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SUMMARY 
In this study we evaluate the performance of the Ensemble Transform (ET) technique, which is one of 

several targeting methods used in real time during the Fronts and Atlantic Storm-Track Experiment (FASTEX). 
‘Targeted’ observations were taken adaptively in those upstream areas identified in real time as most relevant for 
improving the initial conditions for forecasts of synoptic-scale storms developing downstream. The upstream areas 
were identified as regions where the effect of extra observations at a future analysis time could produce the largest 
decrease in the largest likely forecast error at a preselected later verification time at a given downstream location. 
The ET technique selects these observational areas out of a large number of possible deployment locations of 
observational resources via a linear transformation of an ensemble of forecasts. 

The analysis and forecast effects of special targeted observations associated with seven Intensive Observing 
Periods (IOPs) during FASTEX were investigated. The most important result of the present study is that the 
ET technique, based on the National Centers for Environmental Prediction (NCEP) operational global ensemble, 
was able to identify upstream areas that had significant contribution to the quality of selected future downstream 
forecast features. Moreover, the technique could reliably distinguish between the areas of greatest contribution. 

Though the overall impact of the targeted data on forecast quality is positive, there were cases when the 
extra data degraded the forecasts. Our analysis indicates that large amplification of ensemble perturbations from 
the targeted area into the verification area is a good indicator of potential forecast improvement. 

KEY WORDS: Ensemble Transform (ET) technique Fronts and Atlantic Storm-Track Experiment 
(FASTEX) Targeted observations 

1.  INTRODUCTION 

Serious short-term forecast failures are localized both in time and space. Concerning 
the mesoscale and larger scales, these failures are 

often associated with intense atmospheric development and are thought to be due 
more to errors in the initial conditions than to model deficiencies (Lorenz 1990). In 
data-sparse regions, analysis errors are not only larger than average but also dynamically 
better organized, since amplifying errors in the first-guess forecasts cannot be efficiently 
reduced (Iyengaret al. 1996). Experiments with an operational analysis-forecast system 
assimilating dropwindsonde observations taken in the north-east Pacific (Lord 1996) 
and with a low-dimensional dynamical system (Lorenz and Emanuel 1998) suggested 
that extra data in the oceanic regions in general have a positive influence on the quality 
of the analysis and the ensuing forecast downstream over land. Emanuel et al. (1996) 
and Lorenz and Emanuel (1998) also concluded that for their low-order model there 
exist operationally attainable adaptive observation strategies that are superior to the 
traditional procedure of taking observations at fixed locations and times only or as 
opportunity arises. They found that ensemble-based strategies which sample regions 
with the largest expected error in the first-guess forecasts perform better than those 
that target areas to which a pre-specified verification region is most sensitive at a given 

* Corresponding author: National Centers for Environmental Prediction, EMC, 5200 Auth Road, WWB, 
Room 207, Camp Springs, MD 20746, USA. 
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forecast lead time. * Experiments with a more complex quasi-geostrophic model (Morss 
1999) suggested that in certain circumstances adaptive observations have the potential to 
improve analyses and forecasts more than traditional observations, but that at the same 
time there is a non-negligible risk that in certain cases a forecast can be degraded with 
targeted observations. 

Nonetheless, a skilful operational targeting proceduret that was able to reduce the 
uncertainty in the prediction of dramatic weather events, such as a land-falling storm 
or humcanes threatening highly populated areas, would be invaluable from a socio- 
economic perspective. In the past few years, different techniques have been suggested 
for identifying the optimal regions for targeted observations. Palmer et al. (1998), Bergot 
et al. (1996, 1999), Langland and Rohaly (1996) and Kalnay and Pu (1997) suggested 
the use of sensitivity gradients and/or dominant singular vectors. Pu et al. (1998a) also 
suggested using the quasi-inverse technique developed by Pu et al. (1997) for targeting. 
All of these methods use the tangent-linear and/or the linear-adjoint version of the 
nonlinear forecast model. 

The Ensemble Transform (ET) technique (Bishop and Toth 1996,1998), which will 
be further discussed in section 3 is another objective targeting method, which is based 
on an ensemble of forecasts instead of tangent-linear model integrations. 

Targeting for the short range can also be performed subjectively, tracking, for ex- 
ample, potential-vorticity anomaly patterns in a series of maps (A. J. Thorpe, personal 
communication). The general mathematical formulation of the objective targeting prob- 
lem and some relationships between the different proposed techniques are discussed in 
Berliner et al. (1999), though there is no study available concerning the comparison 
between the performance of the different targeting strategies used in practice. While 
preliminary studies indicate that objective targeting techniques can potentially be useful 
for targeting observations (Pu et al. 1998a, b; Bergot et al. 1998; Bishop and Toth 1998; 
Gelaro et al. 1999), the Fronts and Atlantic Storm-Track Experiment (FASTEX), (Joly 
et al. 1997, 1999) in January and February 1997, offered, for the first time, an oppor- 
tunity to test a number of these techniques in the field. In this study we focus on those 
February FASTEX cases for which the ET technique was used as the primary tool for 
identifying supplementary observation sites. 

Section 2 is a short summary of the main objectives of and the terminology used 
during FASTEX. In section 3 we describe the particular form of the ET method that 
was used during FASTEX. Section 4 contains a general description of analysis-forecast 
experiments, while section 5 evaluates the performance of the ET technique during 
FASTEX. Section 6 is devoted to the forecast-verification results, while section 7 offers 
some conclusions. 

2. THE FRONTS AND ATLANTIC STORM-TRACK EXPERIMENT (FASTEX) 

A detailed description of the main objectives, operation plans, observing instru- 
ments, participating institutions and scientists for FASTEX can be found in Joly et al. 

* In their paper, a downstream geographical region is said to be sensitive if the gradient of a response function 
measuring the amplitude of the forecast uncertainty at a later verification time in the downstream region has 
non-zero magnitude at that location. 

The notion of targeting as used here should not be confused with the existing definitions of dynamical-systems 
theory. In dynamical-systems theory targeting means a series of perturbations applied to a nonlinearly evolving 
phase point (just as with observed data through the analysis cycles) in order to force it to visit the neighbourhood 
of a predefined point on the attractor (just as with the real state of the atmosphere at the verification time within 
the verification region) as quickly as possible (e.g. Bollt and Kostelich 1998). Despite the similarities the two 
definitions are obviously different. 
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(1997), while an overview of preliminary results is given by Joly et al. (1999). Here, 
we review only those aspects that are crucial to understanding the analysis-forecast 
experiments presented below. 

The main focus of FASTEX was to study the development of frontal cyclones 
over the Atlantic. Two observational components were included in FASTEX: a multi- 
scale component designed to document the structure of mature frontal cyclones off the 
coast of Ireland, and an upstream component designed to document incipient cyclones 
and to provide targeted observations to improve downstream forecasts. The multi-scale 
component utilized three aircraft based at Shannon (Ireland), two of them with Doppler- 
radar (WP-3D of the National Oceanic and Atmospheric Administration (NOAA); 
Electra of the National Center for Atmospheric Research (NCAR)) and a third one with 
drop-sounding capabilities (UK C- 130). Observations from these platforms were taken 
during 19 IOPs, at times when mature systems reached the Multi-scale Sampling Area 
(MSA) defined by the 2.5-hour ferry distance ( ~ 9 0 0  km) of the WP-3D aircraft from its 
base of operations at Shannon. 

The upstream observing platforms included a Lear jet commissioned by NCAR, 
two US Air Force C-l30s, and occasionally the NOAA Gulfstream-IV. The Lear jet 
was based at St. John's, Newfoundland (47.64"N, 52.75"W) and the flight planning 
for that aeroplane was coordinated by three of the authors (K. A. Emanuel, C. Snyder 
and Z. Toth). The flight planning consisted of two steps: (1) Identification of a forecast 
event at a given location and time, associated with a frontal wave or cyclone, and 
(2) identification of the corresponding upstream sensitive area. In order to accomplish 
step ( 1 ), control forecast guidance from several numerical weather prediction (NWP) 
centres was used. Event selection was based both on the suitability of the forecast 
event for sampling in the MSA and on estimates of forecast uncertainty, with the 
former criterion receiving greatest emphasis. The estimate of forecast uncertainty was 
based upon the spread in the National Centers for Environmental Prediction (NCEP) 
operational ensemble (Toth and Kalnay 1997). The ensemble often pointed to the high- 
pressure area behind the cyclones as the most uncertain area, suggesting good model 
performance for the cyclone itself. The generally good performance of the NCEP control 
forecast for the FASTEX cyclone cases subsequently justified the use of the ensemble 
spread as an indicator of forecast uncertainty. For step (2), targeting products from the 
Naval Research Laboratory (NRL), Monterey, USA; Meteo France, Toulouse, France; 
the European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK; 
NCEP, Washington, DC; and Pennsylvania State University, University Park, USA were 
considered. Verification of the targeted forecasts was only a secondary goal of the 
multi-scale observations. Because of this, only a limited number of drop-soundings are 
available in the verification region. To remedy the problems we will frequently extend 
the verification region to include rawinsonde soundings over the surrounding area. 

FASTEX took place in January and February 1997. Unfortunately, during much of 
January a blocked-flow regime dominated the circulation over the Euro-Atlantic region, 
Thus, the three Lear-jet flights in January could only target the precursors of areas of 
large forecast uncertainty not related to strong cyclone development. Here we present 
analyses from seven February cases. These are identified by their Intensive Observation 
Period (IOP) number; IOP9, IOPl1, IOP13, IOP15, IOP16, IOP17, and IOP18, out 
of a total of 11 FASTEX cases from February. In a subsequent study, Bergot (1999) 
evaluated the effects on forecasts of targeted dropsonde data released from two of the 
four upstream aircrafts (Lear and G-IV), using the ARPEGE analysis-forecast system 
of Meteo France. 
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3 .  THE ENSEMBLE TRANSFORM TECHNIQUE 

(a )  General algorithm 
The ET technique (Bishop and Toth 1999) provides a rapid algorithm to estimate 

how forecast errors in a pre-selected verification region may change depending on the 
locations where extra observations are taken at an earlier time. During FASTEX, the 
threat of a major forecast failure was estimated by the largest likely forecast error, 
G, associated with an assumed analysis-error pattern that has fixed magnitude over 
the North Atlantic. We predict changes in G due to changes in the geographical 
distribution of the analysis uncertainty, or, more formally, to changes in the analysis 
uncertainty matrix. This algorithm computes G(Ai) for a series of estimated analysis- 
uncertainty matrices, Ai (i = 1, . . . , N), associated with the standard observational 
network augmented with hypothetical extra observations from N different locations. 
The optimal deployment of the observational resources is the one, j E [ 1, N], that leads 
to the largest reduction in G (G(Aj) < G(Ai) i = 1, . . . , N), or in other words, the one 
that most efficiently reduces the threat of a large forecast failure within the verification 
region. 

The formal maximization problem to be solved for each possible adaptation of the 
observational network is as follows. Given are a verification region and a K-member 
ensemble of forecast perturbations, Xk(t )  (k = 1, . . . , K), initiated at to, valid at a 
future analysis (targeting) time ta(> to) and at a verification time tV(>  ta). These en- 
semble perturbations, Xk (t) (k = 1, . . . , K), can either be defined as the difference be- 
tween certain ensemble members or as the difference between the ensemble members 
and the ensemble average. For each realization, i E [ 1, N], of the observational net- 
work the ET technique finds the linear combination, y(t) = clxl(t) + c 2 ~ 2 ( t )  + - - ' + 
CKXK (t), of the ensemble perturbations that maximizes the perturbation amplitude 
IILy(tv)l12 = (Ly(tv), Ly(tv)) in the verification region subject to the constraint that the 
perturbation has unit magnitude at the future analysis time ta  in the following sense 
(y(ta), Ai-'y(ta)) = 1. (., .) and 11.11 are the Euclidean scalar product and the associated 
norm for grid points that span the North Atlantic including the verification region. L is 
the localization operator that sets y(tv) to zero in regions outside of the verification area; 
Ck, k = 1, . . . , K are constant scalars. By using the same set of coefficients at analysis 
and verification times, we assume that the time evolution of the nonlinear localized 
ensemble perturbations, Ly(tv), can be approximated by a linear model. Although the 
matrix of this model is never computed explicitly in the ET technique, its largest singular 
value gives the solution G = max IILy(tv)l12 of the maximization problem. For a given 
set of ensemble perturbations G solely depends on Ai , which will be different for the dif- 
ferent adaptations of the observational network. Bishop and Toth (1999) demonstrated 
that if K is equal to the number of degrees of freedom in the model and a reliable 
estimate of the full analysis-error covariance matrix, Vi , is available for each adaptation 
of the observational network the statistically optimal choice for the constraint matrix 
is Ai = Vi. In that case G is the largest singular value of the forecast-error covariance 
matrix. 

However, in practice K is extremely small compared to the degrees of freedom in 
an operational NWP model and only static (time-independent) estimates are available 
for the diagonal entries of Vi. In a typical application of the ET technique Ai is based 
on a static estimate of the diagonal analysis-uncertainty matrix, which imposes a much 
weaker constraint on the maximization than a full Vi in the idealized case above. In fact, 
a new constraint arises when using the ET technique with a small, finite-size ensemble 
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since the search for y(t) is constrained at both t a  and tv to the low-dimensional sub- 
spaces spanned by the ensemble perturbations. 

The computation of the constraint matrix consists of two steps. First, an estimate 
of the analysis-uncertainty matrix, Ao, associated with the standard (or non-adaptive) 
observational network is determined. Then the impact of the hypothetical extra data is 
introduced into the estimate Ai, through reducing the entries in A0 that were associated 
with locations within a particular targeted region. This rescaling strategy assumes that 
extra data can reduce the magnitude of the analysis uncertainty in the targeted region. In 
this region the maximization constraint will allow only for reduced-amplitude initial 
perturbations, therefore reducing G if there is a correlation between the ensemble 
perturbations in that region at the future analysis time t a  and within the verification 
region at verification time tv.  

(b) Application during FASTEX 
The ensemble perturbation vectors were defined as the difference between the pos- 

itive and the negative members of paired nonlinear ensemble forecasts. Thus, the 10- 
member 00 UTC operational NCEP ensemble forecast gave five independent pertur- 
bation vectors, while the four members of the 12 UTC ensemble gave two additional 
vectors. Regular targeting products were provided in a quasi-operational mode twice 
a day, using the latest-seven perturbation vectors after the operational ensemble runs 
had finished. However, due to computational constraints on the NCEP Cray computers, 
interactive calculations specifically prepared for flight-planning purposes used only the 
latest five NCEP perturbation vectors. The verification region for the standard calcula- 
tions was a 1000 km radius disc with a standard central location at (50"N, lO"W), while 
in the special sensitivity calculations for flight planning the position of the disc was 
adjusted toward the actual location of the FASTEX cyclone as it was forecast at the time 
of targeting (fa), also considering the area of largest ensemble spread for the surface 
pressure within the MSA. The verification variables, as well as the 'observed' variables 
at t a  were stream-function grid-point values at pressure levels 850,500 and 250 hPa. 

In order to assess the dependence of the ET algorithm on assumed standard analysis 
uncertainty, two different choices for A0 were tested during FASTEX. One of them was 
the identity matrix assuming that the ensemble is representative of the distribution of 
analysis uncertainty over the globe before the deployment of the extra observations. The 
other, presumably more realistic, choice for A0 was estimated by a long-term average of 
the root mean square (r.m.s.) difference in the rotational wind-speed between analyses 
from two independent analysis cycles (Iyengar et al. 1996). One of these analyses is the 
operational T 126-horizontal-resolution analysis truncated to resolution T62, while the 
other is the NCEP T62 re-analysis. The average r.m.s. difference field was smoothed by a 
spectral Gaussian filter (J. Purser, personal communication) that removed the variability 
associated with wave numbers higher than 7-8 from the variance field (Iyengar et al. 
1996). 

We assumed that the N possible adaptations of the standard observational network 
were aircraft-based observations over the North Atlantic that would reduce the analysis- 
error variance over a disc of radius 350 km centred at a location (#, A) .  We imitated 
the impact of extra data by reducing the entries in A0 that were associated with grid 
points within the disc. In what follows we will distinguish among the estimated analysis- 
error matrices associated with the different adaptations of the observational network by 
indicating the central position of the hypothetical targeted region as A(#, A) instead of 
using subscript i .  
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In cases when the analysis-uncertainty-based estimate of A0 (Iyengar et a l .  1996) 
was used A($, A) was computed by replacing the diagonal entries associated with the 
disc centred at location (4, A) by the smallest diagonal element of the full matrix. 
In other words, we assume that the hypothetical targeted observations can reduce the 
analysis uncertainty to its lowest estimated value on the globe over a disc of radius 
350 km. 

When the unity matrix was used as A0 the diagonal matrix entries related to grid 
points within the observational region were reduced to 0.33. As expected, the use of the 
unity matrix generally resulted in larger sensitivity over land and close to the eastern 
shore than the use of the analysis-uncertainty-based estimate of Ao. However, in most 
cases the two products identified the same oceanic regions as the minimum of G($, A). 

To find the position (4, A) of a target disc that would minimize G, we estimated G 
for a set of A and $ values that spanned the North Atlantic. G(A($, A))  was calculated 
at ten-degree resolution in the regular daily products and at five-degree resolution in 
the specific calculations preceding the flight decisions. This ten- or five-degree spacing 
between the discs over which extra observations could be taken should not be confused 
with the resolution of the dynamically evolving ensemble perturbations, which have a 
horizontal resolution of T62. 

The final sensitivity products are geographical plots of G($, A). Examples of such 
estimated forecast-sensitivity maps are given in Fig. 1, where G($, A) is normalized 
by its maximum over the geographical domain that is shown. The forecast within the 
verification region is said to be more sensitive to the analysis at location ($1, Al) than at 
(42, h.2) if G($l, A l l  -= G(42, A2). 

Since the main goal of this study is to test the feasibility of the proposed real- 
time decision making mechanism for targeting, all results presented here are based on 
targeting products that were calculated and used in real time during FASTEX. 

(c) Potential limitations of the Ensemble Transform technique 
If all the assumptions of the ET technique were completely satisfied and it was 

possible to accurately predict the effect of extra data on the analysis error this method 
would quantify the reduction in the largest likely forecast error brought about by the 
extra observations taken at the different locations. However, in practice there are a few 
assumptions on which the method and its application are based that could potentially 
limit the usefulness of the technique. Firstly, it is assumed that linear combinations of 
ensemble forecast perturbations can be used to represent future analysis errors. We must 
recognize that the definitions of A(#, A) for the two A0 used during FASTEX were 
reasonable but to a large extent, ad hoc choices. In general, we expect the ET technique 
to provide more reliable results regarding the relative distribution of predicted sensitivity 
(G($, A))  than the actual estimated values of forecast-error reduction. The fact that in 
most cases the analysis-uncertainty-based estimate of A0 and the identity matrix gave 
virtually identical results suggests that the statistical structure of the ensemble, and not 
the A0 constraint, played the dominant role in this particular FASTEX application of the 
method. Secondly, it may not always be valid to assume that the time evolution of the 
dominant error pattern from ta  to the verification region at tV can be well approximated 
by linear combinations of the nonlinear ensemble perturbations. This may happen either 
when the ensemble perturbations are large at ta  or when the time evolution of the 
error pattern is associated with initially small but nonlinear instabilities.* Thirdly, it 

* A nice example for an exclusively nonlinear instability process is the echo effect discussed by Vanneste et nl. 
( 1  998) for a two-dimensional barotropic (Couette) flow. 
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Figure 1. The sensitivity maps that were used for flight decisions in real time. The investigated cases are 
IOP9 (a), IOPl1 (b), IOP13 (c), IOP15 (d), IOP16 (e), IOP17 (f), and IOP18 (g) (see text). The regions of the 
largest possible impact from extra observations are where the mapped values of G(A(4, A)) are minimal. See text 

for further explanation. 
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is assumed that a small set of ensemble forecasts can be used. A small ensemble may 
be adequate to capture the relevant dynamics of forecast-error evolution in cases of fast 
error growth associated with a few rapidly expanding phase-space directions. But when 
error dynamics is governed by a larger number of phase-space directions, characterized 
by similar expansion rates, the method may be seriously limited even if the linear 
approach is valid. In these cases, as in any other statistically based Singular Value 
Decomposition (SVD), the ET technique may find spurious minima of G due to the 
small sample size (Cherry 1996). In order to eliminate the spurious local minima of A 
related to low sample size, time series of sensitivity calculations were created for time 
windows 12-84,2484,. . . , and 72-84 hour lead times. On several occasions special 
products were also prepared based on 25 perturbation vectors from the operational, 
T159, 50-member, 12 UTC ECMWF ensemble in a way analogous to that used with 
the NCEP ensemble (Toth and Szunyogh 1997). The results of these runs (not shown in 
this paper) typically agreed closely with those made with the NCEP ensemble. Fourthly, 
the NCEP ensemble formulation is based on a perfect-model hypothesis, which has 
limitations especially when the ET calculations are done between time levels of long 
forecast lead times. 

( d )  The relationship between the Ensemble Transform and the adjoint-based 
techniques 

The ET technique computes the dominant singular values (associated with the dom- 
inant singular vectors) of an estimated linear error-propagation matrix for a large num- 
ber of different analysis-uncertainty distributions associated with different hypotheti- 
cal observational configurations, to explicitly choose the configuration that most effi- 
ciently reduces the threat of a major forecast failure. Such computations, in principal, 
should be possible using the adjoint techniques (Barkmeijer 1998). Computational lim- 
itations, however, are prohibitive with realistic model configurations. Therefore, tradi- 
tional adjoint-based sensitivity calculations determine perturbation (or ‘error’) patterns 
(singular vectors or sensitivity patterns) that can amplify the most, given fixed assump- 
tions about analysis-error variancekovariance. 

The practical choice is basically between performing only one (or a few at maxi- 
mum) adjoint-based estimations associated with one (or a few) estimated analysis-error 
structure(s), or performing many of these calculations, but for a limited number of anal- 
ysis and forecast variables and in the limited sub-space of ensemble configurations. 

4. DESCRIPTION OF THE ANALYSIS-FORECAST EXPERIMENTS 

(a )  The analysis-forecast system 
All analysis-forecast experiments presented here were carried out with the NCEP 

forecast system that was operational during FASTEX. This includes a T62, 28-level 
version of the operational NCEP Medium-Range Forecast model (MRF), (Kanamitsu 
er al. 1991) and the Spectral Statistical Interpolation (SSI) scheme (Parrish et al. 1997), 
a three-dimensions1 (3D), variational data-assimilation scheme. The T62 resolution 
version was chosen because a considerably larger number of experiments could be 
completed than at the higher, T126 resolution. As mentioned earlier, the T62 model 
forecasts for FASTEX cyclones verified rather well, sometimes even better than the 
T126 predictions. Because of the relatively short duration of the Lear-jet flights, it was 
possible to assimilate all targeted dropsonde data in single 6-hour analysis time windows 
in each of the cases studied here, without the need for cycling the analysis. 
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A detailed description of the SSI variational assimilation scheme can be found in 
Derber et al. (1991); Parrish and Derber (1992) and Parrish et al. (1997). Here we review 
only those features of the scheme that may have a significant effect on our targeting 
experiments. The analysis is a weighted average of the observed data and the short- 
range model forecast (first guess, background) valid at the time of observations. The 
interpolation weights for the observed data are inversely proportional to the square of the 
estimated observation errors, which are different for different observation types but fixed 
in time. Except in the case of the satellite temperature soundings, the observation errors 
are assumed to be uncorrelated. The information from the observational increment (the 
difference between the observation and the first guess) is spread out using the spatial 
structure of the background-error covariances, and thus the structure of the analysis 
increment (the difference between the analysis and first guess) is primarily determined 
by the background-error statistics. These time-independent statistics are assumed to be 
homogeneous and isotropic in the horizontal grid space. The covariances between the 
rotational component of the wind and the balanced part of the mass fields are determined 
by an assumed, nonlinear balance relationship (the spatial covariances between the other 
variables are not constrained). This means that neither the background-error statistics 
nor the weights for the observations in the analysis depend on the synoptic situation or 
the geographical location. 

Since several FASTEX cases appeared to have been associated with large back- 
ground errors (estimated from large ensemble spread), these approximations in the anal- 
ysis scheme can lead to substantial errors in the analysis. In particular the information 
from the dropsonde observations is extrapolated deep into the relatively data-sparse re- 
gions via the linear balance equation without the control of additional observed data. 

Another limitation of the then operational SSI scheme was that for the calculation 
of the observational increments, the background field was interpolated to the actual 
observation time only for the first three hours of the 6-hour analysis period. In the second 
half of the analysis period the first guess was interpolated only in space, which may 
introduce a phase error into the analysis of rapidly developing atmospheric systems.* 
Note that the above limitations of the SSI scheme are typical of current operational 
analysis schemes. 

(b)  Evaluation methods 
All dropsonde data were quality controlled: observations that represented obviously 

unrealistic states of the atmosphere or contradicted the hydrostatic-balance condition 
were rejected. Other data were rejected following a subjective inspection. Neither the 
optimal-interpolation based (Woolen 199 1 ), nor the complex quality control (Gandin 
1990) components of the operational quality control procedure were applied to the drop- 
sonde data because those components involve assumptions about the statistical structure 
of the meteorological fields (e.g. homogeneous and isotropic, spatial-correlation struc- 
tures that are fixed in time) that may not be valid for fast-developing synoptic-scale 
storms. 

Two analyses were created for each FASTEX case, one with and another without 
the dropsonde data from the Lear jet. All other FASTEX data were included in both 
forecasts, because the upstream aeroplanes were the only observing platforms used 
during FASTEX for which the observation times and locations were selected exclusively 
on the basis of objective targeting products. Taking these analysis fields, two forecasts 
were run until the verification time of the targeting product. 
* Since the summer of 1998, the operational version of the SSI uses a 9-hour first-guess forecast which facilitates 
the time-interpolation for the second half of the 6-hour assimilation window, too. 
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For successful targeting one wishes to find a difference (which we will refer to as a 
'signal') of significant amplitude between the two forecasts that reaches the verification 
region at the verification time. Even in this case, however, it is possible that observations 
at other locations could produce a signal that would reach the verification area at 
verifying time with an even larger amplitude. Therefore, for all IOPs we run 'mock' 
targeting experiments in which all data from areas adjacent to the objectively targeted 
regions (except for the satellite soundings) were withheld from control analyses. Two 
mock targeting regions were defined by the boxes 45"N < Q, 6 60°N, 57.5"W < A 6 
70"W (M1 region) and 30"N < Q, < 45"N, 70"W < A < 80"W (M2 region). 

The ET technique showed only small or moderate sensitivity for the M1 and M2 
areas for all cases except for IOPll and IOP13 (see Figs. l(b) and l(c)). In these 
two cases, M1 was highly sensitive and therefore, for the evaluation of the targeting 
algorithm based on the time evolution of the signal (section 5) ,  conventional data from 
M1 were used as if they had been targeted observations in these two cases. However, 
when verifying the forecasts against analyses and observed data (section 6, Fig. 10 and 
Table 4), the data within the MI and M2 regions were treated as regular non-FASTEX 
observations in all cases, including IOPl 1 and IOP13. 

The amplification of the signal was defined in terms of the surface pressure p as 

where the subscript F refers to the variable p in an experimental forecast with FASTEX 
targeted data and subscript c refers to the same variable in the control forecast. The 
analysis and the verification time are given in hours. The symbol maxa) . 1 (maxvI . I )  
denotes the largest absolute value of p at a grid point within the targeted (verification) 
domain. Daily amplification factors (growth rates) 

were computed and compared for each IOP. The above expression offers a plausible 
norm that can be easily interpreted in the case of rapid atmospheric developments at 
the surface while it avoids the complexity of defining the proper weighting for different 
atmospheric variables in a more integrated norm. 

In order to test the sensitivity of the results to the choice of error statistics in the 
analysis scheme, experiments were also carried out with the dropsonde error assumed 
in the data-assimilation scheme reduced for the dropsondes. The motivation for doing 
so is that in a region of rapid atmospheric development, the short-term forecast error is 
presumably larger than usual, thus the ratio between the errors in the background term 
and in the observations is larger than in an average case. In most of these experiments, 
the observation errors were reduced to 25 percent of the operational value, which 
means that the data received 16 times larger than normal weight. However, this strategy 
improves only the local fit of the analysis to the observed data; it will not improve 
the spatial structure of the balanced part of the analysis increment. This structure is 
determined by the standard background-error statistics. In the surface pressure, for 
instance, the balanced part of the analysis increment changes because of the better fit 
to the observed rotational wind component while the better fit to the observed surface 
pressure would alter only the analysis of the unbalanced component. 

Finally, each forecast was verified against both the operational analysis and ra- 
diosonde observations that were available at the verification time. 
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TABLE 1. INVESTIGATED FASTEX CASES 

IOP Time targeting 
product issued 

Analysis 
time 

Verification 
time 

Centre of 
verification 

region 

9 
I 1  

13 
15 

16 
17 

18 

oo00 UTC 3 1 January 
oo00 UTC 03 February 

oo00 UTC 09 February 
oo00 UTC 13 February 

oo00 UTC 15 February 
oo00 UTC 17 February 

oo00 UTC 20 February 

+24 h 
+36 h 

+36 h 
+36 h 

+36 h 
+24 h 

+48 h 

+84 h 
+I2 h 

+60 h 
+72 h 

+60 h 
+48 h 

+84 h 

60.0°N, 15.0"W 
52.5"N. 2O.O0W 

57.5"N. 20.0"W 
50.O"N. 10.0"W 

55.0°N, I0.0"W 
52.5"N. 27.5"W 

52.5"N. 17.5"W 

Centre of 
most sensitive 

regions 

50.0°N, 40.0"W 
50.0°N, 35.0"W 
50.0°N, 6O.O"W 
50.0°N, 55.OoW 
50.0°N, 4O.O0W 
40.0°N, 50.0"W 
40.0°N, 60.0"W 
45.0°N, 50.0"W 
40.0°N, 65.0"W 
50.0°N, 50.0"W 

Observation and verification times are in terms of forecast lead time from time of sensitivity calcula- 
tions. Sensitivity is based on real-time NCEP ensemble-based guidance. 

5 .  TARGETING RESULTS 

( a )  The Ensemble Technique sensitivity results 
Table 1 lists the most important parameters of the experiments: the targeting and 

verification times and locations. The coordinates of the most sensitive regions are based 
on the sensitivity maps shown in Fig. 1, which are identical to the real-time products 
that were used for making the flight decisions. All maps presented here are based on the 
identity-error covariance matrix, except for IOP9 in which case the diagonal estimate 
of the analysis-error covariance matrix from Iyengar et al. (1996) was used. Table 1 
only lists those centres which could be continuously tracked across the Atlantic as the 
targeting time was brought closer to the verification time. Centres which failed to show 
this time continuity (e.g. the centre at 65"N, 20"W shown in Fig. l(a)) were judged 
to be spurious in the real-time FASTEX decision making process. Since the ability 
of the ensemble transformations to represent the effect of changes in analysis-error 
variance on prediction-error variance was significantly constrained by the small size 
of the NCEP ensemble, we were not surprised to see such spurious correlations. Toth 
and Szunyogh (1997) found that the occurrence of such spurious centres could be almost 
completely eliminated by applying the ET method to a 50-member ensemble (available 
from ECMWF). 

( b )  Observational and analysis increments with the targeted data 
The most obvious measure for quantifying the accuracy of a background field 

is the observational increment, the difference between the observations and the first- 
guess field. The main advantage of this verification is that errors in the observations 
and the first guess are uncorrelated and since the former is random by nature it 
does not contribute to the average increment. However, one should keep in mind that 
the observational increments are also affected by representativeness errors (due to 
measuring at a point instead of over an area or volume represented by the model), and 
interpolation errors. Therefore, all these error sources must be reflected in our estimate 
of the observational error. The observational increment can then be thought of as the 
difference between the observational error and the true error in the first-guess forecast. 

As mentioned earlier, in the version of the SSI analysis scheme that was in opera- 
tional use during FASTEX, the background field was not interpolated in time to observa- 
tion times over the second half of the 6-hour assimilation period. In Fig. 2 we show the 
observational increment for surface-pressure observations from all 86 dropsondes used 
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Figure 2. Surface-pressure observational increment as a function of length of extrapolation time of first-guess 
field to observation time. The linear-regression fit to the data (r  = 0.42) is shown as a dashed line. 

for the seven IOPs studied. It can be seen from Fig. 2 that the observational increments 
become larger as the 6-hour first-guess forecast is simply extrapolated out to a 3-hour 
lead time into the second half of the analysis window. The extrapolation introduces a 
substantial additional error that, in the case of a 3-hour extrapolation (2.0 hPa addi- 
tional error), can be even larger than the 1.7 hPa error assumed for all surface-pressure 
observations. The average observational increment for the first 3 hours with the proper 
time interpolation is 1.3 hPa, while the overall average, including the extrapolated last 3 
hours, is 2.3 hPa. 

A large observational increment from a single dropsonde observation by itself does 
not necessarily trigger a large analysis increment (difference between the final analysis 
and the background forecast field). Other targeted dropsonde data, as well as satellite 
data and traditional observations over land, will also have an influence on the analysis 
increment. An inspection of the difference between the surface-pressure observational 
and analysis increments (difference between the observations and the analysis) reveals 
that the SSI analysis scheme performs rather well in statistical terms. The analysis, on 
average, draws as close to the observations as the observational errors indicate it should 
(approximately 1.7 hPa). One should note, however, that a good local fit to the data by 
itself does not guarantee that the structure of the analysis increment projects well onto 
the difference between the first guess and the true (unknown) state of the atmosphere. 

Recall that the SSI, like other operational analysis schemes, uses nearly homoge- 
neous and isotropic, background-error variance and covariance structures that are fixed 
in time. In other words, the analysis has no information regarding the likely, real-time 
background-error structures and magnitudes. Table 2 lists the maximum observational 
increment for the seven investigated IOPs. Not surprisingly, we found that in these sensi- 
tive areas the analysis typically remains twice as far from the observations as on average. 

In the ET technique the temporal variation of the estimated analysis-error variance 
at ta is estimated by the temporal variations of the ensemble-forecast spread. In order 
to verify whether this approach was valid for the FASTEX observations, we first have 
to verify whether the ensemble spread at future analysis times during FASTEX (36- 
hour forecast lead time) had a relationship with the first-guess errors. We show in Fig. 3 
the relationship between the mean, surface-pressure observational increment and the 
corresponding NCEP ensemble spread for the seven investigated IOPs. The correlation 
between ensemble spread (at 36-hour lead time) and short-range (6-hour) forecast error 
on these spatial scales is 0.78, statistically significant at the 5% level. By averaging the 
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TABLE 2. THE MAXIMUM SURFACE-PRESSURE OBSER-  
VATIONAL INCREMENTS FROM THE FASTEX DROPSONDE 
DATA A N D  THE MAXIMUM C H A N G E  CAUSED B Y  THESE 
DATA IN THE ANALYSIS A N D  T H E  FORECAST WITHIN THE 

VERIFICATION REGION AT T H E  VERIFICATIONTIME 

Intensive Observational Change in Change in 
Observing increment the analysis the forecast 

Period (Wa) ( P a )  (Wa) 

9 
1 1  
13 
15 
16 
17 
18 

Absolute 
average 

1 . 1  0.5 2.2 
- 1.2 2.2 

4.5 1.2 1.3 
5.4 3.0 3.6 
1.4 0.7 1 .o 
4.3 1.4 1.2 
2.2 1 .o 2.0 

3.2 1.3 1.9 

!z 
B a 
P a 

W 

z K 
W 
v) 

0 
m 

:,$ 
1 

0 
0 1 2 3  

ENSEMBLE 

4 5 6  
SPREAD (rnb) 

7 

spread 36-hour forecast lead function of ensemble Surface-pressure observational increment as a Figure 3. at 
time for observations averaged for each of the seven IOPs (see text) investigated. -?'he linear-regression fit to the 

data ( r  = 0.78) is shown as a dashed line. 

errors for a total of 9-18 observations in each IOP case, the impact of a substantial 
part of the instrumental error and some of the representativeness error is eliminated. 
However, the time-extrapolation errors still affect the results. When the extrapolation 
factor is included in a bi-linear interpolation, the correlation between ensemble spread 
and short-range error (plus extrapolation error) increases to 0.84, explaining 70% of 
the variance. Notice also that the largest (smallest) observational increments occurred 
for the case when the ensemble spread was largest (smallest). In other words, Fig. 3 
suggests that the 36-hour ensemble spread was a reasonable indicator of expected 6-hour 
forecast errors at a lead time of 36 hours for the FASTEX cases. However, owing to the 
small sample size the statistical significance of this result is delicate: the correlation may 
fall apart by removing one critical point. On the other hand we note that we obtained 
similarly high correlation values using the spread from the independent, 50-member 
ECMWF ensemble. While further research with a larger statistical sample is needed in 
order to confirm the relationship, indicated here, between ensemble spread and short- 
range forecast error, our result suggests that the 36-hour ensemble spread was a good 
indicator for the investigated forecast errors. 
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Figure 4. The differences between the surface-pressure analyses and ensuing forecasts with and without the 
bar-jet dropsonde data for IOP9 ((a) and (b)), IOPl 1 ((c) and (d)), IOP13 ((e) and (f)), IOP15 ((8) and (h)), 

IOP16 ((i) and (i)), IOP17 ((k) and (I)), and IOP18 ((m) and (n)) (see text). Contour interval is 0.5 hPa. 
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Figure 4. Continued. 

(c)  Time evolution of the signal 
An important and necessary condition for a targeting methodology to be useful is 

that the initial signal created by the targeted data in the analysis (compared to using 
just the standard non-targeted observations) reaches the verification area. Shown in 
Fig. 4 are these analysis and forecast differences for surface pressure. Targeting with 
the ET method meets the necessary condition in the sense that a substantial portion of 
the dominant signal reaches the verification area in each of the seven FASTEX cases 
investigated here. 

The absolute maximum amplitude of the signal at the analysis time and at the verifi- 
cation time within the verification region is given in Table 2. As the daily amplification 
factors indicate (Table 3), the growth of the signal is not uniform among the cases. For 
IOP18, the signal is decaying at the higher levels (not shown), though for the surface 
pressure the amplification rate is 1.8. For IOP17, on the other hand, there is no amplifi- 
cation at the surface, while for the 250 hPa height (not shown) the amplification rate is 
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TABLE 3. NORMALIZED DAILY AMPLIFICATION FACTORS FOR THE 
REAL AND THE MOCK (SEE TEXT) TARGETING REGIONS 

Intensive Real Mock 1 Mock 2 
Observing targeting experiment experiment ensemble 

Period 

9 1.8 
1 1  1.5 
13 1.7 
15 1.2 
16 1.9 
17 0.9 
18 2.0 

amplification 1.6 
Average 

1.2 1.8 2.5 
- 1.2 2.1 
- 0.3 2.3 

0.8 0.3 1 .1  
0.6 1.3 1.7 
1 .1  1.2 1.5 
0.7 0.6 1.8 

0.9 1 .o 1.9 

The amplification factor for the ensemble is based on the ratio of the maxi- 
mum ensemble spread within the verification and targeting experiments. 

5.0. As seen from Fig. 4, the eastward propagation of the signal in most cases is rather 
fast. 

A general feature of the signal in these results is its small amplitude both at the 
targeting and verification times. Consequently, the time evolution of the signal is, to 
a good approximation, linear. This is demonstrated by an example from IOP13. The 
eastern part of the sensitive area for this IOP (cf. Fig. l(c) and Table 1) was sampled 
by dropsondes released from the Lear jet over the ocean, while the western part (MI 
area) was sampled by traditional radiosonde observations. Fig. 5 shows the signal at 
observation and verification times from the two parts of the sensitive area separately. If 
we add up Figs. 5(a) and 5(c), and 5(b) and 5(d), we recover, almost exactly, Figs. 4(e) 
and 4(f), respectively. Recall that Figs. 4(e) and 4(f) were produced by neglecting data 
from both the real and the M1 mock targeted region. 

It is also interesting to note that the amplification averaged for all investigated cases 
for the first 6 hours is only 1.0. For IOP16, IOP17 and IOP18, for example, the signal 
decays initially. This suggests that in the beginning the changes in the analysis, due to 
the dropsonde data, have substantial projections on decaying and neutral structures that 
allow the signal to amplify only after an initial adjustment period. The signal for IOP17 
experienced the largest decay (0.7/6 hours) and it started its rapid amplification just 
around the verification time. These two factors explain why one of the most dramatic 
IOP developments of FASTEX is associated with only a moderate growth rate in our 
calculations. Note that, at the time the Lear-jet flight was planned, the verification time 
listed in Table 1 (a total of 84 hours in the future) appeared to be the most likely time 
for an MSA flight that would survey the low-pressure system providing valuable data 
for verifying the targeted forecast. 

Even though the small signal that the extra dropsonde data generates behaves 
linearly in time, the full-analysis increment does not necessarily do so. Note that the 
full-analysis increments obtained by using all the data have up to three times larger 
initial amplitudes than the signal from the dropsondes only. If we consider the time 
evolution of the error in the analysis and ensuing forecast, nonlinearity plays an even 
more important role. Since the perturbation size in the NCEP ensemble is of the order 
of forecast-error sizes (Zhu et al. 1996), the ensemble perturbations around the control 
offer a good representation of the uncertainty in the control analysis and forecast. 
While the performance of the ET technique is convincing in all of the investigated 
FASTEX cases, the fact that the signal has a much smaller amplitude than that of the 
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Figure 5. The differences between the surface-pressure analyses and ensuing forecasts with and without the 
Lear-jet dropsonde data ((a) and (b)) and with and without the regular data in the mock targeting region (MI) ((c) 

and (d)) for IOP13 (see text). Contour interval is 0.5 hPa. 

forecast errors raises two questions. (1) What is the optimal perturbation size of an 
ensemble to be used for targeting? Our provisional answer is that the ensemble spread 
should be representative of the size of the full-analysis increments. The operational 
ensemble has larger perturbation amplitudes than this, corresponding to the total error 
in the analysis-forecast system. (2) Around what trajectory should an ensemble with 
such a smaller spread be centred? Given an uncertainty in the control forecast that 
is considerably larger in magnitude than the analysis increment, ideally we should 
carry out sensitivity calculations around each of the operational ensemble forecasts. 
A conservative approach would then be to mark all areas that are found sensitive in 
any of the sensitivity calculations, based on smaller-spread ensembles centred around 
each of the members of the larger-spread operational ensemble. Short of such an ideal 
system, one can reduce the perturbation amplitudes in the ET calculations based on the 
operational larger-spread ensemble. During NORPEX (NORth Pacific Experiment)-98 
and CALJET (California Landfalling Jets experiment) (Langland et al. 1998; Szunyogh 
et al. 1999; Ralph et al. 1999) we defined the perturbations as departures from the 
control forecast (rather than differences between positively- and negatively-perturbed 
forecasts, as used in this study). The use of an ensemble with more members would 
allow us to define even smaller perturbations as differences between selected members 
that evolve similarly. 

( d )  Comparison of the real and the mock targeting results 
The fact that the targeted signal, as shown in the previous section, reaches the 

verification region is necessary but not sufficient to demonstrate that a targeting method 
is able to find the region that has the largest potential impact on forecast quality. Areas 
other than those targeted may have an even larger impact in the verification area. 
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Figure 6.  Relative frequency of growth rates for the real (solid bars) and mock (hatched bars) targeting signals 
for the seven IOPs (see text). Growth rates are grouped in intervals of 0.5, starting each group at the values 

indicated below the horizontal axis. 

Whether this is true with the ET sensitivity results was tested through the mock targeting 
experiments described in section 4, by withholding regular data from areas adjacent to 
the real targeting region. 

The size of the impact of targeted data at verification time in the verification region 
depends on (1) how large the effect of the data is at analysis time (initial signal), and 
(2) how the initial signal amplifies into the verification region. As to the size of the initial 
influence, it is on average 1 .O hPa for the mock, and 1.3 hPa for the real targeted signal. 
The smaller initial signal over the mock areas may be partly due to the generally better 
quality of the first guesses and analyses over these continental areas, and partly to the 
fewer number of regular radiosonde observations that could be eliminated from there, 
as compared to the oceanic real targeted areas. 

The amplification factors for the real and mock signals are listed in Table 3. 
The average amplification for the real signals is 1.7, corresponding well with the 
amplification rates for bred perturbations with small amplitudes (Toth and Kalnay 1997). 
In contrast, the average amplification rate for mock targeting experiments is slightly less 
than 1.0, indicating, on average, a slight decay of the perturbations from the mock areas. 
Though signals from adjacent areas can still reach the verification region, the ET method 
is clearly capable of identifying areas of amplifying analysis errors. This is highlighted 
by the fact that the distributions of amplification factors for the real and mock signals are, 
according to a Wilcoxon rank sum test (Kendall and Stuart 1967), statistically different 
at the 0.1 % level (Fig. 6). 

When comparing the amplification factors from the continental mock areas with 
those from the real sensitive areas over the Atlantic Ocean we must keep in mind that 
the density and the total number of the regular radiosondes removed from the mock 
areas is much lower than that of typical targeted dropsondes. Therefore, the mock 
experimental analyses (and the differences between control and experimental analyses) 
are more influenced by the background forecasts and background-error statistics used 
in the analysis, and are therefore also more in balance, than the real targeted signals 
created by the dropsonde data. The average signal amplification for the first 6 hours for 
the mock areas is 1.2, while it is only 1.0 for the targeted areas, indicating that the initial 
adjustment process (decaying or neutral perturbation behaviour) is evident only for the 
targeted signal. For example, the only case when a mock signal had an amplification 
larger than the targeted signal (IOP17), the targeted signal, but not the mock signals, 



ENSEMBLE-BASED TARGETING EXPERIMENTS 3207 

60 

40 

20 

0 0. 1. 2. 
MAXIMUM SU RFACE-PRESSU RE I M PACT (h Pa) 

Figure 7. Relative frequency of maximum change in surface pressure from real (solid bars) and mock (hatched 
bars) targeted observations at verification time in the verification region. Values are grouped in intervals of 0.5, 

starting each group at the values indicated below the horizontal axis. 

was affected by a strong initial adjustment process.* Disregarding the first 6 hours of 
signal evolution, the targeted signal had an amplification larger than the mock signals 
even for this IOP. 

Though the amplification from the real sensitive areas is significantly larger, signals 
from the nearby areas usually reach the verification region as well. Interestingly, in some 
cases the signal from the mock areas adjacent to the most sensitive region has a structure 
in the verification area similar to that of the real targeting signal. In some sense, one may 
say that the instability that the targeted analysis/forecast uncertainty is associated with 
acts as a centre of ‘gravity’. Perturbations from an initially large area can rotate in phase 
space (i.e. propagate in physical space) into the verification area at verification time. 

When looking at the influence of the data at verification time in the verification 
region, the combined effect of the size of the initial signal and the amplification rate can 
be seen. While the average influence from the targeted areas is 1.9 hPa, that from the 
mock areas is only 1 .O hPa. The distribution of maximum impact values for the real and 
mock targeted areas is statistically different at a significance level lower than 0.5% (see 
Fig. 7). 

The apparent skill the ET technique has in differentiating between more- or less- 
important areas of analysis uncertainty is due to the ability of the ensemble (1) to provide 
useful information, even at 36-hour lead times, regarding the expected background 
uncertainty, and (2) to approximate the dynamical propagation and amplification of a 
signal by how ensemble perturbations behave. We investigated the validity of this latter 
condition by comparing the amplification rates associated with the ensemble versus data 
signals. As the last column of Table 3 shows, the amplification factors calculated from 
the ensemble spread (i.e. ratio of maximum ensemble spread in the verification region at 
verification time, to the maximum ensemble spread within the targeted, most sensitive 
region) are generally higher than those for the signal. This is because (1) the ensemble 
perturbations are dynamically conditioned and are growing from the beginning of the 
sensitivity time period while the signal usually starts growing only after an initial 
adjustment period and (2) the ensemble amplification defined above is enlarged by the 
impact of perturbations from nearby areas (i.e. ensemble perturbations from areas not 

* As it will be further discussed in section 6c, the analysis had obvious difficulties in assimilating data for IOP17. 
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Figure 8. Amplification of the targeting signal (average for real and two adjacent mock areas) for the seven IOPs 
(see text) as a function of ensemble amplification. The linear-regression fit to the data ( r  = 0.91) is shown as a 

dashed line. 

covered by the signal at the observation time can contribute to the size of the final 
ensemble perturbation in the verification region at the verification time). 

Before comparing the signal and ensemble amplifications case by case, we recall 
that the targeted signal amplification can be seriously affected by an initial adjustment 
process (section 5c). Also, the mock signals appear to be associated with and project 
onto the same instability dominating the targeting signal. Therefore, to reduce sampling 
problems associated especially with the initial adjustment process, the signal ampli- 
fication in Fig. 8 was determined for each case as the average of that from the real 
and two mock targeted areas. Fig. 8 seems to confirm a premise of the ET technique: 
a relationship exists between the time evolution of the signal associated with analysis 
increments and the perturbations in a bred ensemble. 

6. VERIFICATION OF FORECASTS 

(a )  Verijication against analyses 
The ultimate goal of targeting is to improve subsequent forecasts by assimilating 

the targeted data into future analyses. In this section we will compare the quality of the 
forecasts from analyses with and without the assimilation of the targeted data. Verifying 
the short-range forecasts against analysed fields has serious limitations. Recall that the 
average observational increment in surface pressure (which is a good indicator of the 
quality of atmospheric analyses because it reflects the performance of the analysishhort- 
range forecast system against independent data) for the seven IOPs in the upstream 
targeting domain is 2.3 hPa, with maximum errors in the dynamically most active 
regions being two to three times larger. The problems with errors in the verifying 
analyses are aggravated by the fact that the FASTEX verification region is on the 
eastern side of the Atlantic Ocean, with poor, upstream data coverage. Furthermore, 
the verification region and time are selected over areas of large forecast uncertainty, 
making the atmospheric analyses in these regions even more suspect. 

In four cases (IOP11, IOP13, IOP16, and IOP17) the verification against the analysis 
showed a mixture of improvements and degradations at the different geographical 
locations (not shown). These results, however, are difficult to interpret because the 
amplitude of the signal in the verification region is of the order of the amplitude of the 
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TABLE 4. VERIFICATION AGAINST OBSERVED DATA 

IOP Verification Number of Vector r.m.s. error without Vector r.m.s. error with 
region observations targeted data (m s-') targeted data (m s-I) 

9 55'N-7OoN, 20"W-10"E 223 16.5 15.2 
1 1  45"N-7OoN, 3OoW-00"E 378 9.0 9.0 
13 45"N-65"N, 3OoW-00"E 349 6.4 6.1 
15 43'N-60°N, 35"W-CO"E 256 6.4 7.5 
16 5OoN-65"N, 30"W-OO"E 473 8.1 8.3 
18 45"N-65"N, 30"W-OO"E 294 10.2 9.9 

For each Intensive Observing Period (IOP), errors are shown for the control forecast and the forecast with 
targeted data. 

analysis errors (see Figs. 4(d), 4(f), 4G), and 4(1)). For the other three cases, the absolute 
error in the surface-pressure, control forecast fields and the reduction in these errors due 
to the use of targeted data are shown in Fig. 9. Negative (positive) values in the right 
panels indicate forecast improvement (degradation) due to the inclusion of targeted data. 
The forecast with targeted data for IOP9 (Figs. 9(a) and (b)) is unambiguously improved: 
the timing of the cyclonic wave in the verification region is better, thus reducing a large 
dipole in the forecast error. The improvement in forecast quality (Fig. 9(c)) becomes 
even larger when the observational errors for dropsonde observations are reduced in the 
analysis by a factor of four and consequently the analysis can draw even closer to the 
targeted data. Interestingly, the observational increments at targeting time were by far 
the smallest for this IOP (see Table 2, left column). For IOP18 (Fig. 9(g)) the verification 
results are less clear but suggest an overall improvement in forecast quality. For IOP15 
(Fig. 9(e)) the inclusion of the targeted data had a negative overall effect on the quality 
of the forecast. However, there is no considerable forecast error in the MSA for this case 
leaving virtually no room for forecast improvement. 

(b )  Verijcation against observed data 
As mentioned earlier, most IOPs did not provide sounding data for the verification 

of the targeted forecasts. However, for all cases, except for IOP17 (where the signal is 
exclusively over the Atlantic Ocean), regular radiosonde observations are available for 
a comparative verification of the control and the targeted forecasts in and around the 
verification region. The scores discussed below have been computed for an extended 
region covering all areas with a sizable forecast-difference signal. The verification 
results, using all available radiosonde data between the surface and 250 hPa height, are 
shown in Table 4.* Note that while the total number of data involved in the verification 
is large, the data coverage is far from uniform. The areas of Iceland, the Norwegian Sea, 
the North Sea and Great Britain are much better sampled than the Atlantic Ocean. 

Confirming the verification results of the previous section, IOP9 shows the largest 
forecast improvement in Table 4. The mean error (not shown) is reduced by 10-20%, 
while the r.m.s. error is reduced by close to 10%. Increasing the local fit of the analysis to 
the observed data further improved the forecast, (the vector r.m.s. error was 14.9 m s-I), 
which is again in good agreement with verification results using the verifying analysis. 
IOP9 was clearly a success in the sense that the analysis with the targeted data yielded 
a forecast superior to the control. 

* Due to a programming error, the verifications for IOP9, IOP13, and IOP15 included a few radiosonde 
observations that fell outside the verification boxes indicated in Table 4. It is most likely, however, that because 
of the large total number of observations these extra data have no measurable impact on the the corresponding 
verification results shown in Table 4. 
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a) 

Figure 9. The absolute error in the control forecast (left panels, contour interval is I .O hPa) and the absolute 
forecast-error reduction in the surface pressure resulting from the Lea-jet dropsonde data (right panels, contour 
interval is 0.5 hPa) from the operational values of the observation errors for IOp9 ((a) and (b)), IOP15 ((d) and 
(e)), and IOP18 ((f) and (g)) (see text). Panel (c) shows the absolute forecast-error reduction using 75% smaller, 
estimated dropsonde observation errors than in the operational assimilation scheme for IOP9. Negative (positive) 

values in the right panels indicate forecast improvement (degradation) due to the inclusion of targeted data. 
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Targeted data assimilated for IOP 18 produced the second largest reduction in 
forecast errors. It is interesting to note that the vector r.m.s. error was reduced even 
further (to 9.7 m s-') when the targeted data were assimilated with reduced observation 
errors. This is despite the somewhat mixed results when the analysis (and not observed 
data) was used for verification (see Fig. 9(g)). A similar improvement is seen in the 
case of IOP13, while the targeted data had no impact on forecast quality in the case of 
IOPl1. The quality of the forecast decreased slightly for IOP16, while in the case of 
IOP15, corroborating the results from the previous section (see Fig. 9(e)), the inclusion 
of the targeted data clearly degraded the forecast. The above results are in qualitative 
agreement with those of Thorpe (1999), regarding the influence of including targeted 
dropsonde data in the ECMWF analysis/forecast system. Their initial results indicate 
that, similar to our findings, the effect of the data on forecast quality at short lead 
times is relatively small, and is generally positive, but in some cases the use of the 
extra dropsonde data slightly degrades the forecasts. 

We note that the analysis is a statistical procedure and forecast improvements from 
the additional data are to be expected only in a statistical sense, and not in every case. 
Still, from a practical point of view, it is not comforting to know that in some cases 
the impact of extra data, produced at a considerable cost, may be negative. From this 
perspective it is important to point out that the forecast improvement the targeted data 
brought about in our experiments is correlated with the error in the control forecast. The 
larger (smaller) the control error, the more improvement (possible degradation) we can 
expect. Intuitively, one can easily understand that it may be hard or even impossible to 
reduce the error in a very good forecast while a poor forecast may more readily lend 
itself to improvements. This is the basis for the selection of FASTEX IOP cases for the 
study of Thorpe (1 999) for example. 

Forecast error, of course, can be known only retrospectively and therefore cannot 
provide the basis for operational targeting strategies. However, an ensemble of forecasts 
available in the real-time decision making process, as found in earlier sections, may 
provide potentially vital information regarding expected forecast-error behaviour. In 
fact it was found (see Fig. 10) that ensemble amplification (left column in Table 3) 
is strongly related to forecast improvement (difference between the two right-hand 
columns of Table 4). The linear correlation is 0.91 for the six IOPs considered here 
and is statistically significant at the 0.5% level. On the other hand there is no plausible 
explanation why neutral or decaying signals should consistently degrade the forecast. 
Independent data collected during the NORPEX-98 field experiment (Szunyogh et al. 
1998) confirmed that a large ensemble amplification is a good indicator of forecast 
improvement, but for weakly amplifying or decaying ensemble signals the forecast 
can be either improved or degraded by the assimilation of extra dropsonde data. These 
results suggest that targeted data have a good chance of improving forecasts only if the 
ensemble spread from the most sensitive region at targeting time amplifies considerably 
into the verification region at verification time. 

Note that ensemble amplification, found here to be a good indicator for the forecast 
improvement expected from targeted data, was considered in real time during FASTEX 
but was not the main factor in selecting targeting cases. Instead, IOPs were selected 
primarily with respect to the needs and expectations of the scientists responsible for 
downstream observations in the MSA. 

( c )  Intensive Observing Period I7 
One of the most impressive and most extensively studied cyclone development cases 

from the FASTEX period is IOP17. As mentioned earlier, the signal from the dropsonde 
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Figure 10. Forecast improvement (root mean square, wind-vector, error reduction) for six IOPs (see text) (with 
enough observations to allow the verification) as a function of ensemble amplification. The linear-regression fit to 

the data (r = 0.91) is shown as a dashed line. 

data was situated over the data-void Atlantic at verification time. However, 6 hours after 
verification time, the UK C-130 collected valuable data which we used for verifying 
forecasts with lead times of 30 and 42 hours. Note that the dropsonde data were used 
in one of the two 30-hour forecasts. The observational errors were reduced compared 
with the operational set-up, in order to increase the amplitude of the signal by forcing 
the analysis closer to the data. Interestingly, the best forecast was the 42-hour control 
forecast with a small, 3 mb error at the centre of the low. Adding more and more data 
at later analysis times, including the special dropsonde data at 30-hour forecast lead 
times, only made the forecasts worse and worse: the 36-hour lead time error was 5 mb, 
the 30-hour control error was 8 mb, while the 30-hour error for the forecast using the 
dropsonde data was 11 mb. 

The fact that the addition of data in three instances (at two assimilation times) 
made the quality of an otherwise good 42-hour forecast substantially poorer suggests 
that for IOP17 the statistical assumptions made in the analysis were insufficient for 
the successful assimilation of the observations. The verification against the C-130 
dropsonde data confirmed the above conclusion: at 30-hour forecast lead times the r.m.s. 
wind-vector error is 13.7 m s1 (14.5 m s') without (with) assimilating the targeted data. 

Note that IOP17 was associated with the second-lowest ensemble amplification. 
Based on the results shown in Fig. 10, the poor, targeted forecast performance could 
have been anticipated. 

7. CONCLUSIONS 

In this paper we evaluated the performance of the ensemble-based targeting method- 
ology as used in real time during the FASTEX field experiments, based on the opera- 
tional NCEP global ensemble forecasts. The results, including those of analysis-forecast 
experiments with and without the targeted data, demonstrate that the ensemble-based 
targeting technique as applied in real time during FASTEX is a useful tool in the fol- 
lowing senses: 

The spread (standard deviation around the mean) in the operational ensemble is a 
reasonable indicator of the expected error variance in the first-guess short-range forecast 
fields used in the analysis procedure (see Fig. 3); 

0 The evolution of perturbations in the ensemble is a good indicator of how signals 
introduced by (targeted) data evolve in time (Figs. 4 and 8); 
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0 The ET technique (Bishop and Toth 1998) can identify the area from which 
initial perturbations can have the largest influence on forecast quality in a pre-selected 
verification area at a given verification time. In particular, it was found that in all seven 
cases studied, the initial signal introduced into the analysis by the targeted data from the 
most sensitive area reaches the verification region at the verification time (Fig. 4), and 
signals from adjacent areas had significantly less contribution (Table 3, Figs. 6 and 7). 

0 There is an overall improvement in forecast quality from the analyses enhanced 
by targeted data, but only when the signal amplifies appreciably. The results suggest 
that, given the current observing/analysis/forecast schemes, we should attempt to take 
targeted observations only if the related signal, based on the evolution of the ensemble 
spread, is expected to amplify (Fig. 10). Otherwise, the errors inherent in the analy- 
sidforecast system may hide the small signal resulting from the targeted data. 

Though the above results are based only on those seven FASTEX cases from 
February in which the ET technique (Bishop and Toth 1998) was one of the primary 
guidance products used, they are all statistically significant, at least at the 5% or higher 
level. These results suggest that many important aspects of targeting may be addressed 
by the use of an objective targeting method, such as the ET technique, based on 
an operational ensemble of forecasts. A synthesis of the results yields the following 
provisional algorithm for targeted observations: 

0 Select a verification area and time, based on large forecast uncertainty estimated 
from the ensemble spread, also considering the socio-economic consequences of poten- 
tial forecast errors; 

0 Consider an ensemble of forecasts that can assure an estimation of future analysis 
uncertainty and forecast-error development for the objective targeting method, such as 
the ET technique; 

0 Use the ET technique with the operational ensemble to identify the targeted region 
from which data can have the largest impact in the verification area; 

0 Consider how ensemble perturbations from the initial target area amplify into 
the verification area at verification time. Take observations only for cases of large 
amplification. 

It is important to note that the influence of targeted data (9-18 dropsondes per case 
over an area of approximately 10 degrees of latitude by 10 degrees of longitude) on 
the forecasts is rather small. The maximum forecast-error reduction is on the order of 
10%. Larger improvements can be expected only if a larger area is targeted, including a 
less sensitive but extensive ring around the most sensitive core area; and better analysis 
techniques can be used, with flow-dependent background-error variance and covariance 
estimates (Fischer et al. 1998). This would enable the analysis to extract considerably 
more useful information, that now remains hidden in the data. 

The fact that targeting during FASTEX took place just off the coast of one of the best 
observed areas on earth may have also tempered the influence of targeted observations. 
In these experiments, the first-guess forecast fields must have had a higher quality than, 
say, those over the mid Pacific. In fact, preliminary results from targeting experiments, 
that took place over the north-east Pacific in the winter of 1997-98 (NORPEX-98 and 
CALJET), indicate that the targeted data had a greater positive impact on forecast 
verifying over the continental USA (Szunyogh et al. 1999). 

So far we have assumed that all forecast errors are due to initial-value uncertainties. 
Though this may be a good first approximation, certainly there are errors that arise 
from model deficiencies. In these cases, forcing the initial condition closer to the data 
may not necessarily help improve the ensuing forecasts. How common and serious this 
potential problem is, and how it can be mitigated, should be a subject of future research 
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with analysis/forecast systems of different complexities. The influence of using higher- 
resolution analysis/forecast schemes should also be explored. 

Regarding the targeting strategy used during FASTEX, the following improvements 
can be made. 

0 The most serious limitation of the ET method, as applied to the NCEP ensemble, is 
the potential presence of spurious, distant sensitivity maxima that may appear in addition 
to the actual most sensitive region (e.g. Fig. l(a), centre at 65"N, 20"W). This is due to 
the inevitable random correlations present in any small set of ensemble forecasts. These 
spurious centres can be routinely removed subjectively, but for the implementation of a 
fully automated technique they must be eliminated objectively. Experiments with the use 
of the 50-member ECMWF ensemble (Toth and Szunyogh 1997) indicate that a modest 
increase in ensemble size (from 14 NCEP ensemble members) can almost completely 
eliminate the problem of spurious sensitive areas. 

0 The magnitude of perturbations considered within the ensemble used in the 
ET technique should preferably be of the order of the size of the analysis/forecast 
increments. These increments are definitely smaller than the perturbations used during 
FASTEX, defined as the difference between oppositely perturbed (negative-positive) 
pairs of forecasts. Instead, perturbations can be defined as difference fields between the 
control and any perturbed forecast. 

0 The sensitivity calculations are not yet fully compatible with the analysis system. 
For example, the influence of regular data during targeting is considered only indirectly 
and only in a gross sense. We plan to link better the sensitivity calculations with the anal- 
ysis scheme, by introducing into the calculations information from the observational- 
error covariance matrix. 

The first two of these improvements were implemented during the application of the 
ET targeting technique in the NORPEX-98 (Langland et al. 1998; Szunyogh et al. 1999) 
and CALJET (Ralph et al. 1999) field experiments in January-March 1998. According 
to a preliminary evaluation (Szunyogh et al. 1999) all major results of the current study 
have been confirmed by the NORPEX-98 and CALJET field programs. 
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