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ABSTRACT

Second-order expansion of the aspect ratio gives rise to simple equations with a quasi-hydrostatic
approximation that perform far better than the classical hydrostatic system in the’ simulation of moist
convection in a mesoscale model. It also suggests that a simple modification to this system may extend
the validity of schemes for aspect ratios larger than 1.

1. Imtroduction

One of the prominent features of large circula-
tions in most geophysical systems is the balance
between the vertical pressure gradient and its
weight.

For the hydrostatic balance to be valid, a simple
scale analysis can prove that the ratio of the vertical
scale to the horizontal scale H/L must be much
smaller than 1. In this flow regime, the particle mo-
tion of the fluid will be in horizontal planes with only
the static balance of the forces acting in the vertical.
Then it follows that for fluid motion where horizontal
scales are comparable to the vertical scales, the
vertical acceleration of the particles can no longer
be assumed smailer than the vertical pressure gra-
dients and the hydrostatic assumption breaks down.
The hydrostatic balance assumption greatly simpifies
the procedure to solve the equations of motion.
Accordingly, this was extensively used in theoretical
work on large scale circulation of the atmosphere
and the oceans. Certainly, the area which benefited
most from this simplification was the work related to
numerical modeling of such phenomena. The sim-
plification for numerical modeling lies not only in the
elimination of the vertical momentum equation,
which certainly is a considerable reduction. By as-
suming hydrostatic balance, the compressible equa-
tion with explicit sound waves need not be solved
in the vertical, thus permitting a much larger integra-
tion time step and hence a shorter model run time,
The benefits of the hydrostatic balance are further
appreciated if the anelastic equations (sound free)
are used, in which a three-dimensional Poisson
equation needs to be solved to retrieve the pres-
sure field and thus causing an even more expensive
integration. These limitations of integration with
the complete equations may have been part of the
reason why cloud modeling (non-hydrostatic) is lag-

ging behind global circulation modeling (hydro-
static). Comparable hydrostatic and non-hydrostatic
models may have a ratio of one to ten for the time
it takes to integrate each model.

The rapid technological development of meteoro-
logical instruments in recent years has made con-
tinuous observation of mesoscale phenomena
possible, Limitations to numerical simulation of
mesoscale processes have not only been due to in-
completeness of past observational data but also to
unavailability of appropriate mesoscale models. The
strict adaptation of GCM’s was realized not to be the
correct one because the hydrostatic assumption
built into such models is the limiting factor for its
use in simulating the mesoscales. On the other hand,
upgrading of cloud dynamics models, which should
cover a horizontal extension for mesoscale phe-
nomena to be well resolved, becomes overwhelm-
ingly expensive.

It seems clear from the previous discussion that
a practical approach to encompass the limitations
of hydrostatic models is to find an appropriate ex-
tension of the hydrostatic balance that will be well
behaved to the limits of the mesoscale range. The
purpose of this paper is to present such an extension,
the quasi-hydrostatic approximation, which has
these characteristics.

2, Higher order expansion in the aspect ratio (H/L)

The small aspect ratio between the vertical and
horizontal scales of motion is the well-known justifi-
cation necessary for the hydrostatic balance to be
valid. However, to describe why the assumption
is violated when the aspect ratio is of the order of
one is not so trivial. Let us then look at the simple
dispersion relation for internal gravity waves in a
stratified rotating fluid at rest.
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a. The dispersion relation
The frequency  for the waves is given by

= (kZ + lZ)NZ + ,YZf‘Z 1/2
LR+ +y ’

2.1

where k, [ and vy are the horizontal x, y and verti-
cal z wavenumbers, respectively; and N and f are
the Brunt-Viisila frequency (assumed constant) and
the Coriolis parameter, respectively. In nondimen-
sional form

(K2 + LYN®S? + pf?
[8*(K* + L?) + p7]

w==x

}1/2’ 2.2)

where 6 = H/L is the aspect ratio. In the hydro-
static limit § < 1
op = £[(K? + L)SNZ + p2f22p-1. (2.3)
The large value of N compared with f for atmos-
pheric conditions (N =~ 1072 s7%; f = 107%; § = 107?)
. leaves the numerator unchanged and only the verti-
cal wavenumber p represents the total wavenumber
in the denominator. Trajectory particles are close to
being horizontal. For larger 8 ~ 107! the stratifica-
tion is the dominant term in the numerator
wy = *[(K? + L?)§N2p1, 2.9
In fact, the hydrostatic assumption basically neglects
the horizontal wavenumbers in comparison with the
vertical wavenumbers and this would not be a seri-
ous inconvenience since only the highest frequency
waves in the hydrostatic system would be distorted.
However, when the possibility of convective in-
stability exists (N? < 0), Eq. (2.4) becomes
oy = =i[(K? + LYSN2P-1. (2.5)
So the larger the aspect ratio & is, the larger the
growth rate of the unstable waves will be. Inspecting

the non-hydrostatic dispersion relation for this case
(2.2), we find that

[(Kz + L2)82N2]1/2
[(K? + L»)§® + p2]1/2 :

= i

WNH

(2.6)

For large 8 > 1, wy « 8N, whereas wyy < N. The
growth rate of convection, therefore, in a non-
hydrostatic system will be bounded, whereas the
hydrostatic system will not be. This process is even
more enhanced for convection in a moist unstable
atmosphere. For a 6 even smaller than 1, the hydro-
static set of equations will become unrealistically
unstable and more unstable for the higher horizontal
wavenumbers. Since those waves are not well re-
solved by the model, the numerical integration
deteriorates (Miyakoda and Rosati, 1977).
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b. Expansion in the two-dimensional linear equations

We assume for simplicity that the motion is two
dimensional. The linear equations for the stratified
fluid are

bop + N2z = 0, 2.7

where { is the vorticity ({ = V2¢) and ¢, the stream-
function, may be written

(¢.z".r’ + ¢z'z')t’t’ + N2¢.1:'1" = 0
If nondimensional coordinates are defined as
X' =1Lx; Z' = Hz; t' = Nt,

then
(82¢x1 + ¢zz)tt + 82(1’.1'1' = 0. (2.8)

Solutions of (2.8) are of the form ™. We now ex-
pand w and ¢ in order 3 as

w? = 8wy + dtwsl + }
b =y + 8¢ + -

Substituting the expansion (2.9) into (2.8) and
separating by order of 8, it follows that to order O(5%)

—w02¢022 + ¢01‘1‘ = 0’ (2-10)
and to order O(6%)

~“’()2((1)01.15 + br2a) — w12¢0zz + Pz =0 + ¢(86)

The order of 8 of (2.10) gives the hydrostatic dis-
persion relation w,®> = K%p? and to the O(8%) the
correction to the streamfunction ¢, cancelled be-
cause it has the same expression as (6%); the rest of
(8% gives the correction to the frequency squared

—we?K*P2.

To this second order, the dimensional frequency
squared vwill be

2 2
w? = —/%Nz(l - -k—z) .
Y Y
This frequency is the same as that obtained by ex-
panding (2.2) to higher orders O(k/v)? which is equiv-
alent to our previous analysis.

The equations derived by retaining the second
term (8% in the expansion of the aspect ratio we
named the quasi-hydrostatic equations and the fre-
quency as defined in (2.11) corresponds to the dis-
persion relation for internal gravity waves assuming
the quasi-hydrostatic approximation wgy.

We now discuss the properties of wyy as com-
pared to wy and wyy. Fig. 1 shows the square of the
three frequencies as a function of (k/y)®. The be-
havior of all three frequencies is similar for (k/vy)
very small; wg,? has a maximum at (k/y) = 0.7. For
this value of (k/vy), the frequencies are

wg® = N?%2, won® = NY4, wyg® = N%3.

2.9)

w? =

(2.11)
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FiG. 1. The dispersion curves for different approximations. The validity of
current numerical models is pointed out.

In spite of this rather large aspect ratio, the differ-
ences between the different approximations are not
substantial. Differences between the approxima-
tions are shown for k/y ~ 1 or 2H/Ax (Ax is the
horizontal grid for the numerical model) the highest
aspect ratio obtained in a numerical model. For
such'limits the hydrostatlc system will be much more
unstable than either the non-hydrostatic or the quasi-
hydrostatic system. On the other hand, the latter
scheéme is much more stable for aspect ratios close
to unity. In finite- dlfference models those waves are
poorly resolved (k ~ mw/Ax) and are regarded
as noise.

‘The tremendous advantage of the quasi-hydro-
static system over the hydrostatic system can be
viewed in the following way: when the systems
are applied to unstable atmospheric disturbances
where H/L is very small, the solution will be equally

well resolved in either system unless nonlinear feed-.

back from higher scales is important. In that case,
for disturbances where H/L < 1, the quasi-hydro-
static system will ‘probably better simulate those
waves with scales larger than a few grid sizes. For
grid size disturbances, however, neither of the two
systems will be able to produce an acceptable simu-
lation. Addmonally, because truncation errors limit
its resolution, the quasi-hydrostatic system has the
ability to restrain the unrealistic growth of such
errors which inherently will grow in the hydrostatic
system. [Large amourits of rainfall were reported
by Miyakoda and Rosati (1977) in a fine-mesh model.]

. Finally, for aspect ratios larger than one, only the
non-hydrostatic system is valid. As we have seen
in the previous discussion, the hydrostatic system
enhances spurious convection and the quasi-
hydrostatic system may produce artificially unstable
waves (w? changes sign for k%/y? > 1). Those results
are not surprising since both the hydrostatic and
the quasi-hydrostatic systems are far outside the
range of validity of the expansion (6 < 1).

In summary then, Fig. 1 divided the aspect ratio
axes in three regions:

o Region I: hydrostatlc for very small aspect ratios
(GCM’s with H/Ax < 1).

o Region II: quasi-hydrostatic (mesoscale models
for H/Ax < 1).

e Region III: non-hydrostatic (cloud models for
HiAx > 1).

In the next section let us now examine the com-
parison of the three systems in a full nonlinear two-
dimensional model.

3. Nonlinear two-dimensional integrations

A full nonlinear integration of a two-dimensional
atmospheric model using various horizontal resolu-
tions was performed to compare the different ap-
proximation methods (hydrostatic, quasi-hydrostatic
and non-hydrostatic) with the solutions reported in
Orlanski and Ross (1977) and Ross and Orlanski
(1978).
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a. Description of the model

The numerical model used in the present study
is atwo-dimensional finite-difference model in which
the variables are assumed constant in the y direction.
In this particular case for the solution of the circula-
tion and convection of an atmospheric front, the
y direction is assumed to be along the axis of the
front. The model is 13 km deep; it has the tropopause
located at 10 km and a rigid lid at the top (z = H).
A constant grid (250 m) for the vertical is used for
these particular cases. With 76 grid points along
the horizontal a constant Ax of 8, 5.33 or 1.33 km was
used for the different examples. The model, as
described in previous papers, uses open boundary
conditions atx = 0, L. The prognostic equations are
for vorticity ({) in the y direction, y momentum
(v), potential temperature (), relative humidity and
liguid water. A streamfunction is calculated from the
current vorticity at each time step (7) as follows:

(aol.). = {,, hydrostatic 3.1
or
%
e
0 0 .
+ —-(ao —i) = {» non-hydrostatic, (3.2)
0z 0z

where q is the inverse of the standard density po(z).
The only modification that the quasi-hydrostatic
assumption introduces to the hydrostatic calcula-
tions from (3.1) is the non-hydrostatic correction

= -y (3.3)
and the total quasi-hydrostatic streamfunction is then
lpﬂ»l = lp1+1 + ¢r+1 (3.4)

b. Moist frontal circulation

The effect of moisture on the dynamics of a ma-
ture cold frontal system was investigated by Ross
and Orlanski (1978). Lifting produced by the initial
cross-stream frontal circulation was shown to have
saturated the warm moist air above the nose of the
front when the initial humidity levels are suffi-
ciently high. If the atmosphere is convectively un-
stable, this saturated air will develop into deep
convection. The coarse resolution used in this study
(2¢ km) justified the hydrostatic assumption; how-
ever, as a test, a comparison was made with the
full non-hydrostatic solution (Appendix of Ross and
Orlanski, 1978) showing little difference between
both solutions.

In this paper we will repeat the calculation for a
similar initial condition used in Ross and Orlanski,
1978, namely, a mid-tropospheric jet in geostrophic
balance with the potential temperature (Fig. 8, Ross

ISIDORO ORLANSKI

575

and Orlanski, 1978) advected by a mean synoptic
(@1) cross-stream flow. A smaller grid spacing (Ax
= 8 km instead of Ax = 20 km) will be used here to
enhance the breakdown of the hydrostatic assump-
tion. As mentioned before, the initial conditions
were similar to MTJ2 for Ross and Orlanski (1978);
since the horizontal scale of the front in this paper is
smaller, to preserve a similar shear, the magnitude
of Vuax = 15 m s7! was reduced. Hence our pur-
pose is to illustrate the benefits of the newly pro-
posed quasi-hydrostatic approximation and to that
end, only realistic examples were considered.

In Fig. 2 the solutions of the hydrostatic, quasi-
hydrostatic and non-hydrostatic frontal circulations
are shown after 1081 time steps. ¥ momentum
(v component) is shown in the upper part of the
figure; streamfunction is shown in the middle and
liquid water is shown along the bottom. As we
look from left to right we can see that the stream-
function shows an intense cross-stream circulation
associated with the convective cloud ahead of the
front. At this time of the integration we can clearly
see that the streamfunction from the hydrostatic
solution has departed drastically from the non-
hydrostatic solution. In fact, only 100 time steps
later, the hydrostatic solution blows up. On the other
hand, the quasi-hydrostatic solution remains quite
similar to the non-hydrostatic solution for the length
of the integration. In addition, it should be noted
that calculations for the non-hydrostatic solution
take eight times longer than those of the quasi-
hydrostatic solution. We should remember that the
quasi-hydrostatic expression is only valid for
H/Ax < 1. If the aspect is larger than 1, internal
waves may become weakly unstable. It can be seen
that H/Ax of the previous example was slightly
larger than 1 (13/8). Consequently, the small waves
in the upper left of the streamfunction seem to be
unstable gravity waves. However, they did not grow
more than what is shown in the figure. Those waves
excited by the deep convection underneath on the
highly stratified region, such as the lower strato-
sphere, produce these small disturbances which are
not completely damped by the low values of the
viscosity. _

The magnitude of maximum vertical velocity as a
function of time for the three cases is shown in Fig. 3.
Note that the maximum vertical velocity for the non-
hydrostatic and quasi-hydrostatic solutions occurs
at the same time but the intensity of the latter is
weaker. We also may note that the hydrostatic cir-
culation is weaker than the other two, but it in-
creases to unbounded values soon afterward.

c. Modified quasi-hydrostatic equations (large
aspect ratio)

The quasi-hydrostatic system can be easily ex-
tended to aspect ratios much larger than 1; how-
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VERTICAL VELOCITY |W]|

m/s Case Front Ax=8km
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181 361 541

721

time steps

Fi16. 3. The amplitude of the maximum vertical velocity as a function
of time of integration (in time steps) is shown.

ever, no physical justification can be used for such
an extension and one should only view it as a mathe-
matical smoother. Let us briefly examine the testing
as shown in (2.6). The non-hydrostatic correction
introduces a bi-quadratic term in the dispersion
relation and it is this term that goes to zero for aspect
ratios of one and which produces unstable gravity
for values larger than 1. If the need of the quasi-
hydrostatic equation arises for aspect ratios larger
than one in the interest of a better numerical simula-
tion for scales close to H/L = 1, one should remem-
ber that (H/Ax) determines the aspect ratio that
spurious waves may have, whereas H/L with L the
order of a few grid points is the aspect ratio of the
resolvable dynamics; if these ratios should be close
to one, then H/Ax must be larger than one with the
undesirable feature of unstable gravity waves. It is
easy to modify (3.3) to avoid such instability and
the procedure is as follows:

L= Byt (3.5)
The dispersion relation is then given as
2 212
w2=%N2(I~BI: ) . (3.6)
Y : Y

Now if we prescribe that the disturbance with the
highest aspect ratio possible should be stable or
neutral, g will be given by 8 = DX/H. If the aspect
ratio is 1, then the modified quasi-hydrostatic equa-

tions are the same as the original set given in (3.3).
The coefficient 8 will not affect the waves that the
model can well resolve, only computationally ex-
cited waves which may not be of any physical inter-
est will be damped out.

Two examples of convection with different resolu-
tions, Ax = 5.33 and 1.33 km, are shown in Figs.
4 and S. The initial conditions are different here than
before in that an unstable atmosphere is perturbed
by a buoyant bubble which is 1.5°C warmer than its
environment. The size of the bubble (6 x 4)isshown
in Fig. 4. The comparison of the modified quasi-
hydrostatic and the non-hydrostatic solutions after
1621 time steps is shown in Fig. 5 for the case Ax
= 1.33 km. Note that for these extreme cases, the
coefficient CQA for the nonlinear eddy viscosity
was increased to 4, thus making them more viscous,
but the similarity between both solutions in such
severe tests is reasonably good.

4. The three-dimensional quasi-hydrostatic system

A simple extension of the previous results can
be applied to derive a consistent three-dimensional
set of equations. Since the hydrostatic balance is
independent of the compressibility of the fluid, let
us then, for simplicity, use the incompressible three-
dimensional Boussinesq equations defined as
follows:
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FiG. 4. The simulations of deep convection with an aspect ratio larger than one (H/Ax = 2.264) for the
modified quasi-hydro and the non-hydrostatic approximations are shown.
v ] arameters, the Eqs. (4.1) can be written as
V. + VWV + WV, = - 2 P > the =4
P V, + BVVV + BWV, = —pBVp
~-Pz gp' N
W, + VVW + WW, = —— + —~ 4.1
‘ el @D w4 gvvw + pww, = — 28 p; _ o2
p P 5 P
) L, (4.2)
+ + Wp, + Wp, = "
p.+ VVp ' Pz Wp, =0 V-V+W,=0
V-V+W,=0 -
_ ¢ ) ’ p: + BVVp + Bwp, + Bwp, = 0
where the equations are perturbations of hydrostatic ’
state atrest [P,(z) = —gp]: Visthe horizontal vector where
velocity, W is the vertical component, and p and p - w w 1
are the pressure and density, respectively. We can - B=—=—L and =%
make (4.1) nondimensional by defining the pa- L H U,
rameters
Y 6= E- P = Pr e
x,y=Lxy'; z=Hz; V=uV'; t=r11 L’ prit,?
P = P,.P’; p= prp'; w = WrW’. . W, T . 2 gdﬁ
pr=20 N? and N?= -~ =
g pdz

By substituting and redefining the nondimensional
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FiG. 5. Extreme example of moist convection with H/Ax = 9. The streamfunctions are shown in the upper part of the figure;
the liquid water content is in the lower portion of the figure.

Note when 8 < 1 with p8 = O(1) and Bp, = O(1),
that the system (4.2) becomes a linear set of equa-
tions.

V,=-Vp ).
P,
Wt = - —'—NZTP
3 . 4.3)
VV+W,=0
pe+wp, =0

The solution of the form e can also be expanded
as before:

V = [Vy + 82V, + O]~
W = [wo + 8w, + O@3%)] e
p = [po + Bpy + O™ [ .
P =[py + 8%, + O(8%)]e i

w =y + 8w, + - J

<

It

Notice that w, is of the order of unity because it

is nondimensionalized by 7. In fact, for the expan-
sion to be valid, N27% = O(§7?), where N%72 = 8§72
[a = O(1)]; this was already shown in Section 2.
Substituting in (4.3) and separating by powers of
8%, we have

—iwgVy = —Vp,
50 P()z = —apo
V'VQ = Wy

—iwepy + Wop, = 0,

and the next order is given as

—ion1 - i(l)IVo = _Vpl
52 —iwgWy = —P,, — ap,
V-V, = —wy,

~iwop; — fwipe + wip, = 0.

The first-order expansion is the hydrostaﬁc system,
whereas the next order correction in & completes the



580

quasi-hydrostatic set. In fact, assuming constant
coefficients, the zero-order and first-order correc-
tion are simple to calculate and are defined as

k
Wy = i—a,
Y
k2
w, = —(DQE‘F .

The dimensional frequency of the second order is

then .
- 2
© = iiN(l __"_) ,
2y?

which is the same as that previously calculated in
(3.6). Therefore, what is shown here more clearly
than the vorticity treatment of Section 3 is that the
quasi-hydrostatic set takes the vertical acceleration
from the vertical hydrostatic velocity and generates
a correction to the vertical gradient of pressure
which modifies the horizontal momentum equation.

This approximation can be applied in a very
straightforward manner to finite-difference models
or may be included as a modification to existing
hydrostatic models.

Finite-difference application

Let us assume that a preexisting set of hydro-
static equations is used and that the prognostic equa-
tions at a given time step 7 + 1 are defined as
follows:

Vit = F(Vg, Py, pp)" + Vi)

Wit = J V-Viidz

0
pFt =pi ™t + G(Vy, pr)

+1 +1
PL; r

= —8pr J

Note that the variables with the subscript H or T
refer to being calculated from the hydrostatic pres-
- sure (H) or being included in the non-hydrostatic
correction (7). To complete the cycle and to evalu-
ate the quasi-hydrostatic contribution for the pres-
sure, we integrate the vertical acceleration from
the hydrostatic vertical velocity since W' is
known: :

dz'.

'r - — z dWH
p(2) L 7

The horizontal velocity correction is then
Vitt = —Vp,-Dt
and the vertical velocity correction is

4
witlt = —J V-vitidz'.

0
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Finally, the new set of variables at the current time
step are built:

V;-Fl = V;{+1 + Vg+l
W;-H — W;E“ + W‘1:'+1

The density is only a function of velocities at previ-
ous time steps and has already been calculated with
the corrections included and in this way the cycle is
completed. ’ :

S. Energy conservation

The three-dimensional Boussinesq equations
as defined in (4.1) conserve total energy E [E
= p(VaV? + Yaw?) — Yag(p*/p,)]. In the hydrostatic
limits, however, the energy conservation reduces
to conserve the horizontal Kinetic plus potential
energy only, which is consistent with the assump-
tion that w? < V2,

The quasi-hydrostatic system has, as expected,
the property of conserving energy to a higher order
in the aspect ratio expansion (8%) such that, the zero
order coincides with the hydrostatic system, whereas
non-hydrostatic effects are contained in the higher
order. For instance, the vertical kinetic energy is
included in the next higher order terms of the ex-
pansion. A

We now show the form that takes the energy for
the quasi-hydrostatic equations by rewriting the
nondimensional system defined in (4.2) as

. dv )
o —PBVp
L~ )P, - N
dt o é.D
L
© VV=—w,

P

remembering that the dimensional amplitude for
these variables are U, for V, w, = 8U, for w and
pr = p(w,7N?%g) for p. We can obtain the equations
for the kinetic and potential energies by multiplying
the first three equations of (5.1) by V, w and p.

~

dv?#/2 . 5
I = ‘—PB[VPV + (WP)z] + PﬁW[)z
dw?/2 Pp "
a e P New 62
2
2 _ L,
dt J

The system of energy equations in (5.2) is without
any approximations; yet, if multiplied by the proper
dimensional amplitudes to define the energies, we

- have
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Ky = pU,2 15V?
K, = pW,2 Vaw? = pU,28* Vaw?

(5.3)
r_ gp,’ 2 _ =77 282, 2NJ2 2
PT = — Yap? = pU,28*7*N? YVap
The dimensional form of (5.2) is then
dK 5o ]
77’1 = —PBpU AV (Vp) + (wp).]
+ PBpUA(P,w)
djv - _—pBi)Urz(WPz) - ﬁU,282N27‘2(PW) ©4
Pt
= PU28*N*t*(pw)

/

Adding the three equations of (5.4) yields

d
S (Ky+K,+ PT
dt( H )

= ~PBpU[V,VP + (wp),]l. (5.5)

Eq. (5.5) shows the known results that the total
energy is conserved. This exercise was done to fa-
cilitate the expansion of the energy in powers of
8%. Using the expansion of the previous section for
V,w and P and p in the expression of the energy
(5.3), it follows that

Ky = pU2AWBVE + 82V, V, + O(8%)]
K, = pU,*[8* Yawy? + O(8%)]
PT = i)Urza[lépoz + szlpo + 0(84)]

with the constant a = N?728” in the potential energy
previously defined and assumed to be O(1). There-
fore, to the zero order the energy conservation takes
the form

(5.6

d
m (%2Vo? + Y2ape®) = —PBIVo(Vops) + (Wopo).],

where Y2V ? + Vaap,? is the total energy for the hy-
drostatic system. The expansion (5.6) can be applied
to each term in (5.4) obtaining in order of & the
contributions of the quasi-hydrostatic approxi-
mation:

[ dKuo _ d (V)
dt dr 2
= —PBIV-V,Py + (WoPy).]
oM + PBWoPo, (5.7)

0= _;PBWOPOz = a(pewy)
dP}  d(apP2 _
L dt dt

apoWwe
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and
dKu _ d(V,Vo)
dt dt
= —PBIV-(V,P, + V,Py)
+ (Wi Py), + (wolPy),]
+ PB(W1P0z + wolPy.)
2
0(6?) ﬁ dK _ d(we»/2 (5.8)

dt dt
—(PBwPy, + aw,py)
— (PBwoPy, + wopy)

dP?T ad
- = (p1p0) = a(pwo + Pow1).

dt dt

The energy system (5.7) shows, as stated before,
the conservation of energy in the hydrostatic
approximation. Note that, instead of the vertical
kinetic energy equation, the hydrostatic balance is
shown in the second equation of (5.7).

The non-hydrostatic contributions are shown in
(5.8) where the first and third equations are the
modifications of the horizontal kinetic and potential
energies, respectively. The second equation now
represents the time derivative of the vertical kinetic
energy. Notice that terms containing w, in this equa-
tion cancel by the hydrostatic balance (w,P,
= —w,po) giving a direct transfer of potential to
horizontal kinetic energy by these terms. The second
term on the right-hand side of the second equation
determines to this order the energy transfer form
vertical to horizontal Kinetic energy (w,P,,) and
a(w,p,) the transfer from vertical kinetic to potential
energies, thus proving that, E; = V,V, + w2
+ ap, p, is conserved. Regrouping terms, the total
energy conserved for the quasi-hydrostatic system
is then

E, = pUAY2V + Yaaps®
+ 8(VoV, + Yawo? + apopy)l.

6. Conclusions

Mesoscale modeling requires scales with aspect
ratios close to 1, for such models the validity of the
hydrostatic assumption cannot be assured, partic-
ularly, when deep convective systems are studied,
leaving only the option of considering more compli-
cated and often more expensive non-hydrostatic
systems. In this paper a practical approach to en-
compass the limitations of the hydrostatic models
is presented.

The expansion in powers of the aspect ratio
(6 = HJ/L) for the full three-dimensional equations
of motion suggests a slight modification to the
hydrostatic system that retains non-hydrostatic
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properties and considerably improves the simula-
tion of mesoscale dynamics.

A comparison of two-dimensional numerical
simulations with the hydrostatic, quasi-hydrostatic,
and non-hydrostatic equations for deep convection
in a frontal system shows a clear improvement of
the new suggested scheme as compared with the
hydrostatic one. The solutions of the quasi-hydro-
static and non-hydrostatic equatlons are very similar
in three experiments shown in this paper, which
were the dynamics of an atmospheric front, and two
free-convection experiments with aspect ratios
larger thaii one.

The éxperiments were not intended to be realistic,
in fact they were found to be more vigorous than
those observed in nature to illustrate the differ-
ences, if- any, between the quasi-hydrostatic and
non-hydrostatic systems.

The quasi-hydrostatic system is slightly less
econiomical than the hydrostatic one, but still more
economical than the non-hydrostatic calculations.
In fact, the two-dimensional calculationis shown,
are found to be eight times faster than the full non-
hydrostatic calculations. A drawback of this new
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scheme appeérs to be that gravity waves with aspect

_ratios larger than one are unstable; however, this

may not be significant since thé whole expansion
should not apply to aspect ratios larger than 1.

Finally, a new form of energy consistent with the
quasi-hydrostatic approximation is shown to be
conserved.
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