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ABSTRACT

The transient behavior of an idealized dry frontal system is investigated using a two-dimensional numeri-
cal model. The development of a cross-stream circulation within stationary and moving cold fronts is
determined for various frontal and synoptic conditions. In the stationary front, a circulation is generated by
symmetric baroclinic instability, but nonlinear effects restrict this circulation to remain very weak. In the
moving cold front, the vertical shear of the synoptic wind which advects the front produces an ageostrophic
residue as a result of the differential advection of the vertical shear of the frontal jet and the horizontal
temperature gradient across the front. This residue, which depends upon the vertical synoptic shear and the
thermal wind structure of the frontal system, will generate a cross-stream circulation which maintains the
cold front in a quasi-steady state. The resulting motion field is described well by the streamfunction balance
equation. The lifting produced by the cross-stream circulation in the moving cold front system may be
sufficient to trigger deep convection under favorable conditions in the moisture and synoptic wind fields.

1. Introduction

After the enlightening papers of Bjerknes and his
collaborators (1919, 1936) on the theory of polar fronts,
many investigations have been published which deal
with frontal structure and evolution, including observa-
tional, theoretical and numerical studies (e.g., Sanders,
1955 ; Hoskins and Bretherton, 1972; Williams, 1967).
Most theoretical and numerical work has concentrated
on problems of frontogenesis. In these cases, solutions
are achieved in which initially smooth baroclinic zones
are distorted to form a frontal zone through an imposed
synoptic deformation field. However, although these
frontogenesis investigations are successful in explaining
frontal formation, they do not provide a complete pic-
ture of the circulation within a fully developed front
after frontogenesis has occurred. Williams (1974) con-
siders the generation of such a steady-state circulation
by including diffusion effects in a numerical model of a
developing front which was produced by a deformation
field. An understanding of such cross-stream frontal
circulation is important, not only because of its rele-
vance to the basic dynamics of the frontal system, but
also because of its role as a triggering mechanism for
mesoscale convective phenomena such as prefrontal
squall lines.

In the present paper, we will not be concerned with
the formation of fronts but rather will assume that a
mature frontal system has already formed with the
associated jet initially in geostrophic balance with the
temperature field. We will then study the influence of
cross-stream (directed perpendicular to the jet) hori-
zontal advection upon the dynamics of this front.

Our interests will be somewhat similar to those of
Sawyer (1956) and Eliassen (1962) in that we will seek
to determine a quasi-steady circulation which develops
within the frontal system, but our analysis will differ
from theirs in that we will employ an unsteady, non-
geostrophic numerical model which does not assume
time invariance or quasigeostrophy.

Our treatment of this problem as an initial value
problem will allow inertial-gravity waves to be gener-
ated as the model responds to the given initial condi-
tions. However, the use of open boundary conditions
on the side boundaries of the model will permit propa-
gating waves to escape from the numerical domain. This
will then allow the frontal system to evolve to an
approximate steady state (reasons for expecting such
a steady-state solution will be given in Section 4) with
transitory motions superimposed upon it which are
maintained by ageostrophic effects within the front.
Such oscillations will not necessarily be correlated with
the initial conditions.

Unsteady numerical solutions will be presented and
discussed for different initial frontal conditions, includ-
ing the intensity and configuration of the frontal jet
wind field, and for different initial profiles of the
synoptic wind directed across the front. The evolution
of the frontal systems will then be investigated for these
different cases in order to relate the characteristic
circulation within the front to these synoptic and
frontal features.

The numerical model as well as the boundary and
initial conditions used will be described in Section 2.
The numerical solutions obtained for different synoptic
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and frontal conditions are described in Section 3. A
review of relevant theories as well as a discussion of our
results is presented in Section 4. Finally, conclusions
are given in Section 5.

2. Formulation of the numerical model

The mesoscale numerical model to be used here em-
ploys either the “deep anelastic” equations as formu-
lated by Ogura and Phillips (1962) or a hydrostatic
approximation to these equations. The equations are
written in Cartesian coordinates (x,y,s) with the y
coordinate running parallel to the axis of the front. The
temperature field within the frontal system is deter-
mined by a y-velocity jet which is initially in geostrophic
balance with the temperature gradient across the front.
A synoptic wind U,(z) advects the front in the x-
direction, where U, is taken to be uniform in x. The
potential temperature field is assumed to be of the form
0+6,(y,2) where 6,=0 and 94,/dy= (f8y/g)dU,/dz
at y=0. .

In the present paper, the numerical solution is

"assumed to be two-dimensional in x and z with all
variables uniform in y except for the quantity 6, where
86,/dy is only a function of z (86,/9z is neglected com-
pared to 86/9z). Hence a streamfunction ¢, along with
a vorticity {, may be used to represent the velocity field
in the x—z plane. Also, the Coriolis parameter f in the
mesoscale model is assumed to be constant. Finally,
moist processes are neglected here but will be incor-
porated in this model in the paper of Ross and
Orlanski (1977). The resulting equation set is in the
form treated by Orlanski et al. (1974) but with radiative
heating excluded: .
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with the surface specific volume @surtace independent of
¥ and ¢ defined so that dy/dz=u/ap and dY/dx
= —w/ay. The Jacobian is defined as

J(4,B)= (34 /3x)0B/dz— (34 /32) dB/ dx.

Because of the presence of the Laplacian on the right-
hand side of the vorticity equation (2.4), an elliptic
Poisson’s equation must be solved in order to advance
the above equation system in time. This is done in the
model using a variable coefficient, alternating-direction-
implicit (ADI) method (see Young, 1971). However,
because horizontal velocities are typically two orders of
magnitude larger than vertical velocities in the dry
front, numerical comparisons have shown the hydro-
static assumption to be a good approximation in the
present case. Therefore in the solutions to be considered
here, we have replaced the vorticity expression (2.4)
with its hydrostatic equivalent

J < 6¢>
=—1 &g }.
dz\ 9z

The turbulent fluxes of momentum and heat are
parameterized using an eddy viscosity parameterization
developed by Orlanski and Ross (1973) and Orlanski
et al. (1974) in which the eddy diffusivity takes the form

glao| (az)*\}
Kol:1+c<-—————> ] A<0
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Ko, 2620

(2.4a)

(2.6)

where A is the local vertical grid-point difference in
potential temperature. In the model, v,= 0.7«,, vo=0.7xo,
and the constant K included in the horlzontal flux terms
of Egs. (2.1)-(2.3) has a value of 1000 so that the
horizontal eddy viscosity and heat diffusivity are 1000
times larger than their respective vertical -values.
Typical values of «xo and C are 5 m? s7! and 0.75,
respectively.

a. Finite-difference formulation

The finite difference representation of the prognostic
equations [(2.1)-(2.4)] is identical to that used by
Orlanski ef al. (1974). Centered space and time differ--
ence approximations are used to represent the space
and time derivatives but with diffusion terms lagged
one time step. The Jacobians are represented by the
difference algorithms of Arakawa (1966) and -Lilly
(1965) to minimize computational instability. The solu-
tion is time-smoothed every 30 time steps to suppress
the mode splitting associated with the centered time
differencing or leapfrog method used. Finally, the
diagnostic equation (2.4a) is solved by the usual
method for inverting tridiagonal matrices (see Richt-
myer and Morton, 1967).

The model domain is resolved by a grid system which
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is uniformly spaced in x but which may be variably
spaced in 2 so as to improve resolution near the surface
front. The horizontal increment Ax is 20 km in all cases
with 76 points across the span producing a domain
width of 1500 km. The vertical stretching is accom-
plished by transforming the z coordinate in the equa-
tions (2.1)-(2.4a) as was done by Orlanski et al. (1974).
The mapping which was used in most cases to be
presented here (constant grid spacing was also used,
primarily for test purposes) involved a log-linear trans-
formation with 51 grid points distributed over 15 km
height. (A tropopause was prescribed in the temperature
profile at 10 km.) This stretching produced a minimum
Az of 150 m near the surface which increased to 300 m
at 5000 m and 400 m at 15000 m, the top of the model.

b. Boundary conditions

The bottom boundary of the model consists of a level,
adiabatic surface on which velocity slip is permitted.
The adiabatic condition 98/dz=0 is used at the surface
z=0 for the potential temperature. In the interior of
the model, the velocity component v is primarily in
geostrophic balance with the horizontal temperature
gradient across the front. Therefore, we have assumed v
to be in geostrophic balance at the surface and use
the surface boundary condition

dv/dz=(g/f0,)96/9x at z=0. 2.7

The cross-stream circulation, which is represented by
streamfunction and vorticity, requires use of the simple
boundary condition ¥=0 at the surface. Since the
prognostic equation for vorticity. involves diffusion
terms, a boundary condition for vorticity is also
required at the surface. For this condition, we will use
either the free-slip condition {=0 or the condition

e =<-]%:><7j-_%/%;>62w/axaz atz=0, (2.8)

which is derived from the balance equation (4.11) with-
out forcing (to be discussed in Section 4) and which
assumes that the surface vorticity is compatible with
the quasigeostrophic behavior of the interior solution.
Solutions obtained using these two different vorticity
boundary conditions did not differ significantly.

In the vertical, the numerical domain extends above
the tropopause. The intensity of tropospheric dynamics
in the model may be sufficient to perturb the lower
stratosphere. (This is particularly true in the moist
model when deep convection penetrates to the tropo-
pause.) However, the amplitude of these perturbations

will be weakened considerably because of the large

static stability above the tropopause. Therefore we have
chosen to use the rigid lid boundary condition ¥ = con-
stant at the top boundary of the model. In addition, the
vertical gradients of vorticity {, y-velocity », and
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potential temperature 8 at the top boundary are always
fixed at their initial values.

The side boundary conditions are the most difficult
to prescribe since the use of periodic or rigid wall
boundary conditions is not appropriate in the present
problem. The solutions to be studied are highly time-
dependent, and no clear distinction between inflow and
outflow boundaries is possible at the left and right
boundaries. A complete discussion of open boundary
conditions has been given by Orlanski (1976). In his
discussion, a numerical phase velocity is computed in
the neighborhood of each boundary point and is
extrapolated to the boundary. The choice of whether a
boundary point exhibits “inflow” or “outflow” behavior
is determined by the direction of this phase velocity
rather than by the direction of the mean flow. A
simplified version of this scheme is used in the present
model.

Each variable ¢ at the time step 741 and at the
boundary point I=IM (where the x index I runs
normal to the boundary) is expressed as

At Al
1———C¢] 2—Cy
Ax Ax -
= | ——— | ph't [———— | diw—1, (2.9)
At At
14+—C, 1+—C,
Ax Ax

where At and Ax are the time step and x spatial incre-
ment, respectively. The phase velocity Cy4 is computed as
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The phase velocities for the model variables are com-
puted in the above manner with the exception that the
phase velocities for vorticity at both sides and the phase
velocity for the temperature at the right side are all
fixed at the outflow velocity Ax/At. Also when anelastic
rather than hydrostatic equations are used, the stream-
function ¥ must be computed at the side boundaries and
is obtained using the vorticity phase velocity C;.

¢. Initial conditions

The evolution of various idealized frontal systems
will be discussed in Section 3. The different frontal cases
can be divided into two basic configurations which are
shown in Figs. 1a and 1b. The first configuration, shown
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F1c. 1a. Initial conditions for surface jet case SJ(45) showing
potential temperature , temperature T (with boundaries of the
frontal region marked), and y-velocity v. Contour intervals are
A8=4°C, AT=5°C, Av=3 ms™.

in Fig. 1a, will be referred to as the surface jet case and
designated as SJ. In this geometry, the y-velocity field
is given by

v(x,8) = — (/x0) 3 Var{1—tanh[ B (x— az—x0) ]},

where x is positive-definite in the model domain, Vi is
a jet intensity parameter (to be varied as discussed in
the text), xo=500 km, 8= (50 km)~! and a=100. As
" Fig. 1a shows, this produces a jet which has a maximum
negative velocity (direction in the negative y direction)
at the surface and which is 4000 m deep and approxi-
mately 600 km wide.

(2.11)
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The second configuration is shown in Fig. 1b and will
be referred to as the mid-tropospheric jet case (MT]).
The y-velocity » in this case is given as

v(x,2)=— (x/xo)%V&{l—tanh[B (x—az—x0) ]}
+Vur exp{—R; [ (z—3;)*+ (v (x—x;))*]},

where xo, @ and § are the same as in (2.11) and x;=x,,
2;=4000 m, R;= (4000/2*) m and y=0.03. The result-
ing velocity field involves a weak surface jet like the
jet used in the first configuration but which has a
strong jet centered at 4000 m height and directed in
the positive y direction.

The potential temperature field 6 is specified so that

(2.12)
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Frc. 1b. As in Fig. la except for mid-tropospheric jet case
MTJ(30). Contour intervals are A§=3°C, AT=5°C, Av=4 m s






