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ABSTRACT

An extremely simple chaotic model, the three-variable Lorenz convective model, is used in a perfect model
setting to study the selection of initial conditions for ensemble forecasts. Observations with a known distribution
of error are sampled from the ‘‘climate’’ of the simple model. Initial condition distributions that use only
information about the observation and the observational error distribution (i.e., traditional Monte Carlo methods)
are shown to differ from the correct initial condition distributions, which make use of additional information
about the local structure of the model’s attractor. Three relatively inexpensive algorithms for finding the local
attractor structure in a simple model are examined; these make use of singular vectors, normal modes, and
perturbed integrations. All of these are related to heuristic algorithms that have been applied to select ensemble
members in operational forecast models. The method of perturbed integrations, which is somewhat similar to
the ‘‘breeding’’ method used at the National Meteorological Center, is shown to be the most effective in this
context. Validating the extension of such methods to realistic models is expected to be extremely difficult;
however, it seems reasonable that utilizing all available information about the attractor structure of real forecast
models when selecting ensemble initial conditions could improve the success of operational ensemble forecasts.

1. Intreduction

For many years, the vast majority of operational
forecasts of the atmosphere have used a single integra-
tion of a numerical weather prediction model started
from a discrete observed state. However, because only
sparse, inaccurate observations of the state of the at-
mosphere are available, the initial state of a prediction
model is more appropriately represented as a probabil-
ity distribution. A numerical forecast of the state of the
atmosphere then entails estimating the probability dis-
tribution of the model variables at some ensuing time.

One possible approach to this problem of stochastic
dynamic prediction was discussed by Epstein (1969).
In this case the forecast model is based on stochastic
differential equations, and the probability distribution
of the initial and ensuing states are explicitly repre-
sented in the model. In general, this method involves
such great expense that it is not practical for even the
simplest of forecast models.

A second approach to stochastic-dynamic prediction,
ensemble prediction, is now beginning to be used at
operational prediction centers around the world. In en-
semble prediction a number of discrete initial condi-
tions are sampled from the observed probability distri-
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bution for the forecast model variables. Each of these
initial conditions is then integrated as a separate fore-
cast in a traditional ‘‘discrete’” model. The distribution
of the model variables in this ensemble of forecasts can
then be viewed as a sample of the continuous proba-
bility distribution at some later time. Ensemble predic-
tion was pioneered by a number of researchers includ-
ing Gleeson (1970) and Leith (1974).

A number of problems remain in using ensembles of
discrete forecasts to approximate the evolution of an
initial probability distribution in a model. One funda-
mental problem is the interpretation of the ensemble
forecast, especially when the ensemble size is very
small compared to the number of dynamical degrees of
freedom in the forecast model (Tracton and Kalnay
1993; Murphy 1990). A second problem is the selec-
tion of the initial ensemble members. In other words,
how should the initial observed probability distribution
be sampled in order to provide the most meaningful
information from the ensemble forecast (Schubert et
al. 1992).

Numerous approaches to selecting the initial ensem-
ble members have been proposed. The oldest is Monte
Carlo forecasting (Epstein 1969; Leith 1974). In
Monte Carlo forecasts, the initial ensemble members
are randomly selected from the best available approx-
imation of the initial observed probability distribution.
It can be demonstrated that this approach is generally
a good way to sample a probability distribution (Lewis
1975) and that one must know a great deal about the
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probability distribution being sampled in order to sam-
ple more efficiently (Traub and Wozniakowski 1994).
Despite this, because of the high costs involved in do-
ing ensemble integrations, atmospheric scientists have
attempted to devise more efficient ways of sampling
than Monte Carlo.

One alternative to Monte Carlo sampling is lagged
average forecasting (LAF) (Hoffman and Kalnay
1983). In LAF the initial ensemble sample for a time
n is composed of a single discrete initial condition us-
ing observations at time n, plus some set of forecasts
valid at time » that were produced using earlier obser-
vations. For instance, a three-member LAF ensemble
might consist of a discrete ‘‘observed’’ initial condi-
tion, the 24-h forecast from discrete initial conditions
24 h earlier, and the 48-h forecast from discrete con-
ditions 48 h earlier. The LAF sampling strategy is
driven purely by pragmatism and does not explicitly
attempt to make a good sample of the initial probability
distribution. Despite this, there is some suggestion that
LAF does a surprisingly good job at gleaning infor-
mation about the initial probability distribution (Toth
and Kalnay 1993). More sophisticated variants of LAF
(Ebisuzaki and Kalnay 1991) have also been devel-
oped.

More recently, researchers have attempted to select
a sample of the initial probability distribution using in-
formation about the numerical model (Molteni and Pal-
mer 1993). In most of these methods the goal is to
sample elements from the initial probability distribu-
tion that lead to the largest trajectory divergence in
phase space. The objective of this type of ensemble
forecasting is not necessarily to produce a good sample
of the forecast probability distribution but, instead, to
heavily sample the wings of the forecast probability
distribution. During the initial linear phase of the evo-
lution of the probability distribution, the wings of the
distribution are in fact the least probable portion of the
distribution. However, as noted by Mureau et al.
(1993), it may be useful to have ensemble members
that have as large a divergence as possible when at-
tempting to use ensemble spread as a predictor of fore-
cast skill. With this in mind, a number of techniques
using various optimally growing perturbations derived
from the forecast model have been used to generate
ensemble initial conditions (Buizza et al. 1993; Buizza
and Palmer 1994).

Despite enormous improvements over their prede-
cessors, the current generation of forecast models are
far from being perfect models of the real atmosphere.
It seems highly unlikely that the model climate (the
exact definition of climate in a model context will be
discussed below) is consistent with the observed cli-
mate. An extended integration of these models proba-
bly never gets particularly ‘‘close’” to any real ob-
served condition in model phase space. Inconsistencies
between the observed atmospheric state and the mo-
del’s climate can be one cause of a period of transient
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evolution (spinup) in forecast model integrations. Al-
though considering the implications of this spinup is
vital in applying ensemble techniques to real forecast
models, it introduces a level of complexity that is too
great for this study. Therefore, the work presented here
will be in a perfect model context (Leith 1974; Seid-
man 1981). The numerical model used is assumed to
exactly represent the real world to be forecast. Obser-
vations of this world can be generated by taking snap-
shots during some long integration of the model and,
if desired, adding some noise to these perfect obser-
vations. Such observations are guaranteed to be con-
sistent with the long-term climate of the model, and the
only source for spinup is the added observational noise
(and possibly the numerical details of the model’s time
differencing).

Modern operational forecast models are extremely
complex and require enormous amounts of computer
time to integrate. The huge number of variables in these
models can make forecast experiments difficult to an-
alyze. This study will restrict attention to a maximally
simplified model, which was selected to have the few-
est possible number of variables while still producing
“‘chaotic’” behavior. Simple model studies like this
have a long history in the atmospheric literature (Lo-
renz 1982). Experiments with simple models can give
insight into the fundamental behavior of dynamical sys-
tems that is unattainable from more complicated mod-
els. However, great care must be exercised if tech-
niques developed for simple models are ever to be ap-
plied to their vastly more complicated operational
cousins.

This paper will examine the selection of initial con-
ditions for ensemble forecasts in a simple, perfect
model framework. Section 2 presents the numerical
model and a quick discussion of the model’s climate.
Section 3 examines the selection of ensemble initial
conditions for this model and, in particular, the impact
of using information about the model’s climate. Section
4 examines methods for finding the local structure of
the model’s climate and is followed by additional en-
semble forecasting experiments in section 5. Section 6
provides a brief discussion of the implications of this
work for more complicated models.

2. Mode! eguations and atiractor

The simple model used in this study is the three-
variable convective model, whose derivation and phys-
ical interpretation can be found in Lorenz (1963). The
differential equations for this model are

xX=—ox+oy (1)
y=—xz+rx—y (2)
z =xy — bz, (3)

where the dot represents a derivative with respect to
time. Throughout this study the parameters are set to



24 JOURNAL OF THE ATMOSPHERIC SCIENCES

o = 10, r = 28, and b = 8/3. This parameter range is
the same as that used in Lorenz and is chosen because
it demonstrates chaotic behavior. The two-step time
differencing method described by Lorenz (1963) is
used to integrate the system (1-3) with a nondimen-
sional time step of 0.01. This time-stepping scheme is
self-starting thus avoiding any of the numerical spinup
problems mentioned in the introduction.

The structure of the attractor of the model has been
documented in a host of publications (Lorenz 1987;
Guckenheimer and Holmes 1983; Sparrow 1982). The
attractor represents the equilibrated behavior of the
model after it has been integrated a very long time from
arbitrary initial conditions and is also referred to as the
model climate. A brief description of some aspects of
the attractor that are relevant to later sections is pre-
sented here.

Exploring the structure of a model attractor can be
astronomically expensive. As noted by Lorenz (1987),
little is actually known about the structure of the at-
tractors of large dynamical systems. However, ex-
tremely long integrations of the Lorenz model are af-
fordable and can reveal the nature of its attractor.

It is vital that these extended integrations be per-
formed with high numerical precision for this model.
It was found that long integrations became periodic
with a period of several tens of millions of steps when
evaluated with 32-bit floating point arithmetic. Obvi-
ously, any finite precision representation of the equa-
tions will eventually repeat; however, it is desirable that
this repeat time be much longer than the time needed
to sample the details of the attractor structure. Sixty-
four bit floating point was used throughout this study,
and no evidence of periodic model behavior was dis-
covered. This is one example of how the attractor for
the continuous equations and the numerical model can
be fundamentally different. The remainder of this paper
will be concerned with the attractor of the numerical
model.

The attractor is composed of two distinct regions in
phase space; the model tends to persist in one region
of phase space for extended periods of time with oc-
casional bifurcations causing a shift to the other region.
The total nondimensional range of x, y, and z in the
attractor is approximately 50 nondimensional units.

For this study, the most important aspect of the at-
tractor is that it is not dense in the model’s phase space
[see Gleeson (1970) for a discussion of phase space].
Instead, the attractor is composed of a set of quasi-two-
dimensional sheets that are imbedded in the three-di-
mensional phase space. Figure 1 shows three cross sec-
tions (Lorenz 1987) of the attractor generated by find-
ing the first 10 000 points from an extended integration
that lie within distance 0.01 (or about 1/5000 of the total
attractor size) of a given plane in phase space. The
attractor is approximately two-dimensional when
viewed on these scales.
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Another method for studying the local attractor
structure is to use analogs (Lorenz 1969; Toth 1991;
Trevisan 1993). For example, a single point on the
attractor is selected as a base point; the model is then
integrated until 10 000 points with distance less than
1.0 from the base point are found. A study of analogs
reveals that the attractor is composed of nearly two-
dimensional sheets throughout the phase space. Locally
(i.e., over a region with a radius about 1/5¢ of the total
attractor size), these sheets are very thin, with almost
all points being within distance 0.0001 of a two-di-
mensional surface.

The two-dimensional structure of the attractor will
be exploited in the ensemble forecasting experiments
of the following sections. It is not clear how specialized
the behavior demonstrated by this simple model may
be since the structure of the attractors of higher dimen-
sional models are not well documented. The attractors
of some other low-order models, for instance the Lo-
renz three-variable dynamical model (Lorenz 1987),
are also somewhat more complicated. Nevertheless, it
seems plausible that higher-dimensional models might
exhibit attractors that are of considerably lower dimen-
sion than the imbedding phase space of the model.

3. Ensemble forecasts in a perfect model

In this section, it will be demonstrated that failing to
use information about the attractor structure when se-
lecting ensemble initial conditions can lead to errone-
ous ensemble forecasts. The model described in the last
section can be used as a perfect model to examine
methods for selecting initial conditions for ensemble
forecasts. Initially, the model is integrated for a very
long time, at least 100 000 steps here, to ensure that it
is on the attractor and no longer being influenced by
the effects of arbitrary initial conditions. This equili-
brated model is then taken as the ‘‘real world’’ physical
system to be forecast.

Exact observations from the model consist of the val-
ues of x, y, and z. It is assumed that exact observations
are impossible due to imperfections in the hypothetical
observing system. Observations are generated by add-
ing some random noise, selected from a given obser-
vational error distribution, to the states from the ex-
tended model integration. In this study, the distribution
of observational error is assumed to be multinormal
with standard deviation 1.0 for each of x, y, and z; the
errors in the different variables are uncorrelated. The
results are qualitatively insensitive to the size of the
noise as long as the majority of the errors are small
compared to the total size of the attractor.

Given a noisy observation and knowledge of the ob-
servational error distribution, a probability distribution
for the “‘exact’’ observed state can be generated. The
distribution for the exact observed state based only on
a knowledge of the observational error distribution and
the noisy observation is also multinormal with standard
deviation 1.0 with the noisy observation as the mean.
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In this perfect model context the observational error
distribution and the noisy observation are not tne only
information available. The previous section has dem-
onstrated that the attractor occupies only a small por-
tion of the total model phase space. The exact observed
state must lie on one of the quasi-two-dimensional
sheets of the attractor. The rest of this section compares
two types of ensemble forecasts. In the first set, the
unconstrained ensemble, the only information used in
generating the probability distribution of the initial con-

ditions is the observational error distribution and the
noisy observation. As noted above, the initial condition
distribution in this case is a three-dimensional multi-
normal distribution.

The second set of forecasts, referred to as the correct
ensemble forecasts, makes use of additional knowledge
about the model attractor. For this ensemble the initial
condition probability distribution is the conditional dis-
tribution of the three-dimensional unconstrained case
given that the exact observation must lie on one of the



26 JOURNAL OF THE ATMOSPHERIC SCIENCES

two-dimensional attractor sheets. Using the method
outlined below, this is the best initial distribution that
can be generated.

In this section, an additional constraint on the ob-
servational error will be introduced; this is that the
noisy observation lies on the model attractor. This is
obviously a highly artificial assumption, but it makes
the initial discussion more straightforward. It should be
noted that results based on this assumption will give a
lower bound on the differences between the uncon-
strained and correct forecasts. Since the purpose of this
section is to demonstrate that there are significant dif-
ferences between forecasts from the unconstrained and
correct distributions, this assumption is not a problem.
The unconstrained forecasts with the noisy observation
on the attractor are referred to as the unconstrained at-
tractor (UA) ensemble forecasts. For multinormal ob-
servational error distributions, the correct ensemble ini-
tial distribution is not changed by the fact that the noisy
observation is on the attractor. Figure 2 displays a sche-
matic of the initial condition distributions for the cor-
rect and UA ensembles.

It is straightforward to generate a large sample of the
three-dimensional UA initial condition distribution
given a noisy observed point. Generating the quasi-
two-dimensional distribution for the correct initial con-
ditions is sornewhat more difficult. First, a very large
set of analogs to the noisy observed point is generated
by integrating the model, sampling every 100th time
step, and retaining all points that lie within a fixed dis-
tance of the noisy observed point. Then, this analog
sample is itself selectively sampled to produce a set
with the appropriate two-dimensional mulitinormal dis-
tribution. This can be done by rejecting a percentage
of the analog points as a function of their distance from
the observed point.

The initial distributions and the subsequent forecast
distributions can be compared for the UA and correct
cases. The differences between the two distributions
can be regarded as errors in the UA case. The distri-
butions will be compared using plots of the ensemble
probability density projected onto planes in phase
space. Both initial condition distributions are sampled
with 100 000 ensemble members for the results shown
here. This allows relatively smooth probability density
plots to be made, even for forecast lead times that are
well outside the “‘linear’’ range. Results for a single
case will be presented; however, this case is represen-
tative of behavior found for noisy observations located
anywhere on the model’s attractor.

Figure 3 shows the projection on the local attractor
“‘plane’” of the initial ensemble distributions for the
noisy observed point x = 14.81, y = 12.65, z = 37.56
(which lies on the model attractor) for the correct dis-
tribution (Fig. 3a) and for the difference between the
UA and correct distributions (Fig. 3b). The UA case
has probability densities that are concentrated too heav-
ily near the center of the projected distributions. This
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FiG. 2. Idealized representation of the initial condition distribution
for the correct and UA ensembles. The UA distribution is represented
by the sphere, while the correct distribution lies entirely on the quasi-
two-dimensional attractor sheet. The asterisk represents the noisy ob-
servation, which lies on the attractor sheet in this case.

could have been deduced a priori; the density projec-
tion of a sphere onto a plane gives a higher concentra-
tion in the center, which falls off sharply toward the
edges of the circular projection. Since the correct dis-
tribution is quasi-two-dimensional, it-does not have the
increased density in the center of the distribution that
is found in the UA.

The evolution of the distributions as the ensembles
are integrated can now be examined. During the early
phases of the integration, the evolution of the shape of
the ensemble. probability density can be predicted well
by linear theory. During this linear phase, both the two-
dimensional correct and three-dimensional UA proba-
bility distribution ellipsoids are stretched or compacted
along two and three axes, respectively. As the integra-
tion time increases, the three-dimensional UA distri-
bution begins to collapse toward the attractor plane
containing the two-dimensional correct distribution.
This behavior continues on into the nonlinear evolution
regime.

Figure 4 shows the projection on the x—y plane of
the distribution for the correct ensemble after 50 time
steps (it takes on the order of 100 time steps for the
model to circulate around one of the two attractor
regions) in a regime that is still mostly linear. The pro-
jections on the other coordinate planes look qualita-
tively similar. Figure 5 shows the difference between
the x—y plane projections of the UA and correct ensem-
ble distributions after 50 steps. Not surprisingly, the
UA distribution continues to weight the central portion
of the distribution too heavily, while the outer portions
are not given sufficient probability. This difference is
highlighted in Fig. 6, which shows the ratio of the UA
to the correct distribution for the projection on the y—
z plane. For the outer regions of the distribution, the
UA ensemble has less than half of the correct proba-
bility while it is several times too large in the center.

As the integration time is further increased, the prob-
ability distributions begin to lose their ellipsoidal shape
and become stretched and folded as is typical for cha-
otic systems ( Guckenheimer and Holmes 1983 ). Points
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Fic. 3. Probability density projections on the local attractor plane for the correct (a) and for the UA minus correct (b) initial condition
distributions for the noisy observed point (x = 14.81, y = 12.65, z = 37.56), which lies on the model attractor. Sampled values are placed
in a 50 X 50 element binning grid, and a simple 9-point smoother is applied before contouring. Contour interval in (a) is 0.1 with the 0
contour omitted. Contour interval in (b) is 0.05 with regions less than —0.05 stippled.

that were initially on the fringe of the probability dis-
tributions are more likely to be stretched and twisted
into long filaments at earlier times. However, it is these
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fringe regions that are insufficiently weighted by the
UA distribution. Figure 7 shows a portion of the y—z
plane projections for the correct and UA ensembles af-

o
(]

1.00

-4.00

FiG. 4. Probability density projection on the x—y plane for the
correct initial condition distribution of Fig. 3a after 50 steps of
time integration. Contour interval is 0.2 with the zero contour
omitted.

FiG. 5. Unconstrained attractor minus correct distribution proba-
bility density projection on the x—y plane after 50 steps of integration.
Contour interval is 0.05 with the zero contour omitted; regions less
than —0.05 are stippled.
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ter 100 steps. As the correct distribution (Fig.
7a) shows, the distribution has been tremendously
stretched by this time with one low-probability filament
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crossing the more probable *‘center’’ region of the dis-
tribution in this projection. The UA distribution (Fig.
7b) gives somewhat greater weight to the center region
but gives far too little weight to the extended filament.
A significant portion of the correct probability density
lies in long stretched filament regions, which are all
drastically underweighted (generally by a factor of 5
or more) by the UA distribution.

These results demonstrate that using knowledge
about the model attractor can significantly influence the
probability distribution of both the initial conditions
and the forecasts. Errors resulting from using the UA
initial conditions that do not make use of information
about the attractor persist throughout the ensemble in-
tegration.

4. Finding the local attractor structure

In order to produce the correct ensemble initial con-
ditions, it is necessary to compute the local structure of
the attractor. This was done in the previous section us-
ing a long integration of the model to find analogs to
the noisy observed point. This requires significant
amounts of computation, even for an extremely simple
model like the one used here. For large models, finding
close analogs is practically impossible (Gutzler and
Shukla 1984; Van den Dool 1994). In order to produce
correct ensemble initial conditions in more realistic
models, a less costly method for approximating the lo-
cal attractor structure is essential.

Several possible alternative methods for finding the
local attractor sheet in the simple model will be ex-
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FiG. 7. Probability density projection on the y—z plane after 100 steps of integration for the correct (a) and UA (b) ensembles.
Contours are 0.002, 0.004, 0.008, 0.016, 0.032, and 0.064.
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TABLE 1. Mean angle in degrees between singular vectors and vector perpendicular to local attractor plane as computed by analogs. Resuits
are shown for optimization periods preceding and following the control points on the attractor by 1, 5, 10, and 20 steps. Angles are shown

for all three of both the left and right eigenvectors.

Most Most

Optimization Most stable Middle unstable Most stable Middle unstable
period left left left right right right
1-step precursor 59.04 64.88 44.62 58.23 65.53 44.58
S-step precursor 50.43 66.18 54.76 56.44 65.07 47.21
10-step precursor 41.22 71.64 59.50 36.73 70.57 66.28
20-step precursor 41.07 69.55 60.59 37.81 69.77 66.53
1-step postcursor 59.16 64.95 44.40 57.47 65.38 45.74
5-step postcursor 48.19 68.44 54.11 55.16 65.15 48.72
10-step postcursor 40.47 73.35 57.95 36.19 66.75 69.53
20-step postcursor 39.27 63.91 69.09 41.82 65.66 64.85

amined in this section. Not purely by coincidence, the
methods examined here are all related to methods that
are used to select ensemble members in real forecast
models at operational centers.

A set of 100 independent ‘‘test’’ points on the at-
tractor is used to evaluate algorithms for finding the
local attractor sheet in the simple model. For each of
these 100 points the local atiractor sheet is first com-
puted by locating close ‘‘analog’” points from an ad-
ditional long integration of the model. As has already
been noted, analog points within a radius of 1.0 (which
defines ‘‘local’” here) are very nearly coplanar. A per-
pendicular vector to the local analog attractor plane is
computed by taking the average of all the cross-product
pairs from a set of 10 close analogs.

The alternative algorithms compute a vector that is
approximately perpendicular to the local attractor
plane. The angle between these approximate vectors
and the true (analog computed) vectors is computed
for each of the 100 test points and used to evaluate the
quality of the approximate algorithms.

a. Singular vectors

The first algorithm examined computes singular vec-
tors (Farrell 1990) of the linear tangent propagator L
of the simple model in the vicinity of the 100 test points
(see the appendix for details of the definition and com-
putation of singular vectors). A priori, it seems rea-
sonable to assume that the most rapidly decaying struc-
ture, the singular vector with the smallest eigenvalue,
might be closely related to the perpendicular to the lo-

TasLE 2. Mean angle in degrees between purely real phase of
normal mode eigenvectors and the vector perpendicular to local
attractor plane as computed by analogs.

Mode Angle
Most stable 22.65
Second most unstable 85.63
Most unstable 86.44

cal attractor sheet. This is a direction that generally
decays very rapidly, as points off the attractor collapse
onto the attractor. Growing singular vectors should be
related to vectors on the attractor sheet. Since the at-
tractor sheet is so nearly two-dimensional, one would
not expect to have too much rapid growth projecting
out of the plane of the attractor.

For completeness, a large number of singular vector
predictors were compared to the true vectors. Singular
vectors were computed for 1, 5, 10, and 20 time step
optimization periods ending at ¢ (t = 1, + nAt, n = 1,
5, 10, 20) and for the optimization period both preced-
ing (z, = t, — nAt, where t, is the time corresponding
to the test point) and following (¢, = ¢,) the point on
the attractor. In each case the singular vectors at both
the initial and final times (the right and left eigenvec-
tors, see appendix ) were examined as potential predic-
tors. Table 1 summarizes some of the results for the
singular vector method. Even in the best cases the sin-
gular vectors were not particularly successful at pre-
dicting the orientation of the local attractor sheet. It was
the singular vector with intermediate growth rate that
seemed to be consistently the best predictor of the ori-
entation of the attractor sheet.

b. Normal modes

As several long-running debates in the literature
have demonstrated, if one can make an argument for
the importance of singular vectors in a dynamical sys-
tem, a similar argument can often be made for the ex-
ponentially growing normal modes of the linear tangent
propagator L (see appendix; this is a more general def-
inition of normal modes than has often been used in
the atmospheric science literature ). One might expect
the most rapidly decaying normal mode to be approx-
imately perpendicular to the local attractor sheet. Since
L is not self-adjoint in the Lorenz model, the normal
modes can be complex, and the eigenvectors are not
generally orthogonal. Still, a single phase of an eigen-
vector can be used as a predictor of the local attractor
sheet. Eigenvectors of L were computed for all the
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cases outlined in the singular vector discussion above.
However, the normal modes for a single time step, n
= 1, with ¢, = ¢, were clearly superior to all others.
The normal modes of this single-step propagator are
simply the traditional normal modes of the model lin-
earized around an observed state that have been dis-
cussed in many previous works. Table 2 summarizes
the results for the 100 test points. The most rapidly
decaying mode has a mean angle of approximately 22°
to the analog vector, while the two other modes have
angles of approximately 86°, indicating that they lie
very nearly on the local attractor plane. The normal
modes are clearly superior to singular vectors for the
purpose of approximating the local attractor plane ori-
entation in this model. Nevertheless, for some of the
test points the normal mode method fails dismally. For
instance, there are two cases for which the normal
mode angle is between 50° and 60° for the most unsta-
ble mode. These failed cases seem to occur in regions
where two separate attractor sheets are merging to-
gether.

A possible explanation for the superiority of the nor-
mal modes to the singular vectors as predictors of the
local attractor structure follows. Suppose a point P, lies
near the fringe of the local quasi-two-dimensional at-
tractor sheet. A perpendicular vector, X,, can be con-
structed from the nearest point, Q,, on the attractor
plane (i.e., some local best fit plane to all points on the
attractor) to P,. If X, projects heavily on a growing
normal mode, then one would expect the point P, to be
pushed farther away from the plane after an additional
time step. After one time step, P, and @, evolve into
P, and @,, with the vector X, from Q, to P, being
parallel to and longer than X,. Since the normal mode
vectors and the attractor plane orientation are relatively
invariant over a few time steps, X; would be nearly
perpendicular to the local attractor plane and would
also tend to have a large projection on the growing
mode; P, would be pushed even farther from the plane
after the next time step. Such a situation is not consis-
tent with the fact that the attractor stays very nearly
two-dimensional locally.

The same argument cannot necessarily be made for
singular vectors because of their nonmodal nature. Sup-
pose that Py, Q,, and X, are defined as above. Suppose
also that X, projects heavily on a growing singular vec-
tor (i.e., the most rapidly growing right eigenvector of
L* L) with an optimization period of » time steps. After
n additional time steps, P, and Q, evolve into P, and
Q,, and the distance between P, and Q, is greater than
the distance between P, and Q,. However, because the
singular vectors are nonmodal, the vector from Q, to
P, may not be close to perpendicular to the local at-
tractor plane; it could even lie nearly on the attractor
plane. The perpendicular vector, Xp, from P, to the
attractor plane could be shorter than X,, indicating that
the point is being pulled back toward the local attractor
sheet. Behavior like this would not be inconsistent with
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the nearly two-dimensional nature of the attractor. A
similar argument can be made for most rapidly growing
left eigenvectors of L*L. Therefore, one expects that
unstable normal modes must generally lie very nearly
on the attractor plane, while growing singular vectors
are not necessarily so constrained.

¢. Perturbed integrations

In the perturbed integration method, the points that
preceded each of the 100 test points in the nonlinear
model integration by a certain number of steps, #, are
located. Two additional randomly perturbed points
close to each precursor point are constructed and inte-
grated forward n steps to reach the time of the original
test point. The vectors between the two perturbed
points and the corresponding point in the original in-
tegration are orthogonalized and normalized to the
original perturbation magnitude after each step (Fig. 8
demonstrates the procedure for n = 3). In the limit of
small perturbation size, these vectors should converge
to the two largest local Lyapunov vectors (Buizza and
Palmer 1994). In general, given a large enough n, one
might expect these vectors to lie on the local attractor
sheet. However, it is also conceivable that such points
might not converge if they were frequently affected by
bifurcations of the attractor sheet.

The perturbed integration method was tried for pre-
cursor integrations of length n = 1, 5, 10, 20, 50, and
99 time steps. A number of normalization magnitudes

‘were investigated, but the results were insensitive to

this for magnitudes less than 1.0 and greater than
0.0001. The upper limit is apparently due to the fact
that the attractor sheets begin to demonstrate significant
curvature on these scales. The lower limit is determined
by the local thickness of the attractor sheets. Results
for the case with normalization amplitude 0.01 are

Orthonormalization
of Perturbations

Perturbed
Integrations

_____

Control Integration
.\\ ______ ~ *

Observed
Point

Precursor
Point

Fic. 8. Schematic diagram showing the perturbed integration
method for generating an approximation to the local attractor sheet.
The control integration is represented by the solid curve, and a pair
of perturbed integrations by the dash-dotted curves. The dashed ver-
tical lines represent the orthonormalization of the perturbations,
which takes place after each time step. The two vectors projecting
from the observed point at the end of the control integration should
project heavily on the local attractor sheet.
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TABLE 3. Mean angle between the cross product of two perturbed
integration vectors and the vector perpendicular to local attractor
plane as computed by analogs. Results are shown for perturbed
integrations started at 1, 5, 10, 20, 50, and 99 steps previous to the
control points. For these results the perturbation vectors were
normalized to a magnitude of 0.01 after each step.

Steps Angle
1 5491

5 40.34
10 28.36
20 14.50
50 0.53
99 0.30

shown in Table 3. The approximation becomes increas-
ingly accurate for longer precursor times, with mean
angles between the true analog plane vector and the
cross product of the two perturbation integration vec-
tors being less than 1° for 50 and 99 steps. There are
no significant outliers in these distributions, so it ap-
pears that this algorithm is robust throughout the at-
tractor.

The results of this section have demonstrated that,
given a point on the simple model’s attractor, relatively
inexpensive algorithms for finding the local structure
of the attractor can be constructed. The normal mode
approximation was fairly good and superior to the sin-
gular vector method, although it did break down in
some regions of the attractor. The perturbed integration
method is considerably more expensive than the normal
mode method for low-order models like this. However,
it produces better and more consistent results.

5. Ensemble forecasts without analogs

The previous section has demonstrated that, in this
simple model, finding the orientation of the local at-
tractor sheet is relatively simple given a point on the
attractor. However, it may not be easy to find a point
on the attractor given a point near the attractor. Recail
that in section 3, the noisy observed points were con-
strained to lie on the attractor. This constraint is arti-
ficial even by the standards of the simple perfect model
experiments being studied here.

At this point, the requirement that the noisy obser-
vation lie on the model attractor will be eliminated.
Figure 9 displays a schematic of two additional ensem-
ble distributions that will be studied. The unconstrained
ensemble has the same three-dimensional multinormal
distribution as the UA ensemble of section 3, except
that its mean is not constrained to be on the attractor.
The second new initial condition distribution is the con-
strained ensemble (Fig. 9). The relation between the
unconstrained and the constrained ensembles is similar
to that between the UA and correct ensembles in sec-
tion 3 (Fig. 2). The constrained ensemble is the con-
ditional distribution of the unconstrained distribution
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to a local ‘‘pseudoattractor’” plane. This pseudoattrac-
tor plane is defined by applying the methods of the
previous section to the noisy observed point that is not
on the attractor plane. These algorithms will now find
a plane in phase space passing through the noisy ob-
servation, but this plane is no longer a close approxi-
mation of the local attractor sheet. Nevertheless, as the
discussion below will demonstrate, this pseudoattractor
plane is likely to be approximately parallel to any
nearby attractor sheet.

The correct distribution corresponding to the two
new approximate distributions is identical to that stud-
ied in section 3 except that its mean is the point on the
attractor that is nearest to the noisy observation (this
statement is not necessarily true for observational error
distributions that are not normal or in the vicinity of
branching attractor sheets).

A large number of ensemble integrations were made
for both constrained and unconstrained initial condi-
tions for noisy observed points throughout the model
attractor. When unconstrained forecasts are made for
noisy observed points that are close (within distance
1.0) to the model attractor, the initial three-dimensional
distribution collapses within approximately 50 time
steps to a quasi-two-dimensional distribution. At the
same time, the entire distribution gradually moves to-
ward the nearby attractor sheet. If the noisy observed

Noisy Observed
Point

Pseudo-

Attractor

Sheet i
Nearest Point
On Attractor
Sheet

Attractor

Sheet

FiG. 9. Idealized representation of the initial condition distribution
for the unconstrained, constrained, and correct initial condition dis-
tributions. The unconstrained distribution is represented by the sphere
centered on the noisy observation, while the constrained is the circle
confined to the pseudoattractor plane. The correct distribution is on
the attractor sheet, which is approximately parallel to the psendoat-
tractor plane, and is centered about the point on that plane closest to
the noisy observation.
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FiG. 10. Difference in probability density projection on the x—y plane between the correct distribution and the unconstrained (a)
and constrained (b) distributions after 50 steps of integration. Contours are as in Fig. 5.

point is far from the nearest attractor sheet, the three-
dimensional cloud of points still collapses to a quasi-
two-dimensional distribution in about 50 steps, but it
may take much longer for this distribution to move onto
an attractor sheet. The behavior of the constrained dis-
tributions is analogous; for noisy observations close to
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FiG. 11. Probability density projection on the y—z plane after 100
steps of integration for the constrained ensemble. Contours are as in
Fig. 7.

the attractor, the distribution remains quasi-two-dimen-
sional and slowly moves toward the nearest attractor
sheet. The constrained distribution might be expected
to produce a good simulation of the evolution of the
correct distribution since the dynamical behavior of
perturbations in directions perpendicular to the local
attractor planes is dominated by a decay toward the
plane. This hypothesis was supported by tests on a large
number of noisy observed points.

In order to demonstrate the behavior of the uncon-
strained and constrained ensembles, the noisy observed
point of the examples in section 3 is shifted by a phase
space distance of 0.5 in a direction perpendicular to the
attractor plane. The noisy observed point in this revised
example is x = 14.38,y = 12.76, z = 37.74. The correct
distribution corresponding to this noisy observation is
identical to that discussed in section 3. Both the un-
constrained and constrained ensembles for this noisy
observed point are sampled using 100 000 ensemble
members.

Forecasts produced from the unconstrained distri-
bution are somewhat less similar to the correct forecast
distributions than were those produced by the UA en-
semble in section 3. Figure 10a shows the difference
in the x—~y plane projection of the probability density
for 50 step forecasts between the unconstrained and
correct ensembles and can be compared to Fig. 5.

Figure 10b shows the same difference but for the
constrained ensemble and the correct ensemble. The
differences are less than those found for the UA ensem-
ble. The superior performance of the constrained en-
semble continues into the nonlinear regime. Figure 11
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shows the constrained ensemble distribution after 100
time steps corresponding to the UA and correct distri-
butions in Fig. 7. The constrained distribution is very
close to the correct and better approximates the prob-
ability of less likely events than either the UA or un-
constrained ensembles. The unconstrained distribution
(not shown) is more similar to the UA distribution and
underweights the less likely events. This demonstrates
that, at least in this particular simple model, using some
information about the nearby attractor structure can
produce better ensemble forecasts, even if the exact
location of the nearby attractor remains unknown.

A brief discussion of how the constrained ensemble
members were generated is appropriate. The Lorenz
model was integrated backward 30 steps to find a pre-
cursor of the noisy observed point. For precursors of
less than about 50 steps, the model can be integrated
backward using the two-step method of the forward
model applied to the negative of the local time ten-
dency; even older precursors can be found successfully
by explicitly inverting the two-step time-stepping
method used in the forward model. Once the 30-step
precursor point was found, the perturbed integration
method of section 4 was used to find a local plane.
Ensemble members were then selected from a binormal
distribution on this plane. This adds an additional in-
accuracy to the constrained distribution. Analog points
on the quasi-two-dimensional model attractor are not
exactly uniformly distributed locally. The correct dis-
tribution constructed in section 3 sampled this nonuni-
form structure by selecting the local distribution from
a large set of analogs. The nonuniform behavior is re-
fiected in the fact that the correct distribution of Fig.
3a is not a perfect ellipse; instead, the area of highest
density is offset from the center of the distribution. The
constrained initial condition distribution assumes local
uniformity, and so the initial condition distribution con-
tours (not shown) are circles. The similarity between
the forecast distributions demonstrates that the depar-
ture from uniformity of the analogs is a minor effect in
this case.

The results of the last three sections can now be com-
bined in a method for ensemble forecasting (in this
simple perfect model) that does not utilize analogs. As-
sume that one is given a noisy observation of the per-
fect model and a probability distribution for the obser-
vational error. Given a noisy observed point, the meth-
ods of section 4 can be used to compute the local plane
that is approximately parallel to nearby attractor sheets.
Next, given the distribution of the observational error,
find the conditional distribution when restricted to the
local plane. This distribution can then be sampled with
an ensemble of whatever size is affordable. The ensem-
ble members are then integrated to produce a sample
of the forecast probability distribution.

This method could be combined with more sophis-
ticated data assimilation techniques, for instance ad-
Joint methods for four-dimensional assimilation (Der-
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ber 1989). This would allow one to find a better ap-
proximation to the exact observation than is given by
a single noisy observation. However, it would also
change the probability distribution of the error in the
initial condition.

6. Implications for more complicated models

The differences between the constrained and uncon-
strained ensemble integrations demonstrated in the pre-
vious sections are somewhat subtle, but such differ-
ences might be much larger in higher-order models. In
the Lorenz model the difference in dimension between
the full three-dimensional phase space and the local
attractor is only 1 (this statement is not entirely rigor-
ous since the local attractor is technically only quasi-
two-dimensional ). However, in larger models the dif-
ference in dimension could be much larger. The degree
to which the unconstrained initial conditions over-
weight the center of the distribution when projected
onto the attractor is approximately proportional to ¢,
where ¢ is a constant greater than 1 and 7 is the dif-
ference in dimension. (This relation comes from pro-
jecting the mass of an m + n dimensional hypersphere
of uniform mass onto an m dimensional manifold and
comparing the difference in weights between the pro-
jection on the center and the edge of the manifold).
This relation suggests that the benefits of using the con-
strained ensemble initial conditions could be much
greater in higher-order models. In addition, the dimen-
sion of the distribution that must be sampled by the
ensemble is reduced when using the constrained initial
conditions. In real models, where each integration can
be costly, any method for reducing integrations that do
not accurately sample the initial condition distribution
could be of value.

There remain a number of technical difficulties with
extending the methods of this report to more realistic
models. One problem is that the local attractor structure
of more complicated models is unknown (Lorenz
1987). Furthermore, it is too expensive to determine
the attractor structure by the analog method presented
here. The alternative algorithms presented for the Lo-
renz model in section 4 are implicitly dependent on the
fact that the attractor is locally nearly two-dimensional.
Without knowing some details about the local attractor
structure, for instance the local dimension of the at-
tractor, it becomes difficult to apply these algorithms
to find ensemble initial conditions that lie on the at-
tractor or on a surface parallel to the attractor.

An additional problem involves the expense of the
algorithms of section 4 when they are applied to models
with many degrees of freedom. Even if information
about the local attractor structure is known, it may be
too expensive to apply algorithms to approximate the
local attractor. For instance, algorithms for computing
normal modes or singular vectors cannot be applied to
models as large as current operational NWP models.
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Operational centers that generate ensembles using these
modes generally use heuristic simplifications or com-
pute the normal modes for models that are much sim-
pler than the full forecast models (Mureau et al. 1993).
Although application of the perturbed integration
method could be considerably less expensive for large
models, it is not entirely clear at this point how this
algorithm can be extended to more complicated mod-
els. The perturbed integration method as developed
here requires a precursor point of the observations; it
is not clear that practical algorithms exist for finding
precursors in large models.

Despite these difficulties, research into finding good
initial ensemble members may still be productive. Be-
cause operational centers are, at least for the present,
compelled to run forecast models at close to the highest
resolution technologically possible, it seems unlikely
that any center will run very large ensembles in the
foreseeable future. The selection of good initial ensem-
ble members becomes even more essential when a very
small sample is being used to approximate the evolu-
tion of an observational distribution. It is quite possible
that information from even a limited heuristic approx-
imation to the types of algorithms presented in section
5 could be valuable in this context. In fact, the opera-
tional centers have already implicitly accepted this as-
sumption by using heuristic algorithms to select initial
ensemble members. Methods making use of the most
rapidly growing normal modes and singular vectors to
select ensemble initial conditions have been investi-
gated at the European Center for Medium-Range
Weather Forecasts (Mureau et al. 1993). The perturbed
integration method for approximating the local attractor
sheet is somewhat similar to the breeding cycle used
operationally for ensemble selection at the National
Meteorological Center (NMC) (Toth and Kalnay
1993; Kalnay and Toth 1994).

Although it is not immediately clear how to extend
algorithms for finding the model attractor, at least a few
suggestions can be made. First, if one is given a point
on the attractor of a large model, it may be possible to
discover something about the local structure of the at-
tractor. If the attractor is not dense in the phase space,
but instead has a reduced dimension of some sort (Hou-
tekamer 1991), an extension of the perturbed integra-
tion method may be able to produce information about
the attractor structure. One could integrate a large set
of perturbations around a precursor state and orthonor-
malize these at each step. As the perturbed integration
time increases, these perturbations should become
increasingly rich in their projection on the local attrac-
tor. It should also be possible to find an approximation
to the local dimension of the attractor by determining
how many independent vectors are needed to form a
basis for a significant portion of the subspace spanned
by these perturbation vectors. Similar algorithms can
be formulated for linear problems (Anderson 1991),
and it is not immediately clear that this method would
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not be successful. If one could find the local attractor
structure given a point on the attractor, then one also
might be able to approximate the nearby attractor struc-
ture given a point near the attractor (a noisy observa-
tion) using the perturbed integration method. The ex-
istence of bifurcations and related complexities are still
an unresolved problem for these approaches. Small ad-
ditional complexities resulting from bifurcations were
also ignored in sections 3-5 to simplify the presenta-
tion.

In order to investigate some of these possibilities,
additional research with models of intermediate com-
plexity is needed. Given current computational re-
sources, it might be possible to repeat the experiments
presented here in some slightly less simplified model
such as the 28-variable model of Lorenz (1965). Such
a model allows for much more variety in the local struc-
ture of the attractor and might be small enough that
some information from analogs could be used. If the
methods proved successful in this context, they could
then be extended to more realistic models. Evaluating
the methods in a more realistic context would be dif-
ficult since information about the local attractor struc-
ture from analogs would no longer be accessible.

Finally, all discussions to date have focused on per-
fect model experiments. Unfortunately, one is limited
to a single realization of a perfect model experiment
with the real atmosphere because no close analogs are
ever likely occur (Van den Dool 1994). Algorithms
for ensemble selection must be able to deal with both
observational error [ Kalnay and Toth (1994) addressed
this directly with the breeding method] and a model
attractor that is not the same as the attractor of the sys-
tem being modeled (the real world). The easiest way
to extend methods like those discussed is to view the
combined observational/assimilation/forecast model
system as a single stochastic dynamical system. In this
case, an algorithm similar to the perturbed integration
method might make use of ‘‘parallel”” assimilation cy-
cles in order to estimate the structure of the attractor in
the real forecast model. Such a method would be some-
what similar to the NMC’s ‘‘breeding’’ method, which
makes use of a single assimilation.

7. Conclusions

Methods for selecting initial conditions for ensemble
forecasts in a simple perfect model context have been
presented. It has been demonstrated that using only in-
formation about the distribution of ‘‘observational’’ er-
ror in the perfect model when selecting ensemble mem-
bers can result in an incorrect representation of both
the initial condition probability distribution and the
probability distribution of the forecasts. The correct ini-
tial and forecast distributions can be obtained only if
information about the attractor structure (climate) of
the perfect model is utilized. In the simple model used
here the correct initial distribution is a quasi-two-di-
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mensional structure, while the distribution based only
on the observational error is a fully three-dimensional
structure. Ensemble forecasts based solely on the ob-
servational error distribution overestimate the proba-
bility of points in phase space that are close to the ob-
served point while more remote points are insuffi-
ciently weighted. This problem might be exacerbated
in more complex models, although this has not been
demonstrated.

Initially, the local attractor structure was found by
using extremely long integrations of the forecast model
and selecting close analog points to a noisy observa-
tion. This method is far too costly to apply to all but
the simplest models. Therefore, a number of heuristic
algorithms for finding the local attractor structure were
presented. Three basic classes of algorithms, normal
modes, singular vectors, and perturbed integrations,
were investigated. These three methods are closely re-
lated to heuristic methods that have been used for en-
semble initial condition selection in realistic forecast
models. While the singular vector method gave some
information about the local attractor structure, it was
inferior to the normal mode method, which was in turn
inferior to the perturbed integration method.

These three algorithms were first developed in a set-
ting in which the observed point was known to be on
the model attractor. This highly artificial condition was
later removed without significantly affecting the results
of the ensemble integrations.

Extending the results of this study to more realistic
models will not be simple. It is not feasible to explicitly
compute the local attractor structure in any significantly
more complicated model, so it will become much more
difficult to validate the algorithms presented. In addi-
tion, some a priori knowledge about the local attractor
structure was exploited in the methods presented here;
such information is not readily available in more real-
istic models. Despite these difficulties, there seems to
be some hope that an extension of the perturbed inte-
gration method will be able to provide information
about the local attractor structure in much more com-
plicated models. This information in turn could be used
to produce ensemble initial conditions that are good
samples of the correct initial condition probability dis-
tribution and which may provide better operational en-
semble forecasts.
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APPENDIX A
Singular Vectors and Normal Modes

Singular vectors (Buizza and Palmer 1994) are de-
fined as the eigenvectors of A = L*L, where L = L(t,
to) is the linear tangent propagator or resolvent (Tala-
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grand and Courtier 1987) for the simple mode! and the
asterisk represents the adjoint operator. The linear op-
erator L gives the evolution of a small perturbation to
the model state at time ¢,, after it has been integrated
to time . The left eigenvector of A with the largest
eigenvalue represents the final condition that demon-
strates the largest growth from time ¢ to ¢,; the right
eigenvector is the initial perturbation that results in the
left eigenvector. The L2 norm in phase space has been
used implicitly as a distance metric in this definition.
The normal modes discussed in this paper are the ei-
genvectors of the resolvent L itself. For a single time
step optimization period, these are equivalent to the
eigenvectors of the linear tangent operator of the
model.
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