0.7X1072 0.7X1072 0.74 0.95 805 —_— - —_
Iv 1X10™8 104 1.0 102 3X108 0.7X10 0.7X1072 0.94 0.96 628 3 48 we/2
A\ 1.2X 104 104 1.0X 102 108 0.3X1072 0.9 1072 11.24 0.80 174 1 16 2w

we can obtain the time variation of the potential energy
by multiplying (2.5) by Bpegt’/90.:

Bpogt®
#=(5)
20, /.
After taking the horizontal average (denoted by the
bar), we add (4.7) and (4.8) and integrate through the

height of the boundary layer (z=%). The result is the
time variation of the wave energy which is expressed as

1 02
3Bpogt?_
Y fuds. (4.9)

%‘130100802-
~BpogbW +———0...
20,2

z

(4.8)

f K-+P) = —BopsT )+ /

6,2
The two terms on the righf side of (4.9) have a simple
interpretation: the first term is the work done by the
pressure forces at the top of the boundary Jayer and
the second the source of potential energy that drives

1
20 21
t
(in days)

Fic. 9. The vertical velocity for the rigid lid [case AJ (upper),
and for Case B where the second derivative of w equals zero
(lower). The parameters used for this latter case were N¢?=10"*
sec?, (Ni/No)?=0.9 and £=0.23X10"* m™,

the trapeze instability. Moreover, the intensity of this
source depends on the value of (V:1/Ng). In view of
Fels’ results, when N1/N¢K1 the work by pressure
forces could balance the second term and no further
energy increases will occur. However, when Ni/No=~1
the energy source becomes so intense that the energy
will keep growing which is in agreement with the
numerical solutions.

Before ending this section let me show the effect of
a stratification continuously varying with height; for
this purpose we ran a case with

N?=Ng@+N20.5—0.5 tanhB(z— k) ] coswo,

where 8= (1/250) m and 4#=1500 m. The solution for
the first vertical wavenumbers 2w /% show no significant
modification in comparison with the solution of the
previous experiment. Fig. 10 shows the comparison
between the potential temperature perturbation for the

Z (Km)
2 <
15 N

Np- N Ng Mg «N

~.,

—”

}
Ng-N N¢ Ng+N

(in days)

F16. 10. Comparison of the potential temperature perturbations

for the two different mean stratifications. The parameters used
are the same as those described in Fig. 9.
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two different mean stratifications. Only the waves with
higher vertical wavenumbers become more stable than
those of the previous experiment. This indicates that
the preferred waves will be those that have a vertical
wavelength on the order of the height of the boundary
layer. This fact will be accentuated by the viscous
effect which will try to damp the waves with the
larger wavenumbers.

Fig. 11 shows the perturbation potential tempera-
ture, the vertical velocity, and the horizontal divergence
as a function of time and height. The wavenumber
£=0.23X10"* m™, (N1/Np?=0.9 and No?=10"* sec2
The dashed lines indicate the region where the contour
interval changes.

5. Conclusions

We can identify the diurnal oscillation of the atmo-
spheric boundary layer as an important source of meso-
scale internal gravity waves in the lower atmosphere.

The osciltation period of these waves is a function of
latitude. A definitive two-day period may be found in
the equatorial regions with scales on the order of a few
hundred kilometers. In particular, a situation in which
the mean stratification at any time of the day is un-
stable, the wavelength could be on the order of 100 km.
In middle latitudes, however, a one-day oscillation will
be the most predominant. Further studies of this type
of instability including wind and moisture are underway
and the results so far suggest that processes like the
low-level jet and some cloud clusters are, in fact,
generated by those waves. More observations that
resolve the diurnal variation of the atmosphere are
needed in order to verify the theoretical predictions
and evaluate the importance of the generation of in-
ternal gravity waves by this process.
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