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A SCHEME  FOR  NUMERICAL  INTEGRATION OF THE  EQUATIONS OF MOTION ON AN 
IRREGULAR GRID FREE OF NONLINEAR  INSTABILITY 
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In  the long-term  numerical  int,egration of t'lle equations 
o f  motion  required  for  medium-range  weat>her  forecasting, 
the  study of the  atmospheric  general  circulation, and other 
applications,  the  finite  difference  formulation o f  the non- 
linear  terms may give  rise t o  a specittl type of inst,nbilit-. 
This difficulty was fist noted in the meteorological  lit,era- 
tlure  by  Phillips [4]. Phillips  pointed  out  that,  a  unique 
feature of this  instability  is  that  it  cannot  be suppressed 
by  using  short'er  t'ime  steps.  Arakawa [I] has  made  a 
very raluable cont'ribut'ion  in  showing that' a  numerical 
scheme which retains  certain  integral  properties of the 
continuous  equations  eliminates  nonlinear  inst,ability.* 
I t  must8 be point,ed out  that  the  formulation proposed by 
Arakawa  does  not'  guarant.ee  accura,cy.  This  is  assured 
only if all  t'he significant energy of t,he flow is in scales of 
motion that  are  large enough to'be  ndequately resolved by 
the  numerical  grid.  A  system  free of nonlinear  instability 
hns  t,he  merit,  however,  that,  relatively  minor  truncation 
errors  in grid-scale motions  do  not  lead  to  large  spurious 
increases  in  energy. 

The work of Arakawa [ l ]  has been est'ended  by  Lilly 
[2]. Lilly  has  devised  a  method of numerically  integrating 
the  primitive  equations  which, except for time  truncat'ion, 
exactly  conserves  finit,e  difference  expressions  for  t.he 
kinetic  energy of both  the  divergent  and  nondirergent 
components of the flow. This  method  is  current,ly being 
used  in an ext'ension of investigations o f  the  atmospheric 
general  circulation  initiated by  Smagorinsky [ 5 ] .  

The present  note  is  concerned  with a generali~at~ion o f  
the  ideas o f  Arakawa [I] and Lilly [2]. In many applica- 
tions of the  techniques of numerical  weather  forecasting 
to  other geophysical  problems  it may  be necessary t'o use 
grids  with  irregularly  spaced  points. For example,  it 
may  be  important t.o join two different types of nets 
together, or the peculiar  geometry of the region under con- 
sideration  requires  an  irregular  arrangement of points. 

Consider the following equation 

'That "nonlinear instability" is somewhat of B misnomer has h e n  pointed out hy 
Miyakoda [3] who showed that a similar inata1)ility occurs for linear equations with 
nonoonstant rueflicients. 

CY is a scalar  qunnt,ity  and  V=ui+uj+ wk. 
T,et t.he t80tal region o f  interest be denoted ns IA'. The 

norrnttl ve1ocit.y at the  outer  surface o f  IZ is  t,nken to  be 
zero. The region R is subdivided  int,o Jsubvolnn~es,   each 
of volume r,. If aj is t,he n\-ernge value o f  the scnlar a 
in  tjhe jth sltl)volu1ne, the  total  amount, o f  a is  given by 

J 
a , r j = l , .  

j = 1  

A  lower bound  on  the t,ot,al variance of a is  given by 

J 
&rj=12. 

j = 1  

Combining ( 1 )  and (2j and  integrating  over  the sub- 
volume, r,, results  in 

where use has  been  made of the divergence  theorem. 
V ,  and a ,  are  the  normal  velocity  and t8he  local  value 
of a on the surface of t8he  subvolume,  respectively.  In 
the finite  difference approximation of the  right-hand 
side of ( 5 ) ,  the surface is considered to consist o f  K, 
plane  interfaces of area A,  j .  The  average  normal 
velocity  for  each interface is given by Vk, The  value 
of a on the  interface is npproximated  by (ar+ak) /2  
where f f k  is the  average \-due of a in the  subvolume 
adjacent,  to  the kt,h surface.  With  these  substitsutions 
( 5 )  becomes 

K 
r .  d"l=-A v ( 

at k - 1  
t . j  a,+ffk)Ak.j/2. (6) 

The corresponding  continuit,y  equation is 

We wish to  show  that (6) nnd (7) lead to  an  exact  con- 
servation of I ,  and Iz  except  for  t,runcation  caused by 
differencing  wit,h  respect to  the  time  coordinate. 

Summing  over all the  subrolumes, we note  that  the 
time  change of I ,  is 
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Application of (6) to  the  left  side of (11) and (12) will 
guarantee  that  the  finite difference  expressions for the 
advective  terms will not  alter  the finite  difference equiv- 
alent, of the  kinetic  energy  integral 

K . E . = l  po dxdy 
L L  

provided  t’he  continuity  relation (6) is used  as  the  diag- 
nostic  relation to determine  the  vertical  component. 
This will eliminate the possibility of spurious  changes 
in the  energy level associated  with t,he nonlinear nu- 
merical  inst,ability  described by Phillips [4]. 

ar, 
Po!/ = - 

for many  stimulating discussions on  this  subject. 
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c .  V=O. (14) [Receiced May 27, 1965; rez.ised September $8, 19651 

CORRECTION 

Vol. 93, October 1965, p. 5P2: The first. o f  the expressions  appearing 
three  lines below equation ( 2 5 )  should  be: 


