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1. Introduction

The 1997–98 ENSO warm event has led to a re-
surgence of interest in the problem of seasonal and
interannual prediction of the climate system. While

many of the effects in the tropical atmosphere that are
associated with anomalous tropical SSTs are relatively
deterministic (Anderson and Stern 1996), the natural
internal atmospheric variability of the extratropical
atmosphere can serve to obscure the impact of tropi-
cal SST forcing (Kumar and Hoerling 1998). Despite
this, there is strong evidence that the statistics of the
extratropical climate still depend on the tropical SSTs,
especially when these SSTs are strongly anomalous
(Graham et al. 1987a,b; Barnston 1994).

A variety of methods for predicting the extratro-
pical response to SST forcing have been developed.
These methods include numerical models (Kumar
et al. 1996), statistical models (Barnston and Smith
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1996), and a large assortment of hybrid statistical–
dynamical models (Graham and Barnett 1995; Sarda
et al. 1996). Statistical models are dependent upon the
quality and quantity of historical observations of the
ocean and atmosphere but are generally far less expen-
sive to develop and run than are numerical models.
Fully coupled ocean–atmosphere GCMs have become
one popular tool for doing seasonal prediction/simu-
lation, but these models can be exceptionally costly
to develop, to integrate, and to validate.

In this study, an attempt is made to assess the ca-
pabilities of one statistical model and two numerical
models to simulate the extratropical atmosphere given
the SSTs observed during the simulation period. This
is a simpler problem than the complete forecast prob-
lem in which only SSTs observed prior to the begin-
ning of the forecast are provided to the forecast
models. However, the present state of development of
GCM prediction models is primitive enough that it can
be useful to explore the simulation problem first. With
some caveats (Wittenberg and Anderson 1998), the
model skill for the simulation problem can be regarded
as an upper bound for the skill that could be obtained
in the full forecast problem.

The GCMs discussed here were developed indepen-
dently at the Geophysical Fluid Dynamics Laboratory
(GFDL) and the National Centers for Environmental
Prediction (NCEP) and have been used for a variety
of simulation and prediction experiments. For both of
these models, an ensemble of integrations forced by
observed SSTs is used to simulate the atmosphere. The
statistical model is a canonical correlation analysis
(CCA) that recently has seen widespread operational
use in a forecast mode. Here, the CCA is also used in
a simulation mode to allow a comparison that is as fair
as possible. The three models are compared for sea-
sonal mean simulations of a single field, 700-hPa
height, over a single extratropical region, one associ-
ated with the Pacific–North American (PNA) pattern,
using identical verification metrics.

The use of ensemble simulations with the numeri-
cal models may facilitate the computation of a priori
estimates of simulation skill. The correlation between
a measure of the ensemble spread and the simulation
skill is examined to see the extent to which one can
identify skillful simulations a priori.

The ensembles also allow the computation of a
rough upper bound on model skill assuming that the
variance of the ensemble responses is approximately
correct, even if the mean of the response is not per-
fect. Comparing this perfect model predictability

(Chen and van den Dool 1997) to the actual model
simulation skill and to the skill of the CCA allows one
to make some rough extrapolations about the skill that
could be expected if one could greatly improve the
mean response of the models without significantly
impacting the variance of the ensemble. To exceed this
level of skill, the variance of the ensemble response
would have to be reduced in concert with a decrease
in the mean error.

Section 2 presents an overview of the three simu-
lation models and the verification metrics used for
comparison. Sections 3 and 4 present comparisons of
the numerical and statistical model simulations using
the anomaly correlation. Section 5 explores the per-
fect model predictability and compares this bound for
the numerical models to the simulation skill of the
CCA. Section 6 briefly examines sensitivity to verifi-
cation metric by using the rms error while section 7
presents discussion and conclusions.

2. Models and evaluation techniques

This study compares the capabilities of two nu-
merical models and a statistical model to simulate the
extratropical seasonal mean circulation given the glo-
bal SSTs for a 10-yr simulation period. The two nu-
merical models are recent-generation GCMs from
NCEP and GFDL. Both models have known system-
atic errors and parameterization deficiencies. The sta-
tistical model is an application of the canonical
correlation analysis approach of Barnston et al. (1994).
This section gives details of the two GCMs and the
CCA and concludes with a discussion of the metrics
chosen to compare the quality of extratropical seasonal
simulations.

a. GFDL experimental prediction model
The first GCM is the GFDL experimental predic-

tion global spectral model, an 18-level spectral model
truncated at T42 described in Gordon and Stern (1974,
1982). This version of the model uses  “bucket” hy-
drology (Manabe 1969); orographic gravity wave drag
(Stern and Pierrehumbert 1988); large-scale conden-
sation and moist convective adjustment (both using a
condensation criterion of 100%); shallow convection
(Tiedtke 1988); cloud prediction (Gordon 1992); 12-h
averaged seasonally varying radiative transfer; stabil-
ity dependent vertical eddy fluxes of heat, momentum,
and moisture throughout the surface layer and the free
atmosphere (Sirutis and Miyakoda 1990); and ∇4 hori-
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zontal diffusion. Surface temperatures over land and
sea ice are determined by solving a surface heat bal-
ance equation (Gordon and Stern 1982).

An eight-member ensemble forced by observed
Atmospheric Modeling Intercomparison Project
(AMIP) SSTs (Gates 1992) was integrated for 10 yr
from 1 January 1979 through 31 December 1988. The
initial conditions for the ensembles were taken from
analyses for 12 December 1978 through 21 January
1979, sampled every 5 days. Each of these analyses
was then used as an initial condition as if it were the
analysis for 1 January 1979. A more detailed descrip-
tion of the ensemble integrations can be found in Stern
and Miyakoda (1995). The first 12 months of the en-
semble integration were discarded in an attempt to
eliminate direct effects of the initial conditions includ-
ing effects of soil moisture spinup. Because this model
experiences a slow loss of mass, the global mean of
the 700-hPa height field was removed from each sea-
sonal mean simulation and from the observations be-
fore evaluating skill.

b. NCEP Medium-Range Forecast Model with
climate resolution
The NCEP GCM used here is a modified version

of the global short-range forecast model described in
Kanamitsu et al. (1991). The model has a T40 spec-
tral truncation with 18 vertical levels. The version of
the NCEP model used here is close to the MRF9 model
discussed in the appendix of Kumar et al. (1996). The
altered parameterizations include a modified Kuo con-
vective scheme (Ji et al. 1994) and a modified version
of the Slingo and Slingo (1991) cloudiness parameter-
ization. These differences from the GFDL model,
along with a variety of differences in other parameter-
ization schemes, make the two GCMs quite distinctive.

A 13-member ensemble was integrated for 45 yr
from 1 January 1950 with the members differing only
in the details of the initial conditions. Global SSTs
were specified from NCEP’s SST analyses. For con-
sistency with the available GFDL model runs, only the
years 1980 through 1988 are evaluated in this study.
This set of ensemble integrations has been discussed
in a number of reports including Chen and van den
Dool (1997) and Kumar et al. (1996).

c. Canonical correlation analysis
CCA is a multivariate regression that linearly re-

lates selected historically observed predictor field pat-
terns to observed predictand field patterns. In the
particular model used here, the predictor consists of

3-month means of near-global SST, and the predictand
is 700-hPa geopotential heights at 133 grid points cov-
ering the PNA region during the same 3-month period.
This is the same prediction design used in the CCA
global climate specification experiments of Barnston
and Smith (1996), and includes the preorthogo-
nalization step used in Barnett and Preisendorfer
(1987) and subsequently implemented by the National
Weather Service as described in Barnston (1994). That
is, rather than inputting raw predictor and predictand
data into the CCA, a truncated set of empirical
orthogonal functions of the predictors and the
predictands are analyzed by the CCA, and the predic-
tion is expanded back to geographical space as a final
step. The SST and height datasets used for CCA model
development span the relatively long 1950–96 sam-
pling period, but the simulations examined here span
just the 1980–88 period for which both numerical
models have been integrated. In the 1950–96 training
period, historical relationships between the SST
anomaly and the 700-hPa anomaly patterns are mod-
eled by the CCA. In making a prediction for a given
3-month predictand period, the current year’s SSTs are
projected onto these generic relationships, where each
relationship corresponds to one of the several CCA
modes (e.g., one representing ENSO, one represent-
ing a decadal trend, etc.) whose sum is used to approxi-
mate the climate state. The SSTs input to the CCA
procedure are described in Barnston (1994) and have
not been improved with the EOF-reconstruction
method that has been applied to the NCEP SST analy-
ses used to force the NCEP GCM. For applications like
the CCA, using this older SST data does not seem to
have a significant impact on simulations.

While the nature of the predicted 700-hPa patterns
is determined by the projection process as described
above, the amplitude of the patterns is governed by
both the strength of the current predictor patterns as
well as the reliability, or estimated a priori skill, of the
historical relationships. Given equal strengths of the
predictor patterns, lower reliability results in greater
damping of the predicted pattern amplitude—in simi-
lar fashion to any linear regression—such that squared
prediction errors are minimized over the training pe-
riod. In this study, the expected skill of the predictions
is estimated using cross validation, where each year
is withheld in turn from the training data and used as
the prediction target, and the climatological means and
variances are defined on the basis of only the training
data. A temporal correlation or rms error, computed
using the resulting predictions and the corresponding
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observations, would then be an estimate of the skill.
In this study, the climatological parameters are defined
on the basis of the periods covered by the numerical
models rather than on the CCA’s 1950–96 period with-
out one target year. In producing the CCA simulations,
however, the year being predicted is nonetheless omit-
ted from the training sample to prevent it from con-
tributing to the generic relationships and giving the
CCA an advantage not available in real-time forecast-
ing. This CCA procedure is somewhat different from
the operational CCA forecast procedure at the Climate
Prediction Center (CPC), which uses four 3-month
seasons of SSTs as predictors and also uses 700-hPa
height as a predictor.

It is possible to argue that, when applied in simu-
lations, this procedure gives the CCA an advantage
over the numerical models. SSTs in midlatitudes, at
least in some regions, are to some extent directly
forced by the midlatitude atmospheric flow (Lau
1997). Since the CCA simply associates two fields
without assuming that one forces the other, it is pos-
sible for the CCA to get information about the
midlatitude atmospheric flow that produced the pre-
dictor SSTs in midlatitudes. The GCM experiments,
on the other hand, are predicated on the notion that the
SSTs force the atmosphere. The midlatitude flow in
the GCMs in these regions is a combination of re-
sponse to remote (primarily tropical) SST forcing, sto-
chastic midlatitude dynamics, and perhaps some local
SST forcing on longer timescales. Some information
from SSTs in regions where the atmosphere partly
forces the ocean that could be used by the CCA is
therefore unavailable to the numerical models. This
potential advantage for CCA would disappear in true
forecasts since the observed SSTs contemporaneous
with the atmospheric fields being predicted would not
be available. This issue is discussed further in section 7.

d. Measures of simulation skill
Simulations of seasonal (three month) means of

700-hPa height for the PNA region (20°–80°N, 180°–
60°W) are evaluated in this study. The 700-hPa height
was used traditionally in the production of seasonal
forecasts at NCEP’s CPC and gives a reasonable mea-
sure of the midtropospheric circulation (the use of
other levels in the troposphere had no significant quan-
titative impact on the results). The PNA region is cho-
sen in an attempt to focus on the signal available from
external SST forcing, the tropical Pacific SST in par-
ticular. This is consistent with previous studies like
that of Kumar et al. (1996), who studied similar ques-

tions for two versions of the NCEP GCM. Similar re-
gions have also been used in a number of other stud-
ies that attempt to evaluate the capabilities of
prediction models for seasonal extratropical forecasts
(Chen and van den Dool 1997; Shukla 1998).
Simulations have been evaluated for 12 3-month
means per year (January–March, JFM; February–
April, FMA; etc.). All measures of skill for the numeri-
cal models in sections 3, 4, and 6 are evaluated for the
ensemble mean.

The spatial anomaly correlation
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the 700-hPa field from the corresponding global mean.
Careful cross validation was used throughout the

simulation evaluation process so that the year being
evaluated was never used in the definition of the cli-
matology (see the appendix for a brief list of other cau-
tions that must be observed when using AC to evaluate
the relative quality of simulations/forecasts). Measures
similar to the AC have been used historically for evalu-
ation of seasonal forecasts (Kumar 1996), although
there are many deficiencies of this measure that are not
frequently discussed in the literature (Deque and Royer
1992). The root-mean-square error
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where the sum extends over all grid points in a given
region, is also discussed briefly to give some feeling
for the dependence of the results on the verification
measure used to evaluate simulations. For both the AC
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and rms, both model and observed data are the aver-
age of instantaneous 0000 and 1200 UTC fields.
Extreme caution should be exercised when extrapo-
lating the results presented here for AC and rms to
other measures of simulation quality.

3. Comparison of PNA region anomaly
correlations

Figure 1 shows a comparison of the anomaly cor-
relation of the three models averaged over the 9 yr (8 yr
for the NDJ and DJF seasons) as a function of the
3-month season. The CCA has considerably higher
mean AC in fall, winter, and early spring. In the sum-
mer, the CCA AC is at its smallest and is roughly com-
parable to the AC of the GFDL model. The NCEP
model has very small ACs compared to the other mod-
els, due partly to large systematic model errors, which
will be addressed in the next section. The CCA is
clearly superior overall with an average AC over all
years and seasons of 0.39 compared to 0.24 and 0.07
for the GFDL and NCEP models, respectively. If one
squares these ACs to get a measure of explained vari-
ance, the gap between the CCA and the numerical
models grows even larger although even the CCA
explained variance of 15% is small.

Figure 2 displays the time series of ACs for each
of the models over the 106-month period from DJF
1980 through OND 1988. There is a great deal of noise
and scatter in the plot; however, some conclusions can
be made. First, the CCA appears to have higher ACs
throughout most of the simulation period. Second,
each of the three models has times during which its
simulations are quite different from the observations,
for instance, NCEP in fall 1983, GFDL in spring 1981,
and CCA in summer 1985. However, the CCA gener-
ally has fewer simulations with large negative ACs.
Third, there are times when all three models simulta-
neously have relatively high ACs. The most obvious
is during the winter of 1982–83, but there are less no-
table periods late in the winters of 1981/82 and
1985/86. There are no periods of high ACs among all
three models during seasons other than winter or early
spring. There are also a more limited number of cases
in which all three models have low AC, in particular
in the late fall of 1985. Unless the three models share
a common systematic error of some sort, periods when
all three have ACs less than 0 should be regarded as
the result of chance; note that the failure of all three
models to incorporate the impacts of a volcanic event

found in the real atmosphere would be one type of
common systematic error here. These negative AC
episodes are a good rough significance test for the
positive AC events. The positive AC events must be
considerably greater in magnitude and/or in frequency
than the negative AC events in order to be judged to
be more than the result of random chance.

Occasions when a model has unusually high skill
have been discussed a great deal in the context of the
model response to extreme ENSO events like 1982–
83 (or the most recent 1997–98 event). It is important
to emphasize that it is only meaningful to discuss the
skill of exceptionally successful forecasts if one can
make an a priori identification of when such good fore-
casts will occur (see section 5c). If one cannot make
such a priori identifications, then discussions of the
mean skill or of the complete historical distribution of
skill are more relevant.

It is likely that newer GCMs in current use or un-
der development at both NCEP and GFDL are better
in many respects than the older GCMs investigated
here, although it is unlikely that the newer GCMs have
improved enough to have significant qualitative im-
pact on the results of this or later sections. This claim
will be investigated as long integrations and seasonal
forecasts from newer model versions become avail-
able. Results from model comparison projects like
AMIP (Gates 1992) also indicate that it is unlikely that
other GCMs currently in use are sufficiently superior

FIG. 1. PNA region anomaly correlation as a function of
3-month season averaged over years 1980–88 for the CCA (thick),
NCEP model (thin), and GFDL model (thick dashed) simulations.

FIG. 2. PNA region anomaly correlation as a function of
3-month season for the CCA (thick), NCEP model (thin), and
GFDL model (thick dashed) simulations; seasons run from JFM
1980 through OND 1988.
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to the GCMs examined here to qualitatively impact the
results of the comparison to the statistical model.
However, continued improvements to GCMs can be
expected to improve their performance compared to
the CCA results.

It is appropriate to comment on the error bounds
that are associated with the plots in Figs. 1 and 2 and
the figures in later sections. The AC computations in
this study are for the PNA region, which covers a sub-
stantial fraction of the Northern Hemisphere. Following
van den Dool and Chervin (1986), the number of sta-
tistical degrees of freedom for this region can be esti-
mated to be substantially greater than 10; to be
conservative, N = 10 degrees of freedom are assumed
here. For uncorrelated fields, the correlation of a pair
of random samples has a normal distribution with
mean 0 and standard deviation s = 1/(N−2)½. For
single-season correlations like those in Fig. 2, the ex-
pected error is less than 1/(8)½. In Fig. 1, where T = 9
or 10 independent seasonal correlations have been av-
eraged, the expected error is reduced by an additional

factor of T ½ resulting in expected errors that are
bounded above by 0.12. If the fields are drawn from a
population that has nonzero expected correlation, the
details of this computation are more complex but the
results are essentially unchanged. Differences among
the skills for the CCA and the GFDL and NCEP GCMs
are thus well beyond expected statistical uncertainty.

4. Impacts of systematic error
correction

The previous section evaluated the ACs of the nu-
merical models with no a posteriori correction of the
models’ systematic errors. It could be argued that this
is the only fair way to compare the capabilities of nu-
merical models and statistical models. Nevertheless,
it has been traditional to verify numerical model out-
put after the application of some simple statistical
corrections to account for the most obvious system-
atic errors of the models (Chen and van den Dool
1997); often, verification studies in the literature do
not even discuss the details of their systematic error
corrections (Kumar et al. 1996). In a sense, the appli-
cation of a posteriori systematic error corrections in
the validation of numerical models results in a hybrid
statistical–dynamical simulation system. Although
this could be interpreted as giving an unfair advantage
to numerical models in a comparison with purely sta-
tistical models, this section will proceed to apply
simple systematic error correction to the numerical
model results.

A variety of ways to apply systematic error correc-
tion when computing ACs has been used (Miyakoda
et al. 1986; Deque and Royer 1992). The AC defined
in (1) can be interpreted as the cosine of the angle be-
tween the simulated anomaly and the observed
anomaly vectors in the area-weighted verification
phase space (this is < f, a > in Fig. 3, where < x, y >
represents the cosine of the angle between the vectors
x and y). The anomalies are from an observed clima-
tology that is the 1979–95 mean of the NCEP reanaly-
sis. The systematic error correction traditionally
applied by the CPC at NCEP is used here, changing
AC to < f − s, a > in Fig. 3. The systematic error cor-
rection, s, is simply the difference between the model
climatology, f_clim_se, and an observed climatology,
o_clim_se, both defined over a systematic error cor-
rection period that may be different from both the
simulation period and the period used to define o_clim.
This systematic error correction has been applied to

FIG. 3. Schematic diagramming the computation of AC and a
systematic error correction. The AC defined in (1) is the cosine
of the angle between the simulated anomaly vector, f, and the ob-
served anomaly vector, a, in the area-weighted verification phase
space. The anomalies are from an observed climatology, o_clim,
the 1979–95 mean of the NCEP reanalysis. The systematic error
correction, s, is the difference between the model climatology,
f_clim_se, and an observed climatology, o_clim_se, both defined
for the period 1980–88. The systematic error corrected AC is the
cosine of the angle between f − s and a.
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the forecasts from both numerical models with the
systematic error correction period 1980–88 used to
compute f_clim_se and o_clim_se. In all cases, sys-
tematic error corrections were applied in a cross-
validated framework so that no information about the
particular year being validated is used in the system-
atic error correction for that year.

Figure 4 shows a comparison of the seasonal mean
ACs for the NCEP and GFDL models with system-
atic error correction and the unmodified CCA. The
overall mean values of the ACs have been increased
slightly to 0.27 for the GFDL and significantly to 0.26
for the NCEP models, values still considerably smaller
than the CCA’s 0.39. The ACs for the two numerical
models are quite similar, both in the mean and as a
function of season, with the systematic error correc-
tion applied. During the spring and early summer, the
numerical model ACs are roughly equivalent to those
for the CCA. However, the CCA ACs continue to be
considerably larger than those for the numerical mod-
els during the fall and especially the winter. A tradi-
tional simple systematic error correction is insufficient
to make the numerical model results competitive with
the CCA. Possibly, the application of more sophisti-
cated statistical corrections to the numerical model
results could lead to additional increases in AC, but it
is not clear how much information would be coming
from the numerical models if this were done. A sys-
tematic error correction has not been applied to the
CCA. The CCA systematic error is zero over its full
training period by definition, but it could be nonzero
over the 1980–88 period being used in this study.

The values of ACs are notoriously sensitive to
seemingly small details of the verification procedure,
especially when the magnitude of the AC is low
(< 0.5). Details like the definition of the observed cli-
mate period, the exact region of the verification, the
period over which systematic error corrections are
computed, etc., can have significant impacts on the
ACs obtained. Sensitivity to these and many other
parameters of the verification were also found in this
study, which points out that it is absolutely essential
to use a consistent verification algorithm when com-
paring simulations or forecasts produced by different
modeling systems (see the appendix). In this study,
this was accomplished by verifying all three simula-
tions with the same software; attempts to coordinate
separate consistent verifications at GFDL and NCEP
were difficult and, in the end, judged to be impracti-
cal. Experiences like this suggest that some effort to
provide standardized verification software could be

extremely useful in facilitating research that requires
comparison of the abilities of different forecast methods.

5. Use of ensemble distributions

The numerical model results used here consist of
ensembles of simulations. In addition to evaluating the
AC of the ensemble, one can also attempt to extract
useful information from the distribution of the en-
semble. First, the ensembles are used to compute an
approximate upper bound on the simulation ACs one
could expect if the numerical models being used were
able to exactly reproduce the behavior of the atmo-
sphere given an initial condition and bounding SSTs.
Second, the linear correlation of the ensemble spread
with the simulation skill is examined to see if the skill
of the simulations can be predicted a priori.

a. Perfect model predictability
Following Chen and van den Dool (1997), one can

use an ensemble of simulations to place an approxi-
mate upper bound on the expected value of the AC by
making a perfect model assumption; they refer to this
as ensemble mean predictability, here it is referred to
as perfect model predictability. Suppose for a moment
that the numerical model is perfect in that, if given
appropriate initial conditions (for the atmosphere, land
surface, etc.) and observed SSTs, it can exactly repro-
duce the response of the real atmosphere. If this were
the case, each member of the ensembles of long simu-
lations used here can be regarded as being equally
likely to represent the response of the atmosphere to
the observed SST forcing. One can compute seasonal
mean ACs as done in sections 3 and 4 by replacing the
time series of observations with a single member of
the ensemble and continuing to treat the remaining
ensemble members as simulations. The climatology
for the AC calculation is defined as the 1980–88 sea-

FIG. 4. PNA region anomaly correlation as a function of
3-month season averaged over years 1980–88 for the CCA (thick),
systematic error corrected NCEP model (thin), and systematic
error corrected GFDL model (thick dashed) simulations.



1356 Vol. 80, No. 7, July 1999

sonal mean of the “observed” ensemble member. The
perfect model predictability AC and rms can then be
evaluated in exactly the same way as for the original
experiments. A more robust estimate of the perfect
model skill can be obtained by computing the skill
with each individual ensemble member being treated
as the observations in turn and averaging the result-
ing values of AC and rms. Note that these perfect
model skill bounds are for an ensemble size one
smaller than that used in the results of the previous
section, but this difference should have a relatively
small quantitative impact (Murphy 1989). It is unrea-
sonable to expect an imperfect model to produce simu-
lations with higher ACs than those produced in this
perfect model context, so this perfect model predict-
ability AC can be taken as an approximate upper
bound on the AC that one can expect to attain with a
given GCM.

A systematic error correction can also be applied
in this perfect model context as in section 4. By defi-
nition, the perfect model assumption implies that there
is no systematic error in the model. Since careful cross
validation is used, the systematic error correction
procedure’s only effect is to adjust the ensemble mean
for a particular year toward the mean response of the
single observed ensemble member for all other years.
The result is that “systematic error correction” actu-
ally reduces the mean ACs for all seasons in the per-
fect model case; this was discussed in detail in
Barnston and van den Dool (1993). For this reason, all
predictability results discussed here will be without the
application of the systematic error correction.

Figure 5 shows the complete time series of the AC
for the GFDL ensemble mean simulations (with
systematic error correction) and the perfect model pre-
dictability. The mean value of the perfect model pre-
dictability is 0.44, considerably higher than the 0.27
for the actual simulation ACs. The perfect model pre-
dictability is highest during spring 1981 and during
early 1983 at which time the predictability AC be-
comes as large as 0.9 (this predictability maximum

lags the maximum of prediction AC by a few months).
This demonstrates that the impact of the SSTs on the
model at this time is unusually strong, restricting the
ensemble response to a very limited portion of the cli-
matological distribution.

Not surprisingly, the model simulation AC (solid
line in Fig. 5) is generally significantly less than the
perfect model predictability values. There are a few
times when the simulation AC is higher than the per-
fect model predictability values, most notably during
two periods in 1985. A priori, one cannot hope for the
model to produce ACs higher than the predictability
values, so events like this have to be regarded as a re-
sult of chance. In other words, in this particular in-
stance, the real atmosphere’s response to SST forcing
happened to look more like the ensemble mean than a
randomly chosen member of the ensemble.

b. Comparison of perfect model ACs and CCA
Figure 6 presents a comparison of the perfect

model predictability ACs from the GFDL and NCEP
ensembles (cf. Fig. 13 of Chen and van den Dool,
which shows NCEP results for a longer period) and
the simulation ACs from the CCA. The GFDL and
NCEP predictability means are roughly equal at 0.44
and 0.42, respectively; the models also have similar
seasonality (Fig. 6), which gives some credibility to
this predictability estimate. The CCA simulation ACs
are slightly lower in the mean, which is encouraging
in that it suggests there is potential for improvements
in the models’ mean response, which could lead to
GCMs that are better than CCA. At least in a perfect
model context, these GCMs are capable of producing
simulations that are better than those provided by a
statistical model. However, Fig. 6 reveals that during
the autumn and winter, the CCA ACs are somewhat
higher than the predictability ACs from the two nu-
merical models. The CCA AC drops during the sum-
mer months, but this behavior is not seen in the NCEP

FIG. 5. Systematic error corrected GFDL model anomaly cor-
relation (solid) and anomaly correlation of perfect model predict-
ability for GFDL model (dashed) for 3-month season from JFM
1980 through OND 1988.

FIG. 6. PNA region anomaly correlation as a function of 3-month
season averaged over years 1980–88 for the CCA (thick), NCEP
perfect model predictability (thin), and GFDL perfect model pre-
dictability (thick dashed).
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perfect model predictability ACs, which are roughly
constant throughout the seasonal cycle, or in the GFDL
model, which has a wintertime minimum in predict-
ability AC.

On the surface, this suggests that it may be diffi-
cult to improve these numerical models sufficiently to
compete with statistical models in the extratropical
winter. However, it is also possible that model errors
lead these numerical models to respond less strongly
to imposed SST forcing than does the real atmosphere.
In this case, improvements to the models could lead
to higher values for the predictability AC, as well as
to higher values for the simulation ACs. The summer
results are also encouraging for numerical modelers.
If the perfect model response is reasonable, it is pos-
sible that improvements to the models’ mean response
could result in simulations with ACs higher than those
provided by CCA. Still, Fig. 6 should act as a sober-
ing result for numerical modelers since it suggests that
the CCA is doing very well indeed, even compared to
one measure, independently confirmed in two numeri-
cal models, of the expected upper bound of numerical
model skill.

Of course, there is no evidence presented here to
suggest that the numerical models are constrained to
the same degree as the real atmosphere by SST forc-
ing. The models might have too much or too little en-
semble spread compared to the appropriate “real
world” uncertainty associated with specified SSTs,
causing our perfect model predictability estimates to
be too low or too high, respectively. This question
could be addressed, given a sufficiently long and ac-
curate observational record, by using methods such as
those in Anderson (1996).

c. Predicting model skill
The most common use of information about en-

semble spread has been to attempt a priori predictions
of the skill of forecasts (simulations) (Barker 1991).
In general, the quality of the skill predictions is evalu-
ated using the linear correlation between the spread
and skill.

The perfect model ACs discussed in the previous
section can be regarded as a natural measure of the
degree of ensemble spread for the purposes of predict-
ing the simulation AC of the ensemble mean. There
are other ways that one could choose to measure the
ensemble spread (Barkmeijer et al. 1993), but these are
not explored further here. Table 1 shows the linear
correlations of the perfect model AC with both the raw
simulation ACs and the systematic error corrected ACs

for the NCEP and GFDL models. These correlations
are generally very small, with the largest being 0.35
for the systematic–error-corrected NCEP model (a
correlation of 0.39 would be significant at the 95%
level if one allows for two degrees of freedom per
year). Despite these poor correlations, it is possible that
there is some a priori information about simulation AC
available in cases of particularly strong signal. For
instance, the start of 1983 has the largest values of per-
fect model AC for both the GFDL and NCEP models
(although these maxima occur a few months after the
highest simulation AC), indicating that the models are
very confident about the response of the PNA region
to the SST forcing during this period. Likewise, the
model simulation ACs are by far the highest at ap-
proximately the same time indicating that the en-
semble mean of the PNA simulations are close to what
was observed. The 1997–98 ENSO event should of-
fer an additional realization of the atmospheric re-
sponse to extremely strong SST forcing. Future
experiments should be able to better address the pos-
sibility that GCMs can predict high skill in such cases.

There are also cases where the perfect model AC
is relatively high while the model simulation ACs are
low, for instance, much of 1981 or summer of 1983
in the GFDL model (Fig. 5). These cases do not nec-
essarily indicate that the perfect model predictability
ACs are poor predictors of the model simulation ACs
since the former can be viewed as an upper bound on
the expected value of the simulation AC. It would be
possible to have most members of the ensemble simu-
lation relatively close to the ensemble mean with a few
outliers. In such cases, the perfect model framework
suggests that most of the time one would expect simu-
lations with high ACs, but occasionally one might by
chance get a simulation with markedly lower ACs.
This is not the case for the GFDL model in the two
instances noted above since all members of the en-

No systematic error 0.28 0.09
correction

Systematic error 0.11 0.35
corrected

TABLE 1. Correlations between seasonal mean ensemble per-
fect model anomaly correlation and ensemble anomaly correla-
tion for the GFDL and NCEP models.

GFDL NCEP
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semble have ACs roughly equal to that of the en-
semble mean.

The amplitude of the simulation field from the
CCA could also be used to produce a priori predictions
of simulation AC. The simulation amplitude is com-
puted as the square root of the sum of squares of the
standardized anomalies over all grid points of the pre-
dicted 700-hPa field. While the year-round correlation
is only weakly positive (near 0.1), it is better during
the cold half of the year when skills are highest. The
correlation is best for the first few seasons of 1983;
however, there are other cold season strong signal
cases in which the relationship does not hold well.

6. Rms results

To give some indication of the sensitivity of the
results of the previous sections to the choice of the
verification measure, a brief summary of results for the
rms error is presented. Figure 7 shows the seasonal
mean rms for the CCA, the NCEP and GFDL model
ensemble means without systematic error correction,
and for climatology. In the overall mean, the CCA has
the smallest rms error (19.9 m) although it is only neg-
ligibly better than the rms of a climatological forecast
(20.3 m). The GFDL model has larger rms error than
the CCA for all seasons and an overall mean of 26.4 m
while the NCEP model has much greater mean rms
error (35.6 m), most of it resulting from extremely
large seasonal mean rms error in the late winter and
spring. In the rms error framework, CCA continues to
be clearly superior to the numerical models.

Figure 8 displays the rms error for the CCA (same
as Fig. 7 but with axes stretched) and for the GFDL
and NCEP models with a systematic error correction
identical to that performed for AC in section 4. The
numerical models now have greatly reduced and

FIG. 7. PNA region rms (m) error as a function of 3-month sea-
son averaged over years 1980–88 for the CCA (thick), NCEP
model (thin), GFDL model (thick dashed), and climatology (thin
dashed). No systematic error corrections have been performed for
the two numerical models.

nearly identical rms errors (overall means are 21.06 m
for NCEP and 21.36 m for GFDL) that are only slightly
larger than those for the CCA.

If one computes the perfect model predictability of
section 5 in terms of rms, the GFDL model has an
overall mean of 21.0 m and the NCEP model has
23.8 m. It is interesting to note that the perfect model
predictability rms for the NCEP model is larger than
the systematic error corrected rms in the mean. This
is an indication that the spread of the models is too
large. If the spread of the ensemble were consistent
with the perfect model hypothesis in section 5, the
perfect model predictability rms error would be a firm
lower bound on the rms.

For the rms error measure, it is very easy to get
mean rms errors that are roughly equivalent to those
produced by the climatological forecast, and most
likely very difficult to get rms errors significantly less
than the climatological rms. This is consistent with the
known relationship between the AC and the rms error
for undamped forecasts in which an AC of approxi-
mately 0.5 is required in order to outperform clima-
tology in terms of rms error (Roads 1986; Barnston
1992). The CCA model applied here is damped, but
with respect to the period 1951–96, so the correspon-
dence between an AC of 0.5 and the rms error of cli-
matology may not hold exactly. If damped for the
appropriate period, the rms error of the CCA should
be better than that of climatology for any AC greater
than zero.

7. Discussion

The abilities of the dynamical GFDL and NCEP
GCMs and NCEP’s empirical CCA to simulate the
extratropical tropospheric seasonal flow over the PNA
region (see also Barnett et al. 1997) when provided
with observed global SSTs have been compared for the
period 1980–88. The CCA simulations were found to
have higher skill overall when using either the
anomaly correlation or the rms error as the verifica-
tion metric. Even when simple statistical corrections
were applied to reduce the systematic errors of the
GCM simulations, the simulation skill of the CCA was
still superior. These results are consistent with those
from Kumar et al. (1996), who compared PNA region
simulations from two different versions of the NCEP
GCM using the AC with some variant of NCEP’s sys-
tematic error correction. They also briefly compared
these simulations to a simple statistical model for the
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winter season but felt they had insufficient informa-
tion to make conclusions about the relative merit of
the numerical and statistical models.

Although the CCA is more skillful than the GCMs,
the skill of the CCA itself is relatively low despite
periods (early 1983) with skill substantially higher
than the mean. It is possible that even low levels of
skill could be useful on seasonal timescales, but it is
also important to note that skills for true predictions
will almost certainly be lower than those for the simu-
lations in the mean.

One could hope to increase the utility of these low
skill simulations by making an a priori identification
of cases that are expected to have unusually good (or
poor) skill. The ensemble spread from the GCM simu-
lations is one candidate for a predictor of the simula-
tion skill. Although the linear correlation of a measure
of spread and the anomaly correlation was small, there
is still some hope that times of exceptionally small
spread are concurrent with times of high simulation
anomaly correlation. This might allow the a priori
identification (i.e., before validating the simulation
skill) of simulations that are expected to be more use-
ful than normal. In the models examined here, all cases
of high simulation anomaly correlation were associ-
ated with relatively small spread, but not all cases of
small spread were associated with high simulation
anomaly correlation.

Information about the GCM ensembles was used
to calculate the perfect model predictability, a rough
estimate of an upper bound on the simulation skill that
could be expected in a perfect model context. These
upper bounds on expected skill were found to be higher
than the simulation skill of the GCMs and the sum-
mertime CCA skill; however, the GCM upper bounds
on skill were somewhat lower than CCA skill during
the winter.

All the results presented so far are simulations in
which the models are given the SSTs from the verifi-
cation period. Because of the primitive state of coupled
GCMs, it is difficult to determine exactly how much
of a reduction in skill can be expected when one
switches from simulations for which contemporane-
ous SSTs are provided to forecasts in which only SSTs
preceding the verification period are provided
[Livezey et al. (1996); Barnston et al. (1994) compared
the capabilities of many methods for predicting tropi-
cal Pacific SSTs on seasonal timescales]. However,
this question can be answered for the CCA. Figure 9
compares the ACs for CCA simulations and CCA
forecasts in which the predictors are SSTs from the

3-month period preceding the 3-month forecast period.
There is a reduction in AC for all seasons with winter
ACs dropping approximately 5% while summer ACs
become essentially zero. It seems reasonable to expect
qualitatively similar reductions in AC with numerical
models when the switch is made from simulation to
forecast. As discussed in section 2, it is possible to
argue that the CCA simulation is given an advantage
over the numerical models through the use of observed
values of the midlatitude SSTs. Unless the midlatitude
oceans are strongly forced by some deterministic com-
ponent of the midlatitude flow, this advantage is prob-
ably slight. If the CCA is gaining any advantage from
the use of observed midlatitude SSTs, the reduction
in numerical model skill from simulation to forecast
might be somewhat less than for the CCA. In the per-
fect model comparison, however, CCA is penalized
since all imperfections in the observational data lower
the ACs for the CCA but have no impact on the per-
fect model ACs. Reanalysis, in the broadest sense, can
only improve CCA or other statistical control
forecasts.

Despite some pessimistic conclusions, there are
still a number of reasons to hope that significantly
higher skills than those found here could be obtained
for extratropical seasonal forecasts. The experiments

FIG. 8. PNA region rms error (m) as a function of 3-month sea-
son averaged over years 1980–88 for the CCA (thick), systematic
error corrected NCEP model (thin), and systematic error corrected
GFDL model (thick dashed).

FIG. 9. PNA region anomaly correlation as a function of 3-month
season averaged over years 1980–88 for the CCA simulation (thick),
CCA forecast (thin), and systematic error corrected GFDL model
simulation (thick dashed).
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here ignore observed atmospheric initial conditions,
and there is some evidence that these can be important
even for seasonal timescale predictions. Information
from the observed state of low-frequency atmospheric
phenomena, such as the stratospheric quasi-biennial
oscillation (QBO) is one potential mechanism by
which atmospheric initial conditions could impact
seasonal forecasts. The models used here also ignore
information about the observed land surface conditions
and, in the case of the GCMs, use relatively simple and
unrealistic land surface parameterizations. Since the
land surface may be associated with processes with
timescales that are at least as long as a season, infor-
mation about the state of the land surface could serve
to increase extratropical forecast skill (Huang et al.
1996). There is also a slight possibility that SST-forced
atmosphere-only GCM integrations may provide un-
representative simulations, and that the use of a good
fully coupled model could produce forecasts with
skills higher than those produced in the observed SST
simulations (Wittenberg and Anderson 1998).

There is another long-term advantage to using nu-
merical models rather than statistical models for pre-
diction. It is possible that statistical models will
continue to be competitive with or even superior to nu-
merical models for the seasonal prediction problem.
However, it is difficult to gain a complete physical un-
derstanding of the climate system through statistical
models, while it is likely that the development of increas-
ingly realistic numerical models may lead to an increased
physical understanding, if not better forecast skill.
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Appendix: Checklist for anomaly
correlation

The anomaly correlation is widely used in verify-
ing atmospheric forecasts, but it is an extremely un-
stable statistic that can be quantitatively influenced by
a number of factors. In computing ACs for the differ-
ent models in this paper, great care was taken to en-
sure that all of the following areas were the same for all
models. Even relatively slight inconsistencies in any of
these can lead to large differences in the computed ACs.

The climatology:

1) Definition of climatology, specifically 2–7
2) Number of years used in estimate of climatology
3) Observing times (0000, 0600, 1200, 1800 UTC) or

daily mean
4) Harmonic smoothing of climatology: how many

harmonics to retain
5) Time period over which climatology is defined
6) Time interpolation of climatology if required
7) Year to be verified left out of climatology (cross-

validation mode)

Technical aspects:

1) Definition of areal extent and situation of grid
points

2) Areal mean in or out
3) Zonal mean in or out; zonal mean over a sector or

full globe
4) Truncated or otherwise smoothed field, or full

model resolution
5) Weighting with respect to latitude (equal-area grid

issue)
6) Model’s systematic error corrected or not (see 7

under climatology section above)
7) Standardized data or not
8) Summing over time, carrying each term, or aver-

aging ACs

The model and the data:

1) If the model loses mass, what has been done about
it (related to 2 under technical aspects section
above)

2) Is it a single model forecast or an ensemble aver-
age (latter is more smooth)

3) Forecast data at 0000 UTC only, daily mean,
0000+1200 UTC averaged; use climatology ac-
cordingly

4) Need to interpolate the climatology to the forecast
grid or vice versa
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