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ABSTRACT

An investigation is made of the stability of a convectively unstable atmosphere in the presence of a stably
stratified layer beneath, which is moving with a constant velocity relative to the upper air. This work is an
extension of the linear model presented as part of the recent study of Orlanski and Ross in which they sought
to explain the structure of their simulated squall line. A stability analysis shows that two modes are possible: 1)
the gravitational or convective mode due to the unstable stratification in the upper layer which modifies the
stable region below and 2) the classical Kelvin—~Helmboltz mode due to shear across the interface. The Kelvin—
Helmboltz mode is of limited physical interest in this case. On the other hand, the gravitational mode produces -
an updraft structure similar to updrafts in the stable lower layer of a convective system. Analysis of the horizontal
displacement of the surface convergence for this mode relative to the convergence in the convective zone shows
this displacement to depend primarily on the wind, stratification, and depth of the stable lower layer. The
resulting relationship provides a method for determining whether a dual or single updraft will occur in a convective

system.

1. Introduction -

As discussed in Orlanski and Ross (1984; hereafter
referred to as OR), a major finding of Ogura and Liou
(1980) was the existence of a strong midlevel conver-
gence zone in the Oklahoma squall line of 22 May
1976 with this zone out of phase with the surface con-
vergence. They attributed the divergence region be-
neath this midlevel feature to be the result of the effects
of falling rain, namely, evaporative cooling and water
loading. The numerical frontal solution of OR showed
a very similar structure of intense midlevel convergence
and low-level divergence which was out of phase with
the surface convergence, i.e., the midlevel convergence
maximum was displaced by a quarter wavelength to
the rear of the low-level maximum within the squall
line. (This displaced updraft structure between low and
middle levels in the troposphere was referred to as a
“dual updraft.”’) However, the numerical model used
in their solution contained no rainwater phase and thus
had no mechanism for evaporative cooling of rainwater
beneath the cloud zone and only provided for water
loading due to cloud water up to 1.5 gm kg~'. This
numerical result suggested that a simple dry model
could explain the displacement of the surface conver-
gence relative to the midlevel convergence zone in a
hydrostatic convective system without the need for mi-
crophysics.

Hence, OR developed a simple, linear two-layer
model to complement their full three-dimensional nu-

merical simulation of a squall line. The linear model .

was shown to produce the basic dual updraft structure
found in their moist simulation and in Ogura and

[

Liou’s (1980) observations. This model, which involves
no moisture or microphysics, represents the cloud sys-
tems as two layers with a gravitationally unstable layer
with zero wind above a stable lower layer with constant
wind speed. The structure of the vertical motion fields
in the lower layer, identified here as representing up-
draft-downdraft structures in the convectively stable
lower layer of a convective system, were shown to de-
pend on the low-level wind intensity, stratification, and
layer depth for a given upper layer stratification and
depth.
It is evident that this model will have two different
unstable -modes. First, a gravitational mode will be
present due to the static instability of the upper layer.
Second, a Kelvin-Helmholtz instability will occur due
to the concentration of vorticity in the interface be-
tween the two layers.

In OR, only the gravitational mode was considered,
being the only mode relevant to their discussion. This
single mode solution came about because an incorrect

- interface condition was used, namely, that the vertical

velocity rather than vertical displacement was contin-
uous across the interface.! One purpose of this paper
will be to investigate the full solution of the two-layer
model and to determine the extent to which the grav-
itational mode is altered by the use of the displacement
interface condition. In addition, a second important
goal will be to use this two-layer model to identify what
low-level conditions of wind and static stability will

! The authors thank Dr. Kerry Emanuel for pointing out the sig-
nificance of using the correct condition of displacement continuity.
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permxt the formation of single-, dual-, and no-updraft
in the low-levels of a convective system.
Section 2 will present a brief review of the two-layer

model and a discussion of the full solution and the way.

in which the results of OR are modified. In section 3,
an analysis is made of the more realistic gravitational
mode which indicates how the structure of the low-
level updraft depends upon conditions in the lower
layer. Finally, section 4 will summarize these resuits.

2. Model solution

The two-layer model of OR, which will be briefly
reviewed here, was formulated fo represent the stable
and unstable regions in a conditionally unstable at-
mosphere in which convection is occurring. The model
atmosphere is assumed to be dry so as to avoid the
complications of moist thermodynamics. In order to
simulate the lifting of moist air to a level of free con-
vection, theé dry model environment is divided into
two layers, each with constant stratification (Fig. 1).
The lower layer is stably stratified (6,, > 0) and extends
from the surface to the level of free convection (LFC)
at z = h. The upper layer is gravitationally unstable
(8;, < 0) to simulate the moist unstable cloud region
above the LFC and extends to a rigid lid at z = H. The
lower and upper layers are assumed to have constant
mean winds U; and U,, respectively, with the upper
level wind U, set to zero.

A linearized inviscid two-dimensional form of the
hydrostatic anelastic equations was assumed by OR to
apply, namely:

ou’ ou’
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FIG. 1. Schematic diagram showing the configuration of the simple
dry model containing two layers, each with constant stratification
(indicated schematically by the stippled bars) and uniform winds.
(The upper-layer wind, U,, is assumed to be zero.) The interface
between the two layers is viewed as representing the level of free
convection (LFC) in the moist environment being modeled.
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where subscript m refers to layers 1 and 2, density vari-
ations have been neglected, and primes denote pertur-
bation quantities.

a. The eigenvalues

A streamfunction ' may be defined to satisfy the
continuity equation (2.4). Then, if all perturbation
quantities are assumed to vary as explik(x — ct)] so
that &' = ®(z) exp[ik(x — c1)], we obtain the followmg
equations by combining (2.1)-(2.3):

& d N2

__azzl 41 O ® =0 (lower layer), (2.52)
#®, N,?
_a_z—zz - —C%- &, =0 (upperlayer), (2.5b)

where we have used the fact that U, = 0 and have °
defined the positive quantities N,> and N,? such that ~

= g6,,/O and N,® = —g#,,/O. Conditions at the
rigid boundaries are

=0 at z=0,H (2.6)

The following conditions will be used here for the
interface, z = h:

) _ _ 2B (continuity of displacement),
U -c c !

(2.7a)
and

(U — )@, (h) = —c®,(h) (continuity of #’). (2.7b)

Note that the condition, (2.7a), differs from the con-
dition of continuity of w Wthh was used by OR [their
Eq. (4.7a)], namely,

®,(h) = d?z(h). (2.7a)

The general solution of (2.5) which satisfies the
boundary conditions (2.6) is ‘

(2.82)

®, = &, sinhy,(H — z) (upper layer), (2.8b)

where v, and v, are compiex wave numbers of the
form

d, = &, siny,z (lower layer),

Y1 =71+ vy,

Nic, + i ¢Ny
(Ui =)+ U=+’

(2.9a)

=+



15 MY 1986

¢; N
V2=, tivy=F 3 L2 (2.9b)

fo +Ci2_lCr2+Ci2,
with i = (—=1)"2, Only the upper sign in the above
expressions will be used hereafter.

Finally, the requirement that (2.8) satisfy the inter-
face conditions, (2.7), produces the transcendental
equation

tanhy,(H — h) = Uc—— Ny tanyh
1
which must be solved to determine the complex eigen-
value, ¢, + ic;, for the eigenfunction (2.8).

As has been discussed in OR, the parameters con-
trolling the solution of the two-layer model are the low-
level wind, U,, the ratio of static stabilities, P = N,/
N, and the ratio of the depths of the lower and upper
layers, e = h/(H — h). As in OR, solutions of the two-
layer model have been obtained here by using a two-
dimensional Newton-Raphson technique (see Ham-
ming, 1962, p. 357) to determine the complex eigen-
values ¢ of (2.10). The complete solution for the growth
rate, ¢;, and the phase speed, c,, as a function of low-
evel wind, U,, is shown in Figs. 2a and 2b. In these
figures, the gravitational or convective and Kelvin-
Helmbholtz solutions are designated by the letters G

(2.10)
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FIG. 2a. Plot of imaginary eigenvalue ¢;, in m s™', as a function of
wind U, in the lower layer for different values of stability ratio, P,
and height ratio, e. Kelvin-Helmholtz and gravity wave modes are
indicated by “KH” and “G” respectively. The two numbers in
brackets following the mode designation indicate the corresponding
values of P and e. The circle symbol indicates values for the case
G(30, 0.1) from OR.
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FIG. 2b. As in Fig. 2a but for real eigenvalue c,.

and KH, respectively. The two numbers in parentheses
after the letter designations indicate, in order, the static
stability ratio, P, and the height ratio, ¢. The P values
used are 1, 10, and 30, while values of e are 0.1 and 1.

Characteristics of the growth rate ¢; are distinctly
different for the two different kinds of modes. The Kel-
vin-Helmholtz value of ¢; is seen to be roughly pro-
portional to U, for all values of P used. (Note that U,
represents the shear between layers, because the wind,
U,, of the upper layer is zero.) On the other hand, the
growth rate of the gravitational mode is quite invariant
with wind U, and hence with shear across the interface.
In fact, the value of ¢; of approximately 3 m s™! found
for ¢ = 0.1 and for the three different values of P is
effectively determined by the growth rate, No(H — h)/
m, which is the value for a single layer of thickness H
— h and unstable stratification of magnitude N,. [This
is the unstable mode found by Kuo (1963).]*> Because
of the insensitivity of the gravitational mode to shear
at the interface, the solution of OR for P = 30 and ¢
= 0.1 (indicated by a circle in Figs. 2a, b) is very similar
to that found using the corrected interface condition.

The only major difference among the G modes
shown is for the case G(1, 1). However, this mode still

2 Although values for the layer thicknesses # and H — h can be
obtained from observations in a straightforward manner, it is difficult
to directly determine a value for the unstable stratification which
prescribes N,. However, one may obtain a rough estimate of the
growth rate, ¢;, from the ratio between the horizontal scale of the
convective system and the time scale of the instability. For example,
the assumed value for ¢; of 3 m s™! might correspond to a horizontal
scale of 100 km and a time scale of 9 hours. For an unstable layer
thickness, H — A, of 9000 m as used here this value of ¢; implies a
magnitude for N, of 1073 571,
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exhibits similarities to the others in that the maximum
instability occurs for zero shear, while the growth rate
is smaller and nearly constant for high shear. The lim-
iting value for this mode for large U, will be N,H/(2x),
implying that the growth rate for ¢ = 1 will be roughly
half that for e = 0.1.

Figure 24 shows the expected tendency for ¢; to in-
crease with increasing shear for the Kelvin-Helimholtz
(KH) modes (Emanuel, private communication,
1984).3 In particular, note that the mode, KH(1, 1), is
a straight line in the figure with a slope of 0.5. Finally,
note that the Kelvin-Helmholtz instability decreases

-as the stratification ratio, P, increages.

Figure 2b shows the phase speed, ¢,, of the KH
modes also to be proportional to U, with the mode
KH(1, 1) described by ¢, = U, /2. Comparison of the
two modes, KH(1, 1) and KH(1, 0.1), shows that the
phase speed increases as the depth of the lower layer
decreases.*

- The phasé speed for the grav1ty mode is shown in
Fig. 2b to be nearly zero and is insensitive to the low-
level wind, U,. This phase speed will be determined
by the mean velocity, U,, of the convective disturbance
in the upper level ' which is zero in this case. Because
of'this strong dependence on the upper level wind, good
agreement was found between the approximate solu-
tion of OR (indicated in Fig. 2 by a circle) and the
results presented here. This agreement will be explained
in more detail in.the following discussion.

_b. Structure of the unstable modes

Figure 3 shows a comparison of vertical velocity -

fields for the two different unstable modes, the gravi-
tational and the Kelvin-Helmbholtz, for the parameter
values, P = 10, U, = 5, and ¢ = 0.1, The main char-
acteristic of the gravitational or convective mode is a
maximum disturbance in the center of the convectively
unstable upper layer with only a weak influence on the
stable lower layer. In fact, the figure shows vertical ve-
locity to be very small at the interface and inside the
lower layer. The Kelvin—-Helmholtz mode is quite dif-
ferent in this regard, since the vertical velocity distur-
bance is maximum at the interface with strong pene-
tration into the unstable layer and weaker penetratlon
into the stable layer

One of our primary interests here is the position of
the surface convergence relative to the location of the
maximum convergence of the wave, particularly for

3 Emanuel has obtained a particular-solution, ¢, = ¢;
this case P = ¢ = 1, which is verified by these results.

4 One can derive an expression for ¢, and ¢; in the analogous un-
stratified, but nonhydrostanc case with Ny = N, = O:

U, tanhk(H — h) o=+ U,[tanhkh tanhk(H 2
tanhkh + tanhk(H — k) ' -~ tanhkH + tanhk(H — h) ~

This expression shows that, in the limit # — 0, then ¢, — U, and
¢; — 0, in agreement with the above behavior.

= U1/2, for

¢ =
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FIG. 3. Contour plots, over one wavelength, of the distribution of

normalized vertical velocity, W/Wpas, for (a) the gravity wave and (b)
Kelvin-Helmholtz modes with P = 10, U, = 5m s}, and ¢ = 0.1.

the gravitational or convective mode. Figure 4 shows
a comparison of the nondimensional convergence,
W, h/Wmax, for the two different modes. Note that, for
the gravity wave mode, the convergence amplitude at
the surface is comparable to the maximum at the in-
terface. For the Kelvin~Helmholtz mode, on the other
hand, the maximum convergence at the interface de-
cays very rapidly below the interface with insignificant
convergence in the stable layer.

In view of the foregoing considerations, it now is
easy to explain the close similarity between the eigen-
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FIG. 4. Contour plots, over one wavelexigth, of the distribution of
normalized horizontal convergence, w,(h/Wy,,), for (a) the gravity
wave and (b) Kelvin-Helmholtz modes as in Fig. 3.

values for the gravity-wave mode (Fig. 2) of OR’s ap-
proximate solution and the exact solution. The fun-
damental difference between these two solutions is the
use of the interface condition of w continuity, (2.7a’),
in the former versus displacement continuity, (2.7a),
in the latter. However, as Fig. 3 indicates, vertical ve-
locity (as well as displacement) is very small at the in-
terface for the gravity wave mode. In this case, the
pressure continuity condition, (2.7b), which is the same
in both OR’s and the present solution, is the most im-
portant interface condition as indicated by the mag-
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nitude of w, at z = k in the upper frame of Fig. 4a. As
a result, both the eigenvalues and the structure of the
eigenmodes will be nearly identical in each case.
Figure 5 shows the distribution of vertical velocity
and horizontal convergence for P = 30, U, =475 m
57!, and ¢ = 0.1. Comparison of this with Fig. 22 of
OR, in which the same parameter values were used,
shows very similar structures. Note that slight discon-
tinuities are evident in w at z = h, since vertical velocity
is no longer continuous at the interface. As before, the
surface convergence is displaced by an amount ¢ = =

(a) VERTICAL VELOCITY W/Wanq,
S L

3, 2m

(b) HORIZONTAL CONVERGENCE Wz(h/WmaxL]
bk 0.31

FiG. 5. Contour plots of distribution of (a) vertical velocity and
(b) horizontal convergence corresponding to low-wind case (U, = 4.75
ms™!, P =30, ¢ = 0.1) shown in Fig. 22 of OR.
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upstream of the interface maximum for these values
of P and U,. Note also, that, although low-level wind,
Uy, is similar to that of Fig. 4a (4.75 versus S m s™'),
the low-level structure is quite different owing to its
strong dependence on the stratification of the lower
layer with P, = 30 here and P = 10 for Fig. 4. The
dependence of the phase shift, ¢, upon flow parameters
will be investigated in section 3.

3. Structure of the low-level updraft

As previously discussed, the structure of the gravi-
tational unstable mode in the stably stratified region
depends upon the wind speed, U;, the depth of the
layer, A, and its stratification, N,. A fundamental char-
acteristic of the solutions in this lower level, as exhibited
by the structure of vertical velocity and divergence in
Figs. 3 and 4, is the tendency for convergence at the
‘surface to be displaced either upstream or downstream
relative to the convergence maximum at the interface
level, z = h. In the present section, a more detailed
analysis will be made of the phase angle difference be-
tween the surface and interface convergence maxima
as a function of Uy, N, and A. Derivation of this phase
shift will be done in a straightforward manner using
the interface condition for pressure continuity, (2.7b),

namely,
3.1

$,(2) = (3.2)

as obtained by differentiating (2.8a) with respect to z.
Values of @, in the lower layer at z = 0 and z = h are
then determined from (3.2) to be, respectively,

®,(0) = (3.3a)
o, (h) = (3.3b)

so that (3.1) may be expressed in terms of tI), [0), using
(3.3),as

(U = 021 (h) = —c®,(h)
where oo
v1®, cosy,z

‘Yl‘i>1,
’Ylél COS’Yl}l

(3.4)

$,.00) = - ®2:(h).

U, —ccosyh

Since we are interested only in the gravity mode, we
may assume that ¢; = No(H — h)/w and ¢, =~ 0 to a good
approximation. Then the expression, (2.9a), for vertical
wave number, v, = v, + iv,,, becomes .

N 1 U 1 N, 1Ci
U12 + Ciz ’ Ulz + ci2
 or, using nondimensional parameters on the right-hand
side:

Y= Yu =

U
Yi,h = i 7 Pe, (3.5a)
1
h=——nm 3.5b
yi,h w2+11rPe (3.5b)

where ¥ = U, /c;, P= Ni/Ny, ¢ = h/(H — k). By ma-
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nipulating the algebra of the real and imaginary parts
we can write (3.4) as
i (AU + i) cos(y,,h — ivyh)
(U + Dcos(yy,h + iy )
or, in reduced form, _
®1,0) = &;,(h)Ae™

where ®,,(h)A is the real, positive amplitude of the
right-hand side of (3.6) and ¢ is the phase shift between
convergence maxima at z = 4 and z = 0. This phase
angle takes the form

®,(0) = (3.6)

tany, h tanhy h — U
1+U _tan'yl,h tanh'ylih

¢ = arc tan[ ] (3.7

where +,,h.and v,/ are given by (3.5) in terms of U
and Pe.

Figure 6 shows a plot of curves of constant ¢asa
function of % and Pe. Values of Pe considered in section
2 generally range from one to three for e = 0.1. For
this range of Pe and for large U, the phase ¢ is negative,
implying that low-level divergence. occurs upwind of
the convective cell and low-level convergence occurs
downwind. As the wind, U, decreases, the phase in-
creases to zero, corresponding to a vertical structure
with surface convergence directly beneath the cloud
convergence. We will refer to this configuration as a

. single updraft. Further decrease of % produces a pos-

itive phase ¢, which means the surface convergence is

U,/Kc;

FIG. 6. Plot of contours of phase shift between the surface con-
vergence maximum and the maximum above z = A for nondimen-
sionalized parameters Pe and U, /c;, as obtained from Eq. (3.7).
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upwind and surface divergence downwind relative to
the cloud convergence. When the phase ¢ reaches ,

surface convergence will be exactly out of phase with’

cloud convergence (i.e., surface divergence is located
directly beneath the cloud convergence). This structure
represents what we refer to here as a dual updraft. Note
that the increase in the phase shift found here implies
an increase in the vertical wave number of the gravity
wave structure in the stable lower layer. This will be
discussed further in what follows. Finally, as the wind
approaches zero, the phase ¢ reaches a maximum and
then decreases rapidly back to zero. This limit repre-
sents the required condition that the updraft have no
tilt in the zero-wind case.

It is clear from this analysis that some updraft struc-
tures predicted by the two-layer model will be unreal-
izable in nature or at least will not persist in a long-
lived convective system. In particular, the cases with
negative phase cannot be maintained in a real convec-
tive system, because the positioning of low-level di-
vergence upstream of the cloud will interfere with the
supply of low-level moisture to the convective updraft.
Likewise, cases with phases larger than = (upper left
portion of Fig. 6) are not realistic, because they would
imply that surface convergence is overly remote (several
horizontal cloud scales) from the convective zone of
the cloud. The above discussion thus suggests that re-
alistic configurations, i.e., those permitting an adequate
supply of low-level moisture to reach the cloud, must
have a phase angle lying in the approximate range be-
tween zero and . . .

The structure of the waves in the stably stratified
layer can be interpreted as being that of an unstable
wave which is forced at the interface by the convection
above. Also, both the horizontal wave length and the
phase speed of this wave must match those of the con-
vectively unstable wave in the upper layer. Then since
the wind speed, U,, and hence the phase speed in the
upper layer are zero, the phase speed of the wave in
the lower layer must match this wind speed so that the
net propagation speed, ¢,, is zero. Since horizontal wave
number and phase speed are prescribed by the unstable
convective cell in the upper layer, only the complex
vertical wave number remains to be specified by the
dispersion relation (which should be analogous to that
of a neutral gravity wave in the stable lower layer).
This relation, in turn, depends on the conditions across
the interface. Reference to the vertical structure of $(z)
near the interface indicates that ®, will be large, while
¢ will be quite small for the gravity or convective mode
of interest here. Hence pressure continuity, (2.7b),
rather than displacement continuity, (2.7a), will be the
controlling condition for the dispersion relation, as
discussed earlier. '

Finally it should be noted that the solutions obtained
will simply be inverted if the stably stratified layer is
relocated above rather than below the convective layer.
Hence Fig. 6 will also describe the phase shift of internal
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gravity waves forced by the penetration of convectively
unstable cells into a stable layer above them. In this
configuration, there is no physical restriction on the
phase angle since all waves are now possible. Of course, .
the assumption of a rigid lid located above the stable
layer is unrealistic. However, the disturbance will decay
exponentially above the interface; for this reason, the
lid assumption may not be such a bad approximation.

4. Summary

The stability analysis of the two-layer configuration
given herein, with one layer stable and the other un-
stable and with relative motion between them, has
shown that two modes are possible: 1) the classical
Kelvin—-Helmholtz mode due to shear at the interface
and 2) the gravitational or convective mode due to the
unstable stratification in the one layer which also mod-
ifies the stable layer adjacent to it. The behavior of the
Kelvin-Helmholtz mode is well known. The phase
speed and growth rate are proportional, respectively,
to the average wind speed and the shear across the in-
terface. (In the present discussion, both wind and shear
are determined by U,.) As expected, an increase in the
stratification of the lower layer reduces the growth rate
of the mode. The phase speed tends to be proportional
to a depth-weighted average velocity of the two layers.
Hence, when the layers have equal thickness, ¢, will be
U, /2 if the magnitudes of the stratification in each layer
are equal. A more peculiar result, evident in Fig. 2, is
that ¢, tends to U, as the layer thickness, 4, of the stable
layer goes to zero. (This result is consistent with the
analytic solutions for the special case of zero stratifi-
cation in both layers.)

Our main interest in this paper concerns the struc-
ture of the convective mode. Hence, because the Kel-
vin-Helmholtz mode occurs due to the artificiality of
the two-layer model, we have not elaborated much on
this mode. However, for models with more realistic,
continuous wind profiles, this mode will be of interest
in relation to the convection itself.

The growth rate of the gravitationally unstable or
convective mode was found to be insensitive to the
wind speed and stratification of the stable layer. In fact,
the growth rate for all cases was proportional to-the
product of the unstable stratification, NV,, and the depth
of the unstable layer, H — A, as one might expect.

On the other hand, the structure of the stable layer
which is compatible with the convective cell depends
on the stratification, depth, and wind speed of the stable
layer. This is the case because the convective cell excites
a gravity wave in this stable layer which must match
the phase speed of the unstable cell. For a given stable
layer stratification and depth, a multitude of possible
solutions exist which depend upon the wind speed, U, ;
however, many of these solutions are not realizable in
a moist convective atmosphere, because they would
prevent moisture from the surface layer (the bottom
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of the stable layer in this model) from reaching and
maintaining the convective cell. Because of this selec-
tivity, only a few configurations are capable of sustain-

ing moist convection. '
Figure 7, which is a dimensional, schematic repre-
sentation of Fig. 6, indicates the possible low-level up-
draft configurations which will result for different low-
level wind speeds. In Fig. 6, the nondimensional quan-
- tities, U and Pe, were used, respectively, for the abscissa
and ordinate. However, the crucial parameter for non-
dimensionalizing U, in U is the growth rate, ¢;, of the
convective cell. This was shown above to depend only
on the characteristics of the unstable layer. For the
primary cases considered in section 2 (¢ = 0.1), ¢; was
approximately 3 m s™!, independent of N, and U,.
- This growth rate, which was somewhat arbitrary, would
imply that a storm with a 10-km width would have a
growth time scale of roughly an hour. Similarly, for a
squall line with a 100-km width, the time scale would
be the order of a half day, which is also fairly realistic.
Hence, for the results shown in Fig. 7, we have chosen

. to use this value of 3 m s™! for ;. _

Different regions of the graph in Fig, 7 are indicated
by stippling, hatching, and: cross-hatching to indicate
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the different structures of the low-level updraft. In par-
ticular, the stippled zones in the figure indicate those
parameter values for which the updraft structure is
sloped away from the low-level wind and is unable to
carry surface moisture up to the convective cell. Hence,
the only physically viable updraft configurations occur

" for phase angles between roughly 0° and 180°. The

single and dual updraft ranges are indicated by cross-
hatching and hatching, respectively. The schematic
drawings on the right side of Fig. 7 illustrate the primary
configurations. ‘ '
Included in Fig. 7 are data points for the observed
squall line of Ogura and Liou (1980), indicated by
boxes, and the simulated squall line of OR, designated .
by circles. The growth rate, ¢;, has been estimated from
the horizontal storm scale divided by the time which
the convective system takes to grow to.maturity. In
both systems, the horizontal scale is assumed to be 150
km. However, the time scale is difficult to determine;
accordingly, a range between 6 and 12 hours has been
displayed in the figure with the corresponding hour
indicated within each symbol. These data ranges in-
dicate changes required due to differences in the actual
value of ¢; as compared to the value of 3 m s™! which
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FiG. 7. Schematic diagram summarizing dependence of phase shift, ¢, on low-level wind, U,, and the
product of stratification, N, and depth, A, of the stable lower layer for ¢; = 3 m s~!. Cross-hatching
indicates the range of probable single updraft; hatching indicates probable dual updraft; and stippling
designates parameter ranges for which low-level updrafts are unlikely to occur in nature. {See text fora
discussion of data points corresponding to the observed squall line of Ogura and Liou (1980) (box
symbols) and the simulated squall line of OR (circle symbols).] Diagrams on the right show the structure
of the updraft-downdraft system for cases with phase shifts of 0°, 90°, and 180° with the Roman
numerals I, I, and III on the curves corresponding to those in the diagrams.
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was used to convert Fig. 6 to the dimensional form
shown here. (A time scale of 14 hours corresponds to
a ¢; of 3 m s71.) Both sets of data points tend to fall
within the dual updraft range, except for the estimates
_for the simulation involving longer time scales. One
should treat this rather remarkable agreement with
. considerable caution in view of the roughness of the
estimates involved and the fact that we are applying
results from a linear model to finite-amplitude systems.

Finally, note that while these solutions are adiabatic,
they indicate possible states of the convective system
wherein diabatic effects, such as evaporative cooling
beneath the cloud due to rainfall, may enhance and
maintain the structure of the updraft.
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