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ABSTRACT

With the use of a simple primitive equation model, it is demonstrated that the convergence/divergence of
ageostrophic geopotential fluxes can be a major source/sink of kinetic energy for both downstream and upstream
development of baroclinic waves, and can play a dominant role during the early stages of wave development.
It is also shown that both surface friction and 8 effects lead to an asymmetry in the upstream versus downstream
development, with downstream development much stronger. A total group velocity is defined based on ageo-
strophic fluxes, and its relationship to the rate of wave packet spreading and to convective and absolute instability

is discussed.

1. Introduction

Recently, Orlanski and Katzfey (1991, hereafter
OK)) examined the life cycle of a strong cyclone that
developed over the South Pacific in early September
1987. 1t was found that the downstream dispersion of
energy by the ageostrophic geopotential fluxes was the
primary reason that the cyclone ceased to grow, and
that the energy transported downstream acted as a trig-
gering mechanism for the growth of a new downstream
disturbance. This result differed significantly from those
of previous studies on the life cycle of baroclinic waves.
In a study of nonlinear evolution of baroclinic waves

" from normal-mode initial conditions, Simmons and
Hoskins (1978) showed that the waves decayed pri-
marily through transfer of eddy energy to the mean
flow. However, normal-mode studies are not com-
pletely realistic in the sense that they require the si-
multaneous growth and decay of a number of identical
waves over the globe. The complementary, and some-
what more realistic, problem of downstream devel-
opment of baroclinic Rossby waves traveling as a time-
dependent wave packet has received relatively less at-
tention.

Simmons and Hoskins (1979, hereafter SH) studied
the response of a baroclinically unstable atmosphere
to a localized initial perturbation. They found that dis-
turbances grew both downstream and upstream of the
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initial disturbance. They also found that the growth
rate of the downstream disturbances was larger than
that of the fastest-growing normal mode, and that the
upper-level maximum of the disturbances was reached
earlier than the surface maximum, from which they
concluded that there might be some form of down-
stream dispersion of energy. However, they did not
analyze the energetics of the process and did not study
this energy dispersion in detail. In the present study
we will concentrate on the energetics of downstream
and upstream development.

In this paper, we examine further the processes in-
volved in the local transfer of energy, particularly the
role of the ageostrophic fluxes, which are shown to be
important in OK, in an idealized setting using numer-
ical simulations of a simple primitive equation model.
The basic state, the initial perturbation, and the char-
acteristics of the numerical model are described in sec-
tion 2. In section 3, the eddy kinetic energy equation
is derived. Section 4 presents the results of linear ex-
periments for both the Eady case and the jet case on
an fplane, as well as effects of 8. Nonlinear results are
discussed in section 5. The relationship between energy
dispersion and absolute and convective instability is
presented in section 6, and the conclusions are found
in section 7.

2. Experiment description

A numerical model has been used to study the re-
sponse of two basic flows to an initial perturbation, in
both linear and nonlinear simulations, and for both f-
plane and B-plane approximations. This section de-
scribes the characteristics of the model, the basic flows
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used, and the initial perturbation field. The model and
the basic jet structure are similar to those used by Nak-
amura (1989).

a. Numerical model

The numerical model used for this study is a sim-
plified version of the three-dimensional primitive
equation model discussed in Ross and Orlanski (1982);
interested readers are referred to that paper for details.
Major simplifications employed here include the ne-
glect of moisture effects and the use of the Boussinesq
approximation. The geometry of the problem is sim-
plified by neglecting curvature effects except in terms
of beta. In effect, the following equations are solved
for a channel in a 8 (or f) plane:
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where V is the two-dimensional horizontal wind vector
and W the vertical velocity; © is the potential temper-
ature, I1 the Exner pressure (P/Py)*/%, and V is the
two-dimensional gradient operator. We will neglect all
physical processes except for a simple diffusion-para-
meterizing subgrid-scale dissipation. Linear and non-
linear forms of the model were used. In the linear ver-
sion, quadratic terms in the perturbations from the
basic state are ignored.

b. Basic flows

Two different basic states have been used in this
study. The first is that of the Eady problem (Eady
1949), in which there is no horizontal shear and the
vertical shear is constant; that is, U = Uy + Az is only
a function of z. As a slightly more realistic case, a sec-
ond basic flow consisting of a baroclinic jet is used.
The jet profile is given by
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and is illustrated in Fig. 1. For both cases, the basic-
state meridional velocity ¥ = 0 and the basic-state po-
tential temperature is defined by
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where N3 = const and f = f; + 8y; 8 is taken to be
zero for the f-plane simulations.

A grid size of 150 km and a channel length of 30 000
km 1s used for most of the numerical runs. For the jet
case, Ly = 6000 km and L, = 15 000 km. For the Eady
case, a total channel width of 7500 km is used. The
vertical resolution is 1 km with a total height of H = 13
km, A is taken to be 2 m s~! km™!, and a Richardson
number of 11 is used for all cases; f, equals 0.0001 s,

Bistakentobe 1 X 107! m~' s~! (0 for f-plane cases),
x, is taken to be 100 000 m? s™!, and «, is zero.

c. Initial perturbation

Although Farrell (1984 ) found that the initial growth
of disturbances in a baroclinic flow depends critically
on the form of the initial perturbation, here we are
more interested in longer time (~ days) response in
which the unstable modes dominate. Experiments with
different initial conditions have shown that the long-
term response is independent of the initial perturbation
as long as it is localized. Following SH, a localized
barotropic vorticity disturbance is taken as the initial
perturbation. In order to reduce the effects of gravity
waves, both the initial divergence of the perturbation
and its time tendency are set to zero. Since the initial
perturbation is assumed to be nondivergent, the ve-
locity perturbation can be solved by
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F1G. 1. Upper panel: Meridional cross section of the zonal velocity
of the basic jet profile as defined by (2.2). Lower panel: Basic-state
potential temperature in thermal wind balance with the zonal wind.
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where {; is the specified initial vorticity perturbation.
In the following numerical studies, ¢{; is taken to be a
Gaussian

G = Goe Y, (2.6)
where d ~ A = (NyH)/ f». The linearized equations of
motion imply

a0 dv,
dy ox

Using the hydrostatic relation and remembering that
the initial perturbation is constant in height, we get

— [+ Buy = —C,0V?x;.  (2.7)
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For the nonlinear run, the amplitude of the pertur-
bation is such that the maximum initial velocity per-
turbation approximately equals 1 m s™!. The initial
perturbation for the jet case is shown in Fig, 2. For the
Eady case, the initial velocity perturbations are exactly
the same, but the initial temperature perturbation is
Zero.

3. Energetics equations

To examine the evolution of the energy budget, the
velocity, pressure, and temperature are separated into
a mean part and a perturbation part. Bar terms below
indicate the basic initial flow (described in section 2)
and the lowercase letters indicate the deviation; that
is,
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FIG. 2. Initial #;, v; (m s~!) and 6, (deg) perturbation
for the jet experiments.
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V=V+v
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The same decomposition will be used for both the lin-
ear and nonlinear cases to facilitate comparison of the
results. Since the mean state here is time independent,
zonally symmetric, and geostrophically balanced, the
momentum equation for the perturbation field be-
comes

ﬁ+V-V v+v-Vv+w@+v-V\7
ot 0z

0 -
+ wa—zV +fk Xv=—,0Var + diss. (3.2)

Multiplying (3.2) by v yields the energy equation:

4
(a +V- V)Ke + Vi V3Ke

= —,0(v- V) — (v-(v3-V3)V) + diss, (3.3)

where V; is the three-dimensional gradient operator
and v; is the three-dimensional perturbation velocity.
The terms on the left are the time tendency of the eddy
kinetic energy K,, advection by the mean flow, and
advection by the perturbation itself. For linear runs,
the third term on the left-hand side will be absent. The
first term on the right can be written (using continuity
and hydrostatic equations):

—6,00(v- V) = —(¢,06V5 - v3) + geﬁoo. (3.4)

The first term on the right-hand side is equivalent to
the divergence of geopotential flux term in OK (strictly
speaking, this is a pressure flux term since the model
used here is in height coordinates instead of pressure
coordinates. We decided, however, to continue calling
it the geopotential flux term following OK in order not
to use different names for essentially the same physical
quantity), and the second term is the baroclinic con-
version term. The second term on the right of (3.3)
can be interpreted as barotropic conversion between
the mean flow and the eddies.
Following OK, we write

V3 = Vg + Vg, (3.5a)
where
)
v, = c”fo‘)kxw. (3.5b)

Since the geostrophic part of the velocity is nondiver-
gent, the geopotential flux term can be written as

_(Cp®0V3‘V3TI’) = _(Cp®0V3'Va‘II'). (36)
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In the evolution of the cyclone studied by OK, it was
found that the export of energy by this ageostrophic
geopotential flux was the primary reason for the decay
of the cyclone. The exported energy then acted as input
1o the growth of a new disturbance downstream. The
current study will examine, through use of a simple
idealized model, the role played by this term in the
development of baroclinic waves.

4. Results of linear experiments
a. Eady case on an f plane

The evolution of the localized perturbation imposed
on the Eady basic flow on an f plane is depicted in
Fig. 3, which shows the pressure field at 2-day intervals
for 0.5-km altitude. As expected from a linear exper-
iment, the growth of the disturbances is almost expo-
nential in time. Because the steering velocity for this
case is zero [ for simplicity, we have taken a mean flow
such that U(H/2) equals 0 here], the waves develop
without movement relative to the flow. Within three
days, the initial perturbation (at the center of the chan-
nel) obtains, locally, the shape of the most unstable
baroclinic normal mode. Notice that in time, other
unstable eddies grow both upstream and downstream
of the initial eddy. The evolution of the vertically in-
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FiG. 3. Evolution of the pressure for the linear Eady experiment
at lower level (0.5 km) for days 3, 5, 7, and 9.
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FI1G. 4. Evolution of the vertically integrated eddy kinetic energy
for the linear Eady flow. Note that only the central 18 000 km of the
channel is shown. The crosses mark the position of the initial wave,
and the dots labeled II and IV mark the positions of the second and
fourth downstream waves, whose energetics will be shown in Fig. 5.

tegrated eddy kinetic energy over the middle part of
the channel is shown in Fig. 4. The initial perturbation
is marked by a cross (X). Figure 4 shows that by day
8, waves start to appear both upstream and downstream
of the initial disturbance. By day 10, a second down-
stream wave (I1), as well as an upstream wave, becomes
apparent, with additional waves appearing later (IV).
Since the waves are all stationary, the evolution of each
wave can be examined by computing the energetics for
a given area around the point of maximum energy for
each wave packet. The result is shown in Fig. 5 for the
initial wave as well as the second (II) and fourth (IV)
downstream waves. Because of the symmetry of the
basic state about the midlevel, evolution of the up-
stream waves is identical to that of the downstream
waves, and their energetics are not shown here. The
results shown in Fig. 5 are broken down into the total
normalized growth rate (A4), and its contributions from
the ageostrophic flux divergence term (B), the baro-
clinic term (C), the advection term (D), and the baro-
tropic conversion term ( E) as defined from section 3:

o

width of the channel and encompasses one relative K,
maximum, that is, from one K, minimum to the next
minimum.

For the initial disturbance, the baroclinic term (C)
is the dominant source of kinetic energy, while the
ageostrophic flux term (B) represents the primary sink.
With the baroclinic term dominating, the wave grows
continuously. Since the simulation is linear, the mag-
nitude of the baroclinic term cannot decrease and the
wave continues to grow over the 20-day period of the
experiment.

Note, however, that for the second downstream wave
(I1), the initial growth is dominated by the positive
contribution from the ageostrophic flux term (B). (The
terms “upstream” and “downstream” are defined as
relative to the initial wave, with “downstream” refer-
ring to points east of the initial wave.) After approxi-
mately 10 days, the baroclinic conversion term (C)
becomes significant, and by the end of the 20-day pe-
riod the baroclinic term has become stronger. When
the integration was continued for another 20 days (not
shown), it was found that the wave evolution even-
tually approached that of the initial perturbation dis-
cussed before, with baroclinic conversion (C) domi-
nating the growth and the primary energy-loss mech-
anism being the ageostrophic flux term (B).

The evolution of the fourth downstream wave (IV)
is simply a delayed version of the second downstream
wave (II). It is important to note that in the instances
where the growth is dominated by the ageostrophic
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FIG. 6. The contours in the panels show the vertically integrated
eddy kinetic energy at day 12 of the linear Eady experiment. The
vectors denote the ageostrophic fluxes at the upper level (top panel),
the lower level (bottom panel), and vertical mean ageostrophic fluxes
(middie panel).

flux term (B), the growth rate can be higher than the
normal-mode growth rate, in agreement with the results
of SH. The preceding discussions imply that as the ini-
tial disturbance grows, it exports energy via the ageo-
strophic flux term both upstream and downstream,
triggering the growth of other disturbances. This process
repeats itself with these subsequent disturbances. Figure
6 shows the patterns of eddy kinetic energy and the
ageostrophic fluxes at day 12 of the integration for two
levels in the model. The upper-level (12.5 km) and
lower-level (0.5 km) patterns are shown in the top and
bottom panels, respectively. The vertically averaged
fields are shown in the middle panel. It is evident from
Fig. 6 that each wave packet is losing energy both up-
stream and downstream. With each successive distur-
bance developing later than the previous one, however,

FIG. 5. Energetics of the initial wave, the second downstream wave,
and the fourth downstream wave of the linear Eady experiment. The
positions of the waves are shown in Fig. 4. The curves A4 to E are as
defined in (4.1).
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the energy lost by the wave to the subsequent distur-
bance is less than the energy it gains from the previous
disturbance, since the amplitude of the preceding dis-
turbance is much larger. Hence, there is a net positive
contribution to growth of each disturbance by the
ageostrophic flux term, at least until the amplitude of
the wave exceeds that of the preceding wave, at which
time there will be a net loss of energy via the ageo-
strophic flux term.

These results are in general agreement with those of
OK concerning the role of the ageostrophic fluxes. One
difference, however, is that OK found predominantly
downstream ageostrophic fluxes, while the results in
the current study indicate fluxes in both the upstream
and downstream directions. This difference has already
been noted by SH. They also found both upstream and
downstream development in their idealized calcula-
tions, but pointed out the rarity of upstream devel-
opment in an observational study. Using the balance
between the advection and stretching terms in the vor-
ticity equation, OK argued that the ageostrophic fluxes
will be predominantly downstream in the upper tro-
posphere where the wave lags the mean flow. Analogous
arguments imply that ageostrophic fluxes in the lower
atmosphere will be predominantly upstream since the
wave moves faster (in a relative sense) than the mean
flow at that level. The results shown in Fig. 6 confirm
that the fluxes are indeed predominantly upstream at
lower levels and downstream at upper levels. The dis-
crepancy between the current results and those of OK,
in terms of the vertically averaged fluxes, can be ex-
plained by surface friction effects, which will tend to
decrease the amplitude of the wave in the lower levels
and reduce the upstream ageostrophic fluxes. Figure 7
shows a case in which a simple Rayleigh friction has
been applied in the three lowest layers as a gross rep-
resentation of the effects of surface friction. A drag coef-
ficient of (2 day)™! is used for the lowest level, with
the drag decreasing linearly to zero at the fourth level.
It can be seen that, while both the upstream and down-
stream disturbances are weakened, the upstream de-
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F1G. 7. Vertically integrated eddy kinetic energy at day 12 of the
linear Eady experiment with a Rayleigh-type surface friction at the
lowest three levels. This should be compared with the bottom panel
of Fig. 4, which shows the corresponding values for the Eady exper-
iment without surface friction. The crosses mark the positions of the
initial disturbances.
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velopments have been weakened to a much greater
extent.

Another question that one may ask is which part of
the wave spectrum is responsible for the propagation
of energy. Here (and also in SH) it was found that the
downstream disturbances first appear at the upper level
and develop downwards, while the upstream distur-
bances first appear near the ground and develop up-
wards. Since, for the Eady problem, the unstable modes
have a structure that extends throughout the entire
depth of the atmosphere, one may expect that the neu-
tral modes are important in the propagation of energy
and the triggering of growth downstream (and up-
stream). This question was addressed by performing
an eigenvalue analysis of the quasigeostrophic Eady
problem. Eigenmodes of the two-dimensional Eady
problem were found, and an initially localized baro-
tropic disturbance was subjected to a Fourier analysis
and projected onto these eigenmodes. The procedure
is very similar to that used by Farrell (1982), who con-
centrated on short time response (less than ~2 days).
In this case, however, we are more interested in the
longer time response. An example of the evolution of
these eigenmodes, after 11 days, is shown in Fig. 8a,
and the results are similar to those found by integration
of the primitive equation. Figure 8b shows the result
when only the initial perturbation is projected onto the
unstable Eady modes, and all neutral modes are taken
out. The results are very similar to those shown in Fig.
8a, with the only difference appearing in the very short
waves at the leading edge of the packet. What can be
said in terms of the eigenmodes is that the Eady un-
stable modes of different wavelengths interfere with
each other and, while each mode is ““‘symmetric™ about
the midplane, the different vertical phase tilt of each
mode yields a combined vertical structure of many
modes that need not be symmetric about the midplane,
particularly at the leading edges. Thus, it is the unstable
mode that contributes to the energy fluxes since, for a
linear experiment, the amplitude of the neutral waves
can be made arbitrarily small by starting the integration
with an arbitrarily small perturbation, and the neutral
waves can never affect the (long time) dynamics of the

-problem.

b. The jet basic flow on arn f plane

The linear initial-value problem for the case of a
westerly jet basic state was also examined using the
numerical model. Results of the experiments are, in
general, very similar to those for the Eady case. (Here,
we have chosen a jet whose half-width is greater than
the radius of deformation; thus, the evolution is mainly
baroclinic rather than barotropic. See, for example,
Feldstein 1991.) Figure 9 shows the energetics for both
the initial (Fig. 9a) and the fourth downstream per-
turbations (Fig. 9b), in a frame of reference that follows
the wave packets. An extra term that comes into the
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FIG. 8. Streamfunction on day 11 of two-dimensional initial-value Eady problem with a localized
initial disturbance. Upper panel: Complete solution. Lower panel: Projection of solution on unstable
Eady modes only with amplitudes of neutral or decaying modes set to zero.

analysis due to the movement of the reference frame
at the phase speed of the wave is shown combined with
the advection term, since the two terms largely oppose
each other. We see that the final growth rate is again
dominated by the baroclinic term (C) and the ageo-
strophic flux term (B). As in the Eady case, the baro-
clinic term contributes to most of the growth of the
initial disturbance, and the wave loses energy primarily
via the ageostrophic flux term. For the fourth down-
stream wave, the growth is initially dominated by the
advection (D) and ageostrophic flux terms (B), with
the baroclinic term ( C) becoming significant only later
in the wave development. Again it was found that
without surface friction, upstream and downstream
developments are roughly symmetric.

c. Effects of beta

The experiment involving the Eady basic flow was
repeated for the case of a 8 plane with 8 = 1
X 107" m~' 57!, The same basic wind field was used,
but the temperature field was modified to account for
the effects of 8. The distribution of eddy kinetic energy
on day 12 is shown in Fig. 10. Since 8 effectively re-
duces the phase speeds of the waves, the initial wave
has moved to the left of the center of the channel, but
both upstream and downstream developments are still
evident. There now appears to be an asymmetry be-
tween the upstream and downstream developments,

however, with the downstream ones being much stron-
ger than the upstream ones. Similar results are also
found for the jet case (not shown).

To understand the effects of beta in the asymmetry
of upstream and downstream ageostrophic fluxes, let
us inspect the linear quasigeostrophic meridional mo-
mentum equation: '

Joutg = —(U—c)%i)gﬂﬁyug- (4.3)

x

Here we have ignored the contribution from the growth
of the wave, and c is the phase speed of the wave. We
only examine the equation for u, since the alongstream
component of the fluxes is the more important one in
the dispersion of energy (at least for the linear case).
On an fplane where § is zero, the ageostrophic wind
is antisymmetric (in z) about the midplane due to the
change in sign of U — ¢; 8 introduces an additional
term but also affects the ageostrophic flow by lowering
the steering level of the wave, thus reducing ¢ (westward
tendencies ). Without loss of generality, let us just look
at the changes in %, in the neighborhood of the central
latitude, where u, has the maximum amplitude. (A
more detailed analysis of the ageostrophic flow can be
found in Lim et al. 1991.) Here, since y ~ 0, the main
effect is due to the decrease in ¢, with the magnitude
of U — c increasing in the upper levels and decreasing
in the lower levels. Hence, u, is increased in the upper
level and decreased in the lower level, thereby
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FIG. 9. Energetics of the initial wave and the fourth downstream
wave of the linear solution with the jet basic state. The curves 4 to
E are as defined in (4.1).

strengthening the ageostrophic fluxes in the upper levels
and weakening them in the lower levels.

As shown in Fig. 6, the ageostrophic fluxes in the
upper level point predominantly toward the down-
stream direction, while fluxes in the lower level point
upstream. Thus, 8 will lead to an increase in down-
stream fluxes and decrease in upstream fluxes, hence
favoring downstream development over upstream de-
-velopment. We have computed the ageostrophic fluxes
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for the case on the beta plane (not shown), and indeed,
the fluxes are predominantly downstream with only
very weak upstream fluxes. The effect of 3, together
with surface friction, can largely explain why, obser-
vationally, predominantly downstream development
is found, in agreement with OK.

5. Results of nonlinear experiments

A nonlinear run was performed with the jet case on
the @ plane to examine the effects of nonlinearity. The
evolution of the pressure field for the upper (right pan-
els) and lower (left panels) levels is shown in Fig. 11
for days 10, 12, and 14. Comparing these results to
that of the linear case (Fig. 3), we see that the nonlin-
earity has considerably modified the structure of the
waves. At low levels, the lows (highs) are shifted pole-
ward (equatorward) of the jet. Figure 12 shows the
vertically averaged ageostrophic fluxes, flux divergence,
and eddy kinetic energy at day 12 in a subregion com-
prising the most active area of development. (To en-
hance the divergent part of the ageostrophic fluxes, a
nondivergent component equal to 0.2*V,® has been
removed.) Note the clear pattern of ageostrophic flux
convergence upstream of the eddy kinetic energy max-
imum and divergence downstream. As discussed in
OK, flow particles gain energy upstream of the energy -
maximum due to the convergence of fluxes, reach a
maximum, and then lose energy downstream.

The growth rate terms as defined in (4.1) were com-
puted for an area of integration that follows the center
of the wave packets. Because of nonlinear advection
in this case, however, the two wave packets comprising
a single cyclone interact with each other and become
difficult to separate after some time (e.g., see Fig. 12).
Hence, the energetics has been computed by combining
both wave packets (i.e., roughly following the cyclone
centers). The energetics for the initial, second down-
stream, and third downstream cyclones (O, P, Q of
Fig. 11) are shown in Fig. 13. The primary difference
between this case and the results of the linear experi-
ments described in section 4 are that, because of the
nonlinear interactions, the waves eventually stop
growing. Closer examination of the energetics reveals

x103 (km)
w

18

x103 km

F1G. 10. Vertically integrated eddy kinetic energy at day 12 of the
linear “Eady” experiment on a § channel. The crosses mark the po-
sitions of the initial disturbances.
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FIG. 11. Evolution of the pressure for the nonlinear solution with the jet basic state at 0.5 km (left panels) and 12.5 km (right panels).
O, P, and Q mark the positions of the initial cyclone, the second downstream cyclone, and the third downstream cyclone, respectively,
whose energetics will be shown in Fig. 13. The boxed area in the middle left panel marks the area to be shown in Fig. 12.

that while the growth of the initial wave is dominated
by the baroclinic conversion term (C), early growth
of the downstream waves is dominated by the ageo-
strophic flux convergence (B). Baroclinic conversion
does not become dominant until the net growth rate
of the wave has already peaked. The waves do even-
tually stop growing due to the decrease in baroclinicity,
but the amplitudes of the waves do not actually de-
crease. This appears to be in conflict with earlier find-
ings of life-cycle experiments (e.g., Simmons and Hos-
kins 1978) that nonlinear waves have a life cycle of
baroclinic growth followed by barotropic decay. Here
it appears that the barotropic conversion is entirely
unimportant. This is because we have taken the per-
turbation to be deviations from the initial basic state,
thus eliminating the changes of basic-state kinetic en-
ergy by the eddies, whereas in most normal-mode

studies, the perturbations are taken to be deviations
from the zonal-mean state, which is changing in time.
We chose this approach in order to compare our results
with those of the linear runs, and also because of the
difficulties in defining a meaningful zonal-mean basic
state, since the waves in different parts of the long
channel are at widely different stages in their evolution
and a zonal mean is not representative of the basic
state seen by any particular wave. Hence, this study is
drawing conclusions from only the initial stages of wave
growth (at which stage the energetics should not be
significantly affected by the choice of the basic state),
and the results here support the findings of the linear
studies that the growth of downstream (and upstream)
waves are triggered by the ageostrophic fluxes that ex-
port energy from existing waves.

In the analysis of OK, which treated the time mean
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FIG. 12. The vectors show the ageostrophic fluxes on day 12 of
the nonlinear solution with the jet basic state. The contours in the
upper panel shows the vertically integrated divergence of the ageo-
strophic fluxes, with convergence shown by solid lines and divergence
by dashed contours. The contours in the lower panel show the ver-
tically integrated eddy kinetic energy. The area shown is marked out
in the middle left panel of Fig. 11.

as the basic state, it was found that the barotropic con-
version for each single wave packet was small compared
with the ageostrophic fluxes. Their conjecture was that
the individual energy packets of the normal modes
would exhibit ageostrophic flux divergence with mag-
nitudes exceeding that of the barotropic conversion.
Zonally averaged, the effects of the ageostrophic fluxes
for individual packets should cancel, with the net effect
being a sink of eddy energy via barotropic conversion
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and a source via baroclinic conversion, as was found
in Simmons and Hoskins (1978). Locally, however,
ageostrophic fluxes are important in the energy life cy-
cle of an individual normal mode. In other experiments
with normal-mode growth we have found that the am-
plitudes of the ageostrophic flux divergence can be as
large as or even larger than that of the baroclinic con-
version terms. Because of the exact periodicity of single
normal modes, however, the positive contributions by
fluxes from upstream are exactly balanced by the fluxes
radiated downstream, and the net integrated flux con-
tribution is zero.

6. Absolute and convective instabilities

Merkine (1977) introduced the mathematical
framework for treating absolute versus convective in-
stabilities into the field of meteorology. A brief discus-
sion on the convective or absolute characteristics of
the Eady problem can be found in SH. Their conclu-
sion, which was based on an asymptotic expansion so-
lution, was that an observer moving with a speed, Vs,
between the maximum and minimum flow speeds will
witness an exponential instability, basically:

Umin < Vobs < Umax- (61)

Then, if Un;, < 0, the Eady problem will be absolutely
unstable. Similar discussions for the Charney (1947)
baroclinic instability problem can be found in Pierre-
humbert (1986). A recent review of local and global
instabilities can be found in Huerre and Monkewitz
(1990).

In this section, we will attempt to treat the problem
in a more physical manner. Orlanski and Katzfey de-
fined a relative group velocity in terms of the ageo-
strophic fluxes by dividing the volume integral of the
ageostrophic fluxes by the integral of the total eddy
energy. Since in the energy equation (3.3), the ageo-
strophic fluxes and the advective fluxes are the only
energy transport terms, we expect physically that these
fluxes should be related to the rate that an unstable
wave packet spreads out. Following OK, we can define
a relative group velocity as

ff (¢pOgv,m)dzdA

CgR - >
J. f TE.dzdA

where TE, is the total perturbation energy (kinetic plus
potentiai ). Energy is also transported by the flow. Sim-
ilarly, then, the total group velocity could be defined
as follows:

(6.2)

ff (Cp(')ovaw + TEgV)dZd/I
Cer = . (6.3)

ff TE.dzdA
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F1G. 14. Evolution of the volume-integrated eddy kinetic energy
for the linear Eady experiment as seen by observers moving with
different velocities V.

The quantity C,r can be interpreted as the velocity at
which the energy of the wave packet is being trans-
ported by both the flow and the ageostrophic fluxes.
For the linear cases, U takes the place of V in (6.3).
In some limiting cases such as that of small-amplitude
Rossby waves, this expression leads to the group ve-
locity (Pedlosky 1979). It should be pointed out that
the energy equation [(3.3) and (3.4)] depends on the
divergence of the fluxes and not on the fluxes them-
selves. While any nondivergent vector added to the
ageostrophic fluxes will not change the energy budget,
it could introduce considerable ambiguity to (6.3).
However, since the definition of group velocity is
meaningful only when the integral in (6.3) is taken
over multiples of half-wavelengths, it turns out that
even if we had taken the total perturbation velocity vs
instead of v, in (6.3), the resulting C,r comes out to
be exactly the same due to the fact that the integral of
v, m vanishes over one-half wavelength. Hence, this def-
inition is not really ambiguous.

Now let us restrict ourselves to discussion of the Eady
problem, the dynamics of which is invariant under a
Galilean transformation. The solution for this case has
been discussed in detail in section 4a. Figure 14 shows
the evolution of the total energy computed in a frame

FiG. 13. Energetics of the initial cyclone, the second downstream
cyclone, and the third downstream cyclone (O, P, and Q, respectively)
of the nonlinear solution with the jet basic state. The positions of
the cyclones are shown in Fig. 11. The curves 4 to E are as defined
in (4.1).
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of reference moving downstream from the initial dis-
turbance at a constant velocity. The different curves
show the energy for frames moving at different speeds,
averaged over a volume occupying the entire width of
the channel and having a length of a half-wavelength
of the waves. The basic state for this case does not have
a barotropic component, so the initial disturbance will
remain stationary. The curve labeled with zero velocity
shows the evolution of the initial disturbance. We see
that as the speed of movement of the frame is increased,
the growth rate of the total energy decreases, and finally
when the speed approaches 11 m s™!, the energy ac-
tually decreases with time. The total group velocity as
defined by (6.3) was calculated for the entire channel
(see Fig. 15), again averaged over a half-wavelength.
The total group velocity as defined by (6.3} is shown
by the solid curve, and the contribution from the ad-
vection part is shown by the dashed curve. The differ-
ence between the two curves represents the contribu-
tion by the ageostrophic fluxes (6.2). It can be seen
that for this case, the ageostrophic fluxes contribute to
about half of the total amplitude of the total group
velocity. It was found that the maximum group velocity
occurs near the leading edge of the spreading wave
packet and is also about 11 m s™! when averaged over
days 5 to 15. Figure 16 shows the average growth rate
-observed from frames moving with different velocities.
In the period between days 5 and 15, we again see that

the growth rate becomes zero at approximately V =~ 11
1

m s, indicating that the packet is spreading out with
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FiG. 15. Solid curve: The total group velocity as defined by (6.3)
for the linear Eady experiment plotted against the length of the channel
for the solution on day 15. Dashed curve: Contribution to the total
group velocity by the advection part. Note that the total channel
length is doubled (60 000 km) for this case in order that the leading
fringes on the two sides will not interfere with each other.
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F1G. 16. The average growth rate for the solution of the linear
Eady experiment between days 5 and 15 observed from frames moving
with different velocities.

aspeed of about 11 m s™!. The preceding results suggest
that if the speed of the frame is higher than the max-
imum group velocity, the energy seen by the observer
will decrease, whereas if the speed is lower than the
maximum group velocity, the energy will increase.

Now we translate the problem to a situation where
the basic flow has a nonzero westerly barotropic com-
ponent. Here, the energy of the wave packet is being
advected downstream (toward the east) by the basic
flow. However, there is also energy transport both up-
stream and downstream due to the ageostrophic geo-
potential fluxes. The results presented suggest that if
the total minimum group velocity is always positive,
the energy of the disturbance will decrease eventually
if we are at a fixed point. This case corresponds to the
case of convective instability. If the basic westerly flow
is not too strong, however, there is a possibility that
the upstream ageostrophic geopotential fluxes can
overcome the effects of the advection by the basic flow,
and the total group velocity can become negative for
an observer at a fixed location. Even after the maxi-
mum of the wave packet has passed, since there is a
constant inflow of energy from downstream, the dis-
turbance will continue to grow indefinitely, corre-
sponding to the case of absolute instability. We can
summarize the absolute or convective instability con-
dition by requiring that

(Cerdmin <0 < (Cer)max absolute instability

0 <(CerImin < (Cor)max convective instability, (6.4)

where C,r is as defined in (6.3). Similar results have
been obtained for the jet case as well as the 8-plane
case.
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7. Conclusions

It has been shown that ageostrophic geopotential
fluxes contribute significantly to the upstream and
downstream developments of baroclinic waves. Fluxes
radiated from an existing large-amplitude wave have
been found to lead to growth of downstream waves.
This is consistent with the results of an earlier case
study in which it was also demonstrated that radiation
of fluxes downstream were primarily responsible for
the decay of the wave under analysis. The findings of
the current study have also been useful in understand-
ing features such as the rapid growth of, and the asym-
metry between, upstream and downstream wave de-
velopment.

The relationship between the ageostrophic fluxes and
the rate of spreading of a localized wave packet has
also been investigated. A group velocity has been de-
fined that includes both the advective flux and the
ageostrophic fluxes, and it has been suggested that it is
this group velocity that governs the speed at which the
packet spreads upstream and downstream. It has also
been demonstrated that the long-term evolution of un-
stable wave packets is governed primarily by the evo-
lution of the most unstable waves, with neutral modes
modifying the final solution only slightly.

The linear solutions discussed in section 4 and the
solutions presented in SH all correspond to an ever-
expanding pulse eventually taking over the whole do-
main. This seems to be at odds with observations,
which hardly ever show such occurrences. In order to
compare with observations, we expect that fully non-
linear solutions have to be considered. Here we have
discussed only briefly the effects of nonlinearity in sec-
tion 5. Lee (1991) found coherent wave packets in the
Southern Hemisphere using ECMWF data, and the
existence of these wave packets is closely related to
downstream development. In an upcoming paper, we
will examine the dynamics of a midlatitude storm track
using the ideas of downstream development discussed
in this paper.

A natural question to ask is whether the ideas pre-
sented in this study suggest that analysis of ageostrophic
fields in synoptic data could help to pinpoint positions
of future cyclone developments. Orlanski and Katzfey
showed that the effects were important for a real case
in the southern Pacific, and one would expect similar
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events to occur in the Northern Hemisphere, as well.
Of course, other effects such as the background envi-
ronment, orography, and surface effects all influence
the developments of storms, and the generality of the
results obtained here will require further study.
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