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ABSTRACT

A method is presented for determining when an ensemble of model forecasts has the potential to provide

some useful information. An ensemble forecast of a particular scalar quantity is said to have potential predictive
utility when the ensemble forecast distribution is significantly different from an appropriate climatological dis-
tribution. Here, the potential predictive utility is measured using Kuiper’s statistical test for comparing two
discrete distributions. More traditional measures of the potential usefulness of an ensemble forecast based on
ensemble mean or variance discard possibly valuable information by making implicit assumptions about the
distributions being compared.

Application of the potential predictive utility to long integrations of an atmospheric general circulation model
in a boundary value problem (an ensemble of Atmospheric Model Intercomparison Project integrations ) reveals
a number of features about the response of a GCM to observed sea surface temperatures. In particular, the
ensemble of forecasts is found to have potential predictive utility over large geographic areas for a number of
atmospheric fields during strong El Nifio—Southern Oscillation anomalous events. Unfortunately, there are only
limited areas of potential predictive utility for near-surface fields and precipitation outside the regions of the
tropical oceans. Nevertheless, the method presented here can identify all areas where the GCM ensemble may
provide useful information, whereas methods that make assumptions about the distribution of the ensemble
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forecast variables may not be able to do so.

1. Introduction

Since the early days of numerical prediction of the
atmosphere, there has been a continual drive to extend
the lead times for which useful forecasts can be pro-
vided. Concurrently, there has been a rapidly growing
understanding of the basics of nonlinear dynamical sys-
tems, which has led to the conclusion that practical
forecasting is inherently a stochastic problem in which
the ratio of ‘‘noise’’ to forecast ‘‘signal’’ generally in-
creases with lead time. In order to deal with the sto-
chastic nature of the forecast problem, both research
and operational atmospheric modeling groups have be-
gun to use ensemble model integrations. Questions of
exactly how to utilize the information from an ensem-
ble of model! integrations have not yet been satisfac-
torily resolved. Most groups have examined the ensem-
ble mean forecasts (Milton 1990; Mo and Kalnay
1991), some have examined the farthest outlier mem-
bers of the ensemble (Mureau et al. 1993), and many
have looked at a variety of algorithms for cluster anal-
ysis (Brankovic et al. 1990; Murphy 1990; Tracton and
Kalnay 1993). Attempts to predict the skill of ensem-
ble mean forecasts have also been made. This has been
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done by using the growth rates of some class of linear
dynamical modes (Palmer 1993) or by using some
measure of the ensemble spread as a predictor of the
expected skill (Hoffman and Kalnay 1983; Murphy
1989; Brankovic et al. 1994).

Here, a method for evaluating when ensemble fore-
casts contain potentially useful information is pre-
sented. The question to be addressed is, When does an
ensemble forecast provide more information than the
appropriate (model) climatology? If the climate pro-
vides a forecast that is indistinguishable from the en-
semble, then there is little sense in utilizing the ensem-
ble integrations.

Traditional methods of evaluating the utility of en-
semble forecasts are based upon a priori assumptions
about the underlying continuous forecast probability
distributions that are being compared. For example,
one class of methods for evaluating the utility of an
ensemble forecast has been based upon comparisons
of the variance of the ensemble to the variance of the
climate. If the ensemble variance is not significantly
smaller than the climate variance, it has generally
been assumed that the ensemble is not useful as a
prediction (Shukla 1985). For instance, Stern and
Miyakoda (1995) examined the ratio between an en-
semble variance and a climate variance, their repro-
ducibility, to assess the potential utility of their en-

semble forecasts (technically simulations, see sec-
tion 2).
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A second class of methods for evaluating ensembles
attempts to find significant differences in the means of
the ensemble forecast and the climate control distri-
bution. The Student’s t-test of Chervin et al. (1976)
and numerous subsequent authors falls into this cate-
gory.

These traditional methods of assessing the utility of
ensemble forecasts make implicit assumptions about
what types of differences can exist between the distri-
butions being compared. The variance methods gen-
erally assume that the means of the distributions are the
same and that the distributions are normal, while meth-
ods such as the ftest assume that only the means differ
while the variance and shape of the distributions are
identical. Since ensemble forecasts are primarily being
applied to situations in which there is a relatively small
amount of forecast signal and a large amount of noise,
it seems inappropriate to discard potentially useful in-
formation by making any a priori assumptions about
the distributions being compared.

In what follows, the usefulness of ensemble forecasts
is examined without making any a priori assumptions
about the distributions of the forecast variables. A
quantity that determines whether ensemble forecasts
may provide more information than a climate forecast,
the potential predictive utility (PPU), is defined. Sta-
tistical methods that are nonparametric, robust, and re-
sistant are used to evaluate this quantity. The PPU is
compared to more traditional measures of ensemble
forecast usefulness; it is demonstrated that the PPU is
a superior measure for determining when the ensemble
forecasts can provide useful information.

Section 2 formally defines the concept of PPU, and
section 3 presents a statistical method for evaluating
this quantity. Section 4 provides an example applica-
tion to an externally forced simulation (boundary value
problem). Section 5 offers some discussion and sug-
gestions for future research.

2. Definition of potential predictive utility

A number of previous studies have used the term
‘‘predictability’” with an assortment of definitions (Lo-
renz 1965; Shukla 1981; Hayashi 1986; Murphy 1989;
also see the review article by Shukla 1985). In order
to avoid possible confusion with previous definitions,
the term ‘‘potential predictive utility’’ will be defined
here. An ensemble forecast is said to have PPU for
some quantity Q if the ensemble distribution of Q can
be distinguished from an appropriate ‘‘climatological’’
distribution of Q in a statistically significant way. In
other words, an N-member ensemble with PPU must
provide a forecast that is significantly different from
the forecast that could be produced by randomly se-
lecting N members from the model’s climatological
distribution.

An idealized application of the notion of PPU is il-
lustrated in Fig. 1, which displays continuous proba-
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FiG. 1. An idealized depiction of potential predictive utility in an
ensemble forecast problem.

bility density functions for a hypothetical ensemble
forecast and the corresponding climatology. The en-
semble forecast distribution at the initial time is deter-
mined by some ‘‘observational uncertainty.’’ This ini-
tial distribution gradually expands and asymptotically
approaches the model’s climatological distribution as
the forecast lead time increases. PPU exists as long as
the ensemble forecast distribution can be distinguished
from the climatological distribution. In the idealized
example of Fig. 1, the ensemble forecast clearly has
PPU at lead time 1, but the situation is not as clear by
lead time 2. Although Fig. 1 depicts continuous distri-
butions, all that is available in practical forecast situa-
tions are some finite samples drawn from the underly-
ing continuous distributions of the forecast and the cli-
mate (throughout the following, ‘‘distribution’’ will
refer to a discrete sample of the continuous probability
distribution unless prefaced by *‘continuous’”).

It is appropriate at this point to discuss the concepts
of significance and strength when examining whether
two distributions are different. PPU only evaluates ex-
plicitly the significance of differences between two dis-
tributions. The strength of the difference (i.e., how
large a difference is it) can be indirectly inferred from
the size of the ensemble needed to find significant dif-
ferences. As an example, in Fig. 1, a very small ensem-
ble, for instance one with three members, would cer-
tainly be able to provide significant evidence that the
lead time 1 and climate distributions are different.
However, it might take a very large ensemble to pro-
vide significant evidence that the lead time 2 and cli-
mate distributions are different.

The idealized example of Fig. 1 was a traditional
initial value forecast problem, similar to the weather
forecasts produced by operational centers. Another ap-
plication of PPU would be to a boundary value problem
“‘forecast’” similar to those produced for the Atmo-
spheric Model Intercomparison Project (AMIP) (Gates
1992). In this case, time-dependent external forcing is
specified and allowed to influence the evolution of the
ensemble forecasts. After some sufficiently long inte-
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gration time, the ensemble distribution no longer de-
pends upon the details of the initial condition distri-
bution but is instead controlled by the external forcing.
In this case, the ensemble may demonstrate PPU only
at certain times when the external forcing is unusually
compelling. Technically, such boundary value prob-
lems are simulations and not truly forecasts; however,
the terms *‘forecast’” and ‘potential predictive utility’’
will be applied in this context. A boundary value prob-
lem of this kind will be examined in section 4.

One of the most delicate issues in studying PPU is
the selection of the proper climate distribution. This
distribution represents the null hypothesis forecast,
which has no PPU by definition. An improper selection
of the climate can make all ensemble forecasts appear
to have PPU. In general, the climate distribution should
be some ‘‘large’’ random sample from the same model
that is used to produce the ensemble forecasts. An ap-
propriate climate for the example in Fig. 1 would be a
random sample from an extended integration of the
forecast model.

The selection of the appropriate climate for the
AMIP problem may be considerably more difficult. A
sample from a long integration of the model might be
appropriate, but this time the long integration must also
randomly sample the distribution of external forcing.
For instance, a long (climate ) integration of the model
forced by many ENSO warm event years and very few
cold event years would probably be considered an in-
appropriate climate.

3. Statistical tests for comparing distributions

This section discusses a class of statistical tests for
evaluating whether two discrete distributions can be
distinguished. The null hypothesis for the tests is that
the two distributions were randomly selected from the
same continuous probability distribution. The tests pro-
duce the probability that two discrete distributions ran-
domly selected from the same continuous distribution
would be more different than the two given distribu-
tions. If the probability is small, then the two discrete
distributions can be assumed to come from different
continuous distributions. Here, a small value of the
probability implies that the ensemble and climate dis-
tributions are different and that the ensemble has PPU.

The significance of the Kuiper statistic (Press et al.
1986) is selected as the measure of PPU here. The Kui-
per’s statistic evaluates differences in the cumulative
distributions corresponding to two discrete distribu-
tions. There exists an asymptotic series expansion for
the statistical significance of the Kuiper statistic that
can be evaluated accurately using only a few terms.
This is analogous to the use of the incomplete gamma
function to evaluate the significance of the more fa-
miliar chi-square statistic (Press et al. 1986). The eval-
uation of the significance automatically takes into ac-
count the size of the distributions and the computed
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statistical significance is reasonably accurate for distri-
bution sizes as small as 4. Small values of the signifi-
cance correspond to ensemble forecasts with larger
PPU. The confidence that the ensemble and climate dis-
tributions were sampled from different continuous dis-
tributions is equal to 1 minus the value of the Kuiper
significance.

It is important to note that the Kuiper test is adept at
disproving the null hypothesis, not at proving it (i.e.,
it can not prove that two distributions are sampled from
the same continuous distribution). If one applies the
Kuiper test to many pairs of distributions selected at
random from the same continuous distribution, the set
of test results is closely approximated by a uniform
distribution on the interval 0 to 1, U(0, 1). This is
roughly analogous to behavior found for the more fa-
miliar chi-square test.

There are a number of other statistical tests related
to the Kuiper test that can be used to evaluate the dif-
ference between two discrete distributions. The most
well-known of these tests is the Kolmogorov—Smirnov
(KS) test (Knuth 1981). Unlike the Kuiper test, the
KS test is not equally sensitive to differences at all
points on a distribution but is more sensitive to differ-
ences between two distributions that occur close to the
median values. The Kuiper test has the more desirable
property of being equally sensitive to differences at all
points in the distributions, including differences far out
on the distribution tails (Press et al. 1986).

A third related statistic is the Anderson—Darling sta-
tistic (Anderson and Darling 1954; Best 1994). Like
the Kuiper test, it is equally sensitive to differences
throughout the distributions. However, there is no sim-

‘ple way to compute the significance of the Anderson—

Darling statistic.

All results presented below were evaluated using all
three statistics, although results are shown only for the
Kuiper test. In general, there was very little difference
between the results using the three different methods.
It is, however, relatively easy to construct cases in
which the KS test is inferior to the Kuiper and Ander-
son—Darling tests. Given the relative ease of comput-
ing the Kuiper test, it was decided that this statistic was
preferable to the Anderson-Darling statistic for the
purposes of this presentation. Note that the concept of
PPU is independent of the statistical tool used to dis-
tinguish between two distributions. It is possible that
more powerful statistical tools could prove to be su-
perior to the Kuiper test for evaluating PPU.

One traditional way for evaluating quantities similar
to the PPU (often referred to as predictability or poten-
tial predictability ) has been to measure the variance of
the members of an ensemble forecast and to compare
this to the variance of a sample of the climate (Shukla
1981; Hayashi 1986). If the variance of the ensemble
is larger than that of the climate, predictability is gen-
erally said to be lost. This same concept is related to
the use of ensemble spread to obtain an a priori estimate
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of perfect model skill (Barker 1991; Hoffman and Kal-
nay 1983) and skill of real forecasts (Brankovic et al.
1990; Murphy 1990). The potential predictability of
Chervin (1986) is also a ratio of variances between
simulations with climate-mean boundary forcing and
the observed climate.

The PPU as measured by the significance of the
Kuiper statistic is a more powerful measure than those
that only make use of information about the variance
of the ensemble and the climate. Figure 2 shows two
examples where comparing the variances can be mis-
leading. In Fig. 2a, the solid curve is the climate dis-
tribution (the continuous curves here can be thought of
as the continuous distributions from which the discrete
distributions of the ensembles and the climate are sam-
pled), while the dashed curves are two ensemble dis-
tributions that differ only in a translation of their me-
dian values. The traditional measures that make use of
only the variance would find no difference between
these two ensemble distributions; however, the PPU of
these two ensembles is very different. Ensemble 1 has
a distribution that is quite similar to the climate control;
small discrete distributions would almost certainly fail
to distinguish these distributions and would indicate no
PPU. Ensemble 2 has a distribution that is very differ-
ent from the climate; even a very small ensemble would
be able to determine that these two distributions are
different. In practical terms, if these were distributions
of temperature at a model grid point, ensemble 1 would
have a distribution virtually indistinguishable from the
long-term climate while ensemble 2 would indicate that
the forecast temperature was certain to be many stan-
dard deviations above normal. For the same size of en-
semble, ensemble 2 would have a greater PPU than
ensemble 1.

Figure 2b shows another extreme example in which
tests making use of only the variance would be mis-
leading. In this case, the variance of the ensemble fore-
cast is much larger than that of the climate, which
would traditionally be interpreted as indicating that the
ensemble has no PPU. However, the distributions are
clearly different, which would be reflected in the sig-
nificance of the Kuiper statistic. The ensemble forecast
of temperatures either far above or far below normal
clearly has PPU. This is a particularly clear example of
an instance in which the variance ratio technique’s as-
sumption of normality for the ensemble distribution is
inappropriate.

As noted in the introduction, a second class of tests
for evaluating ensembles has been based on detecting
significant differences in the means of two distributions
(Chervin 1976). It is obviously straightforward to con-
struct examples analogous to those of Fig. 2 but in
which distributions have the same mean despite having
entirely different variances or shapes. An ensemble
forecast distribution with the same mean.but signifi-
cantly different variance/shape from the climate dis-
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FiG. 2. Idealized distributions of ensemble forecasts and climate.
In (a) the two ensembles have identical variances but markedly dif-
ferent PPU. In (b) the ensemble has a very large variance but a sig-
nificant PPU.

tribution clearly has potential to provide useful forecast
information.

4. Boundary value problem in a GCM

An example of the concept of PPU is presented using
an ensemble of integrations in an atmospheric GCM
forced by observed sea surface temperatures. The at-
mospheric model is an 18-level spectral model trun-
cated at T42 and is described in Gordon and Stern
(1974, 1982). The prescribed SSTs are those used for
AMIP (Gates 1992). A nine-member ensemble was
integrated for 10 years from 1 January 1979 through
31 December 1988. The initial conditions for the en-
sembles were taken from analyses for 12 December
1978 through 21 January 1979, sampled every five
days. Each of these analyses was then used as an initial
condition as if it were the analysis for 1 January 1979.
A more detailed description of the ensemble integra-
tions can be found in Stern and Miyakoda (1995).

The first 14 months of the ensemble integration were
discarded in an attempt to eliminate direct effects of the
initial conditions. The remainder of the ensemble in-
tegration was divided into 35 three-month seasonal
means extending from MAM (Mar, Apr, May) 1980
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FiG. 3. Log of PPU for precipitation field from DJF 1982/83. Lightly shaded areas have values
of less than 0.1 (confidence of statistical significance > 90%), while heavy shading is used for
values of less than 0.01 (confidence of statistical significance > 99%).

through SON (Sep, Oct, Nov) 1988 giving a total of
eight years for the DJF (Dec, Jan, Feb) season and nine
years for all others.

The question of interest in this ensemble integration
is whether the distributions of seasonal-mean atmo-
spheric fields can be significantly influenced by the ob-
served SST forcing. In other words, can the distribution
of the nine-member ensemble for a single season in a
given year be distinguished from the model’s climate
distribution for that season? In this case, the most ap-
propriate available climate distribution is the set of
eight (seven for DJF) nine-member ensembles for the
same season but in all the other years (potential short-
comings of this choice of climate will be discussed later
in this section). If the distributions can be distin-
guished, the ensemble forecast for the selected year is
said to have PPU. The significance of the Kuiper sta-
tistic is used to evaluate the PPU of the ensemble in-

tegrations at each grid point on the 64° latitude by 128°
longitude Gaussian grid that is used in this T42 model.

Figure 3 plots the log of the PPU (the Kuiper sig-
nificance) of the model precipitation field for DJF
1982-83, in the middle of the unusually strong 1983
ENSO warm event. Areas that have PPU at the 90%
confidence level are lightly shaded, while areas with
greater than 99% confidence are heavily shaded. The
vast majority of areas with significant PPU are located
over the tropical Pacific Ocean, where the SST anom-
alies are consistently strongest. There are, however, a
few continental areas that also have PPU, including the
southeast United States and northern South America.
The area over the United States is intriguing, since ob-
servational studies (Ropelewski and Halpert 1986)
have suggested that this is a region where precipitation
may be affected by ENSO. Figure 4 shows the same
quantity as in Fig. 3 for the next season, MAM 1983.
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FiG. 4. Log of PPU for precipitation field from MAM 1983. Shading as in Fig. 3.
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Most significant areas of PPU are still over the tropical
oceans. However, new significant continental regions
are found over Northeast Brazil and over Australia,
again somewhat consistent with observational studies
(Ward and Folland 1991; Joseph et al. 1991).

As pointed out in section 3, the significance of
Kuiper’s statistic would assume some small values by
chance, even if the ensemble forecast had no significant
PPU. Figure 5 shows the percentage of grid points for
which the Kuiper significance was less than 0.01 (99%
confidence level) as a function of the individual season
for precipitation, 850-mb temperature, and 200-mb
height. The percentage of points less than 0.01 is al-
ways considerably greater than 1%, demonstrating that
there is ‘‘map significance’’ (Livezey and Chen 1983)
for PPU. All three fields have significant PPU for a
larger number of grid points during the 1982-83
ENSO warm event and for fewer grid points during
1985-86. Some additional interesting behavior can be
seen in the 200-mb height field, which has significant
PPU for a maximum number of points during SON
1988. The precipitation field generally has a much
smaller area of significant PPU than the two upper air
fields; unfortunately, precipitation is a much more in-
teresting quantity to forecast as a seasonal mean.

Several other plots of PPU can reveal additional in-
teresting aspects of the model response to SST forcing.
Figure 6 displays the PPU for 850-mb temperatures for
MAM 1983, which has the largest number of signifi-
cant points for this field. Although most of the signif-
icant PPU is over the oceans, there are also large areas
over land that are significant, including much of South
America and northwest North America. With the ex-
ception of the 1982—-83 ENSO event, the 850-mb tem-
perature fields have almost no significant PPU over
land areas. These results can also be compared to find-
ings from observational studies, for instance those for
surface temperature in Halpert and Ropelewski (1992).

As noted in Ebisuzaki (1995), the tropical 200-mb
heights in the AMIP integrations are strongly tied to
the tropical SSTs; almost all seasons display a broad
swath of significant PPU across the Tropics for this
field. In general, the significant PPU of the 200-mb
heights is limited to the Tropics and to some extratrop-
ical regions over the Pacific. However, during ENSO
warm events, there is significant PPU over additional
regions of the extratropics. Figure 7 shows the PPU for
200-mb heights for MAM 1987. Of particular interest
are the areas of significant PPU over the eastern North
Pacific and North America. These three centers are
reminiscent of the centers of the PNA pattern that ob-
servational studies (Horel and Wallace 1981) have
suggested is forced by anomalous tropical SSTs. This
figure suggests that the model reproduces some aspects
of the PNA and has PPU near the centers of the re-
sponse.

The shortcomings of using traditional variance ra-
tios, or similar functions of the variance, as measures
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FiG. 5. Percentage of grid points with the Kuiper statistic signifi-
cance less than 0.01 as a function of season for precipitation, 850-
mb temperature, and 200-mb heights.

of ensemble forecast utility are particularly noticeable
for fields such as precipitation. Distributions of both
total precipitation and anomalous precipitation, in both
the model and the real world, are fundamentally non-
normal (especially in relatively arid regions) because
of the positive definite nature of precipitation. Even
worse, the shapes of the precipitation distributions for
relatively wet and dry points are fundamentally differ-
ent. For this reason, variance ratios, which implicitly
assume normal distributions, are particularly inappro-
priate for such fields. Similar shortcomings are shared
by measures of significant differences in the mean of
distributions such as the Student’s t-test. Figure 8 dis-
plays the ratio of the 9-member ensemble variance for
the MAM 1983 precipitation to the variance for the
remaining 72-member climate distribution from all
other MAM seasons; this is the reproducibility of Stern
and Miyakoda (1995). Figure 8 can be compared to
Fig. 4, which displays the PPU for the same season.
Although there are a number of similarities between
the plots, there are also a number of significant differ-
ences. For example, Fig. 4 shows a large area of highly
significant PPU along the equator in the eastern Pacific
in an area where Fig. 8 shows very large variance ratios
(traditionally interpreted as indicating that the ensem-
ble forecast was of no utility). This region is consis-
tently quite dry during MAM in the model, but during
the 1983 warm event, all ensemble members demon-
strate much above normal precipitation. In this case,
there is a tremendous amount of useful information
available in the ensemble forecasts that cannot be iden-
tified by quantities based on variance.

The southeast United States and western Australia

- are other regions where there are differences between

the PPU of Fig. 4 and the variance ratio of Fig. 8. Both
regions have weakly significant PPU in Fig. 4 but have
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FiG. 6. Log of PPU for 850-mb temperature from MAM 1983; shading as in Fig. 3.

variance ratios close to unity. The anomalous response
in these regions for MAM 1983 changed the distribu-
tion without significantly affecting the variance.

The discussion above has pointed out differences be-
tween the PPU and measures based on variance ratio
for the precipitation field, which is not expected to have
a constant distribution shape. There are also significant
differences for fields such as 850-mb temperature,
which might be more reasonably assumed to be nor-
mally distributed. Figure 9 shows the cumulative dis-
tributions for the MAM 1983 ensemble and the MAM
climate distribution from all other years for 850-mb
temperature at three individual grid points. These
points were selected from regions where the PPU is
large but where the variance ratio was larger than 1.
Such points generally make up a considerable fraction
of the points with significant PPU, about 25% in this
850-mb temperature example.

Figure 9a shows the distributions for a point over the
eastern tropical Pacific; here, the response to the 1983

SST anomalies has been a large positive shift of the
850-mb temperature. The variance ratio suggests no
useful information was available from the ensemble at
this point.

Figure 9b demonstrates another type of behavior that
can lead to significant PPU in regions with large vari-
ance ratios. In this case, a point over the western trop-
ical Pacific, the ensemble forecast distribution is highly
skewed with one extreme positive outlier that leads to
the large variance ratio.

Finally, Fig. 9c shows an intriguing ensemble dis-
tribution from a region in the Indian Ocean. In this
case, the ensemble distribution is bimodal, with three
members indicating temperatures about 2°C below
normal and the other six members indicating tem-
peratures in excess of 1°C above normal. This leads
to a large variance ratio, but the significance of the
Kuiper statistic indicates that there is a significant
difference between the ensemble and the climate. In
such a case, one could justifiably make a forecast that
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FiG. 7. Log of PPU for 200-mb heights for MAM 1987. Shading as in Fig. 3.
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Fic. 8. Ratio of variance of 9-member 1983 MAM precipitation ensemble to variance in the
remaining 72-member MAM climate distribution. Contours are at 1/3, 253, 1, 2, 4, 8, 16, and 32.
Regions less than 1/3 are shaded dark and regions between 1/3 and 2/ are lightly shaded.

temperatures would be either much above or much
below normal at this point. It is an interesting and
unanswered question whether this model produces
significant areas of such apparently bimodal behavior
and, if so, what type of dynamical mechanisms are
responsible.

Methods like the Student’s t-test are also inappro-
priate for comparing distributions like those shown in
Figs. 9b,c (although the t-test would indicate that sig-
nificant differences exist between the distributions in
Fig. 9a). In the latter two figures, the shapes of the
pairs of distributions are fundamentally different. Fig-
ure 9c is especially problematic since the distributions
have very similar means despite having very different
shapes.

The climate used as control in these experiments is
from a relatively short period and may not be an ade-
quate sample of the complete range of the model’s be-
havior. A longer climatology would generally tend to
increase the PPU. However, tests in which several
years are removed at random from the climatology field
while testing the PPU of a particular season suggest
that these changes would probably be minor, assuming
of course that the entire period .of the climate sample
is not somehow anomalous compared to the longer-
term climate. '

It is also important to recall that the notion of PPU
defined here is dependent on the size of the ensemble.
A larger ensemble would certainly be able to find
more significant differences between the ensemble
and climate distributions. Of course, the differences
being detected can become increasingly subtle as the
ensemble and climate distribution sizes increase. One
could question whether differences in distributions
that would require a very large ensemble to detect
would ever have a substantial impact for anyone us-
ing a forecast.

5. Conclusions

Potential predictive utility has been offered as a
quantity for measuring the ability of an ensemble fore-
cast to provide more information than some appropriate
climatological control forecast. The PPU examines the
differences between discrete samples from an ensemble
forecast and the climatological control. The Kuiper test,
which is one means of numerically evaluating the PPU,
automatically provides a confidence level for discrete
distributions of arbitrary size. While this statistical test
only evaluates the significance of the difference be-
tween the ensemble distribution and the climate distri-
bution, it indirectly provides information about the
strength of the difference. If significant differences can
be found with a small ensemble, the difference between
the distributions is larger than if a very large ensemble
is needed to find significant differences.

In the previous section, the PPU has been applied to
model gridpoint values. It could also be applied to other
scalar quantities, for instance to the coefficients of
EOFs from a long model integration. Applying the PPU
to EOFs might help to identify particular patterns that
could be successfully forecast. This in turn might lead
to a better understanding of the dynamical processes
involved. '

In general, ensemble forecasts are likely to be ap-
plied at the extreme limits of forecast problems where
the forecast signal is becoming small compared to
noise. In such situations, it seems natural to use as much
of the available information from the ensemble as pos-
sible. Traditional techniques for evaluating such quan-
tities as potential predictability or reproducibility im-
plicitly assume normal distributions with identical
means for both the ensemble and climate distributions
by using only the variance of the distributions. Tech-
niques such as the Student’s t-test implicitly assume
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that the variance and shape of the distributions being
compared are identical. Since the PPU, when computed
using the Kuiper test, is a nonparametric test, it does
not make any such assumptions and hence does not
discard information as do the traditional techniques. In
the AMIP simulations, the PPU is able to identify in-
stances where an ensemble provides useful informa-
tion, but where traditional tests would indicate the en-
semble was not useful. The traditional tests are a par-
ticularly inappropriate choice for fields such as
precipitation, which are inherently not normally dis-
tributed. However, even for fields that are likely to be
more nearly normally distributed, the PPU can identify
instances of useful ensemble forecasts that would be
overlooked by traditional tests. The conclusion is that
the PPU, by its very definition, is a more appropriate
method for establishing whether an ensemble forecast
provides more information than a control climate fore-
cast. Once regions with significant PPU have been
identified, a closer examination of these regions with
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FiG. 9. Cumulative probability distributions for the 1983
MAM 850-mb-temperature ensemble (dashed) and corre-
sponding climate (solid) for points in the eastern Pacific (a),
western Pacific (b), and Indian Ocean (c). Values of confi-
dence from the Kuiper test and variance ratio are included in
each plot.

additional tools (for example, the traditional variance
ratio and Student’s t-tests) can identify the details of
the differences between the ensemble and climate dis-
tributions.

Extending the notion of PPU to real forecasts por-
tends to be, not surprisingly, fraught with additional
difficulty. However, when making ensemble forecasts,
one can begin by using the PPU as defined above to
identify those regions where the model forecast is sig-
nificantly different from its climatology. It is only in
these regions that the forecast can possibly be expected
to provide more information than the real (observed)
climatology.

The application of PPU to the AMIP ensemble has
some implications for the use of models to predict sea-
sonal atmospheric response given a perfect (or good)
forecast of the SST forcing. In this particular T42 spec-
tral model, there are a number of fields, such as 850-
mb temperatures, for which the model has consistent
PPU over the tropical oceans. The ensemble has PPU
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for 200-mb heights over even broader areas spanning
most of the Tropics. There are periods of particularly
anomalous SST forcing, such as the 1982—-83 ENSO
warm event, when the areas with PPU expand for all
fields. In these cases, there is PPU for 850-mb temper-
ature over broad areas of the tropical continents and
also some areas over land in the extratropics. The PPU
is significant over much smaller areas for precipitation
and for other near-surface model quantities such as sur-
face temperature and soil moisture. Nevertheless, dur-
ing periods of anomalous SST forcing, significant PPU
for these fields exists over limited areas of both the
tropical and extratropical continents. If the model dy-
namics are a somewhat faithful simulation of those in
the real world, this is additional support for the obser-
vational evidence that anomalous temperature and pre-
cipitation occur in response to strong SST anomalies.
It also suggests that current models, despite their short-
comings, might be able to provide useful predictions
for some variables of interest over limited areas of the
extratropical continents in cases of unusually anoma-
lous tropical SST.
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