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ABSTRACT

Stationary waves generated over orography in a linear model and a general circulation model (GCM) are
compared to examine how the atmosphere’s response is established for small mountains and how linear theory
breaks down over large orographic features. Both models have nine vertical levels and are low-resolution (R15)
spectral models. The linear model solves the stationary linear primitive equations. The GCM’s control integration
uses zonally uniform and hemispherically symmetric boundary conditions, with a global swamp surface. Five
experiments are performed by perturbing the GCM with Gaussian mountains of various heights introduced in
midlatitudes. The stationary wave model is linearized about zonal mean fields from the GCM climatology.

The linear model’s response to a Gaussian mountain at 45°N latitude is dominated by a single wave train
radiating toward the southeast. For mountain heights between 0.7 and 2 km, the GCM’s stationary waves are
similar to the linear model response to orography, although amplitudes increase less rapidly than linearly with
mountain height. For larger mountains, closed isentropes and distinctly nonlinear flow occur along the surface
of the mountain and a large poleward-radiating wave train develops. The development of closed isentropes,
and the breakdown of linear theory, can be predicted whenever the slope of the surface exceeds the slope of the
isentropes in the unperturbed (no mountain) basic state.
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1. Introduction

The importance of orography in establishing plan-
etary-scale stationary waves has been appreciated since
Charney and Eliassen’s (1949) analysis of a one-di-
mensional linear barotropic model. Studies with three-
dimensional general circulation models (GCMs) have
confirmed the importance of orography by comparing
“mountain” and “no mountain” integrations (e.g.,
Kasahara and Washington 1971; Manabe and Terpstra
1974). However, the relevance of linear theory in re-
lating surface features to large-scale stationary wave
patterns remains controversial. One problem concerns
the role of transients, and another the role of stationary
nonlinearity.

Vallis and Roads ( 1984), for example, compare the
responses to orography in a two-layer, nonlinear, time-
dependent quasigeostrophic model to a stationary lin-
ear model. The stationary linear mode! produced much
larger stationary wave amplitudes than the nonlinear
model. Adding effects of transient eddies improved the
linear solution, leading Vallis and Roads to conclude
that transients are important for simulating the sta-
tionary response to orography. These results, however,
are not confirmed by the results of Nigam et al. (1988),
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who compared the response from a linear primitive
equation model forced by orography with the difference
between the stationary waves produced by a GCM with
and without mountains. They found that the linear
response simulates amplitudes that are very similar to
those of the GCM and that adding the effects of the
transients associated with the presence of orography
does not damp the orographic signal.

The importance of stationary nonlinearity has also
been discussed in a number of contexts. In particular,
for computing the vertical velocity near the surface, w,
Saltzman and Irsch (1972) emphasize the use of the
full kinematic boundary condition

w=v.Vh 1)

where v is the surface horizontal wind and 4 is the
height of the orography. The traditional linearization
neglects forcing associated with the mean meridional
wind and deviations from the zonal mean wind, taking

u oh
W — ——
a cos¢ oA

(2)

where u is the zonal-mean zonal wind. Motivated by
this consideration, Chen and Trenberth (1988) obtain
reasonable simulations of observed stationary waves
by retaining the full boundary condition [Eq. (1)] but
neglecting all terms in the interior equations that are
quadratic in the eddy amplitude. Ashe (1979) and,
more recently, Valdes and Hoskins (1991 ) have ob-
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tained fully nonlinear solutions using an iterative pro-
cedure. Both conclude that the terms neglected in linear
stationary wave theory are important in the atmo-
sphere.

We try to shed some additional light on these topics
by describing how the climate responds to idealized,
midlatitude mountains of various heights in a GCM
and comparing this response with solutions from a
steady-state, linear model. The experiments are de-
signed to address two issues. The first concerns how
the atmosphere’s response to orographic forcing is es-
tablished in the linear limit. If we let h = ¢f( x, y) then,
as e = 0, the climatic response of the atmosphere must
be linear in e. In this limit, the nonlinear interaction
of the stationary wave with itself is negligible, but to
what extent must the effects of the mountain on the
transient eddies or the diabatic heating field be taken
into account?

The second issue involves the limits of validity of
the linear response and its geophysical relevance. For
what mountain size is the response of the atmosphere
linear, and how does this linear response break down
for larger mountains? What physical mechanisms are
responsible for this breakdown? Does the most signif-
icant nonlinearity first develop near the mountain or
in the far field, perhaps associated with the presence
of critical layers?

The models and experiments are described in sec-
tions 2 and 3. The stationary wave responses of both
models to the smaller mountains are compared in sec-
tion 4, and in section 5 we show how linearity breaks
down in the GCM for larger mountains. In section 6,
effects of changes in diabatic heating, transient eddies,
and the zonal-mean basic state are presented. The
zonal mean momentum budget is discussed in sec-
tion 7.

2. Models

In designing the models used in this study, an at-
tempt was made to generate as clean a comparison as
possible between the stationary linear and time-depen-
dent nonlinear responses. Both the GCM and the linear
model have nine sigma levels (at ¢ = 0.025, 0.095,
0.205, 0.350, 0.515, 0.680, 0.830, 0.940, and 0.990).
They are spectral models with rhomboidal truncation
and 15 waves retained, which is equivalent to a trans-
form grid resolution of 7.5° longitude and about 4.5°
latitude. The linear model solves the steady-state ver-
sion of the GCM’s governing primitive equations lin-
earized about a zonally symmetric basic state. The
GCM includes atmospheric and surface physics that
the linear model does not, so these processes are kept
relatively simple as described below.

The GCM is a version of the low-resolution (R15)
model developed and maintained by the Climate Dy-
namics Group at NOAA’s Geophysical Fluid Dynam-
ics Laboratory. The model solves a prognostic equation
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for water vapor in addition to the primitive equations.
For this study, the model’s boundary conditions are
highly idealized. There are no continents, and the entire
surface is covered by an immobile “swamp” ocean that
serves as an infinite source of water vapor for the at-
mosphere but has no heat capacity. The surface albedo
is 0.1 everywhere, and sea ice is not allowed to form.
Clouds are zonally uniform, hemispherically symmet-
ric, and prescribed with the same distribution in both
hemispheres. Solar radiation is given its annual mean
value with no diurnal variation.

The control integration of the GCM has a flat sur-
face, and is spun up from isothermal, motionless initial
conditions. A climatology is formed from the last 1400
days of an 1800-day-long integration. Figure 1 shows
the zonal-mean zonal wind as a function of height from
the control climatology. The model climate is hemi-
spherically symmetric, with 30 m s ! zonal wind max-
ima in the upper troposphere near 40° latitude and
surface easterlies in the tropics. Unlike observations,
the surface easterlies do not penetrate to the upper tro-
posphere, where weak westerlies are maintained in the
model.

The linear model is that described in Ting and Held
(1990) and uses a matrix inversion method suggested
by Schneider (1989). The treatment of dissipation in
the model has some effect on the solutions. Dissipation
parameterizations include 1) surface friction precisely
as described by Nigam et al. (1988), 2) thermal damp-
ing below 830 mb on pressure (not sigma) surfaces
with a damping time scale of 5 days, and 3) biharmonic
diffusion (¥V*) of vorticity, divergence, and tempera-
ture with » = 107 m* s™'. The surface friction is not
an exact linearization of the GCM’s nonlinear for-
mulation, but produces stresses of roughly similar am-
plitude. Some additional damping of temperature is
needed near the ground to avoid a noisy low-level tem-
perature field. We follow Valdes and Hoskins (1989)
in damping the temperature perturbation on pressure
(not sigma) surfaces. The biharmonic diffusion coef-
ficient is a factor of 10 larger than that used in the
GCM. The sensitivity of the linear response to the dis-
sipation in the linear model is discussed in sections 4,
5, and 6.

3. Experiments

In the GCM experiments, a Gaussian mountain is
imposed at the surface at 45°N, so that the height of
the surface, /4, is given by

— 2 _ 2
h(k,¢)=Hexp{—[()\ azXO) +(¢ b2¢°) ” (3)

where H is the maximum height of the mountain and
a and b are the longitudinal and meridional half-widths,
respectively. The half-widths are both 15°N in all ex-
periments, which produces a response that is of large
enough scale to be resolved by the low-resolution model
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F1G. 1. Zonal-mean zonal wind as a function of latitude and height from the control

integration of the GCM. Contour intervals are 5 m s

but still be geophysically relevant. The mountain peak
is located near the latitude of the maximum in the
surface westerlies (6 m s~') at 6, = 45°N.

Five mountain experiments with the GCM are per-
formed, with H = 0.7, 1, 2, 3, and 4 km. Smaller
mountains require longer integrations to establish sat-
isfactory signal-to-noise ratios. The climatologies for
the five 0.7-4 km mountain experiments are formed
by averaging 4400, 2000, 1000, 900, and 600 days,
respectively. A spinup period of 200 days, from the
same initial conditions as the control integration (an
1sothermal atmosphere at rest), is discarded in each
case.

Figure 2 indicates the shape and location of the
mountain in the GCM experiments along with the eddy

90N

-1, and easterlies are shaded.

streamfunction at 350 mb from the 0.7 km mountain
case. This response is compared with the linear model
and other GCM experiments in the next section. There
is a clear stationary wave signal, with anticyclonic flow
to the west and cyclonic flow to the east of the orog-
raphy, leading to a Rossby wave train that turns sharply
into the tropics. This wave is evidently absorbed in the
tropics, with little sign of reflection or transmission into
the Southern Hemisphere. Weak anticyclonic flow
north of 45°N and east of 180° is present in other
experiments, but it is not clear whether the single con-
tours in the far-field Northern Hemisphere midlatitudes
and in the Southern Hemisphere are significant.

The linear model is linearized about the zonal mean
wind and temperature fields from one of the GCM

0 90

110

270 360

FIG. 2. Response of the eddy streamfunction in the GCM at 350 mb to the 0.7 km mountain.
Contour interval is (1 km/0.7 km) 10% m? s~!. Dashed contours indicate the height of the
surface for the GCM experiments. The contour interval is H/4, where H is the height of the

mountain,
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climatologies. Orography (as resolved in the GCM),
diabatic heating, and transients are used to force zonal
asymmetries. To generate the linear response to orog-
raphy alone as discussed in the following two sections,
we use the unperturbed zonal mean fields from the
GCM'’s control (no mountain ) integration and force
perturbations with the GCM orography.

4. Response to the smaller mountains: A nearly
linear regime

Stationary waves induced over the “small” moun-
tains (0.7, 1, and 2 km) in the GCM have similar ray

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 6

paths and show distinct structural differences from the
responses to the “large” (3 and 4 km) mountains.
Figures 3b—d show the eddy streamfunction at 350
mb from the 0.7, 1, and 2 km mountain experiments,
with values normalized by mountain height (multiplied
by 1 km/H), so that the four panels of Fig. 3 would
be identical if the response were exactly linear. The
flow is dominated by a single wave train propagating
to the southeast in each case. In the (0.7 km mountain
case, an eddy streamfunction maximum is almost di-
rectly west of the orography maximum, with a mini-
mum to the east. As H increases, this pattern rotates

90°Nf
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LATITUDE

LATITUDE
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FiG. 3. Northern Hemisphere response of the normalized 350-mb eddy streamfunction (a)
in the linear model with orographic forcing only; and in the GCM for the (b) 0.7 km, (¢) 1

km, and (d) 2 km mountain experiments. Contour intervals are 10°m

257t
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clockwise, so that for the 2 km mountain there is a
pronounced northwest-to-southeast orientation over
the orography. The remainder of the ray path continues
to be directed toward the southeast in each case, with
less penetration into the tropics with increasing moun-
tain height, especially evident for the 2 km mountain.
(A hint of a second, poleward wave train appears in
the 2 km mountain case. This is discussed in the fol-
lowing section.) The far-field response east of the
mountain is similar in all three simulations. There is
no sign that global resonance is relevant for simulating
the stationary wave in any of these experiments. There
may be some weak wave reflection from the tropics,
but a clear signal is not discernible.

While the structure of the responses is similar for
the three small mountain cases, departures from lin-
earity are evident since the normalized amplitude de-
creases as H increases. The trough just east of the orog-
raphy maximum is twice as large for the 0.7 km as for
the 2 km mountain. Since the two smallest mountain
cases are not identical, we have not defined the GCM’s
linear climatic response precisely, although the 0.7 km
case is evidently quite close. Longer integrations with
even smaller mountains would be required to define
the limit more precisely.

The linear solution forced by orography alone (with
no diabatic heating or transient eddy forcing) and lin-
earized about zonal mean fields from the GCM’s con-
trol integration (and normalized to correspond to H
= ] km) is shown in Fig. 3a. There are two wave trains
in the linear response, with a weak polar stationary
wave along with a wave train propagating to the south-
east as in the GCM simulations. It is encouraging that
the structure and amplitude of the dominant linear
stationary wave are most like the GCM’s response to
the smallest mountain (Fig. 3b). In the vicinity of the
mountain, amplitudes are larger in the linear simula-
tion confirming that, even in our smallest mountain
experiment, we have not quite captured a purely linear
response to orography by the GCM. Our impression
is that the GCM’s response to smaller mountains
(which would require much longer integrations to iso-
late) would be even closer to the linear model’s sim-

90N
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ulation. Propagation into the tropics is stronger in the
linear model case, but the weak far-field response is
similar to the GCM’s.

The solution in the upper troposphere is sensitive
to the strength of the biharmonic diffusion. The re-
sponses described above result from the choice of »
=10"m*s~'. The GCM uses » = 10'® m* s !, Figure
4 shows the 350-mb eddy streamfunction predicted by
the linear model in response to topographic forcing
when » is reduced to 3 X 10'® m* s~!. The simulation
of the GCM response has deteriorated, particularly at
high latitudes. When v is reduced further to the GCM’s
value, the deterioration at high latitudes is even more
severe and, in addition, the penetration of the stationary
wave into the Southern Hemisphere becomes substan-
tial, in disagreement with the GCM. Instead of ad-
justing the biharmonic diffusion everywhere, a com-
parable improvement in the linear simulation can also
be obtained by increasing dissipation only near critical
layers where # is small. This implies that the increased
diffusivity has most of its effect in regions of small mean
winds in high and low latitudes.

The sensitivity to the surface friction parameteriza-
tion is relatively modest. If the strength of the surface
friction is doubled or halved, the amplitude of the mid-
dle and upper troposphere response is increased or de-
creased by about 20%, with little change in structure.
The upper troposphere response is insensitive to the
thermal damping included in the linear model.

The agreement between the linear model and GCM
holds throughout the middle and upper troposphere.
Figures 5a and 5b show longitude-pressure cross sec-
tions of the normalized eddy streamfunction at 42°N
from the 0.7 km mountain GCM experiment and the
linear model (orography forcing alone, unperturbed
mean fields). Both solutions are essentially equivalent
barotropic at all latitudes in both models, with only a
slight westward tilt with height. The anticyclone to the
west of the orography maximum at 90° longitude is
largest in the lowest layers of the models, while the
cyclonic center to the east is largest in the upper tro-
posphere near 200 mb (cf. Held 1983, Fig. 6.18).

In the lower troposphere, perturbations are more
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F1G. 4. Normalized 350-mb eddy streamfunction from the linear model with orographic
forcing alone and v = 3 X 10'° m* s™!, Contour intervals are 106 m?s~!.



530

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 49, No. 6

100
200
300
400
500
600
700
800
900

pressure (mb)

0.7km GCM

1000
0

100
200
300
400
500
600
700
800
900

pressure (mb)

180

& LINEARL i

1000
0

|
180

270 360

FI1G. 5. Vertical cross section through 42°N of the normalized eddy streamfunction for the
(a) 0.7 km mountain experiments in the GCM and the (b) linear model with unperturbed
basic state and orographic forcing alone. Contour interval is 106 m? s~!.

closely confined to the vicinity of the mountain. Figure
6a shows the normalized 940-mb eddy geopotential
from the same linear solution as in Figs. 3a and 5b.
Figure 6b-d are from the 0.7, 1, and 2 km mountain
GCM experiments, with regions where the 940-mb
pressure level is underground blackened. In the linear
solution the dipolar perturbation pattern near the
mountain is centered at the same latitude as the orog-
raphy maximum, as it is aloft. The GCM’s response
to the smallest mountain is again most similar to the
linear simulation; the anticyclone has nearly the same
strength as in the linear model, while the cyclone is
still about 25% weaker. The cyclonic and anticyclonic
centers are both zonally elongated as compared with
the linear solution. As the mountain height increases,
the amplitude of the cyclonic maximum saturates but
the strength of the perturbation away from the moun-
tain continues to increase (e.g., the 10-gpm contours
do not change very much with mountain height). As
in the upper levels of the atmosphere, the east-west
orientation seen in the linear simulation changes in the
GCM with increasing mountain height to a northwest—
southeast orientation in the 2-km case.

The temperature field (not shown) in the middle

and upper troposphere produced by the linear model
is in very good agreement with that seen in the small-
mountain GCM integrations, comparable to the agree-
ment described above for the streamfunction. However,
the temperature field at low levels is poorly simulated.
Fortunately, the temperature perturbations are suffi-
ciently small (at most 2 K in the eddy temperatures
in p coordinates for the 1-km GCM experiment) and
the disagreement is confined to a shallow enough layer
near the ground (p > 900 mb primarily) that this de-
ficiency has little impact on the simulation of the flow
field. If the thermal damping included near the surface
is reduced in strength, there is very little effect on the
linear model solution until the time scale for the
damping reaches 15 days. At this point the tempera-
tures at the lowest levels develop unrealistic smali-scale
structure. It is only the temperature patterns in a shal-
low layer near the surface that are at all sensitive to
this damping.

Agreement between the linear model orography-only
solution and GCM stationary wave simulations is im-
pressive for the small-mountain cases as long as we use
the larger value of the biharmonic diffusion. Since the
0.7 and 1 km GCM stationary waves are quite similar
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FIG. 6. Northern Hemisphere eddy geopotential at 940 mb normalized by mountain height
for the (a) linear model with unperturbed GCM zonal mean fields and orographic forcing
alone; GCM with (b) 0.7 km, (¢) 1 km, and (d) 2 km mountains. Contour interval is 10
gpm, and regions where the 940-mb surface is underground in the GCM are blackened.

to each other, their similarity to the linear solution
increases our confidence that we are close to capturing
a linear response to orography in the GCM. Once H
reaches 2 km in the idealized GCM, the stationary wave
response can still be qualitatively understood in terms
of a linear response to orography alone, without con-
sidering the influence of transient eddies, diabatic
heating, or modifications of the zonal mean wind and
temperature fields. However, linear theory then over-
estimates the amplitude of the response by nearly a
factor of two.

5. Breakdown of the linear response

The stationary waves associated with the 3 and 4
km mountains in the idealized GCM have a different
structure from the small-mountain and linear responses
to orography. Figure 7 shows the unnormalized 350-
mb eddy streamfunction from the 0.7, 2, 3, and 4 km
mountain experiments in the GCM. As described in
the previous section, the linear and small-mountain
responses are dominated by a wave train radiating into
the tropics to the southeast of the orography maximum.
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FIG. 7. Northern Hemisphere eddy streamfunction at 350 mb (unnormalized) from the
GCM with (a) 0.7 km, (b) 2 km, (c) 3 km, and (d) 4 km mountains: Contour interval is 10°
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- The 2 km response, however, begins to show significant
deviations from this pattern, developing a distinct per-
turbation to the northeast. As the mountain size in-
creases above 2 km in the GCM, the amplitude of the
southeastward wave train saturates and a strong wave
train emerges to the north and northeast of the orog-
raphy. (This northern wave train is probably unrelated
to the weak high-latitude response in the linear model
seen in Fig. 3a.) In the 3 km case, there are two distinct
wave trains of comparable amplitude. One is similar
to the “linear” wave train, displaced to the west some-
what. The second wave train starts with an anticyclone

on the north slope of the mountain and curves equa-
torward, penetrating into the tropics some 60° longi-
tude east of the other wave train. In the 4-km case, the
“linear” wave is displaced farther west with slightly
weaker amplitudes, while the poleward wave has am-
plified.

A different view of the breakdown of linear theory
is provided by the horizontal component of the flow
near the surface. Figure 8a shows the ¢ = 0.94 isen-
tropes and winds from the GCM in the 2 km mountain
case. (Closer to the surface, at & = 0.99, the flow is
similar but more strongly affected by frictional con-
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FI1G. 8. Potential temperature and wind vectors from the GCM at
o = 0.94 for the (a) 2 km and (b) 4 km mountain experiments.
Potential temperature contours are 2 K.

vergence.) The isentropes are deformed but their to-
pology is unchanged from the control climate since
each contour completes a closed circuit around the
globe. While the incident westerly flow from the GCM
climatology has a tendency to follow the mean isen-
tropes over the mountain in all regions, flow perpen-
dicular to the isentropes occurs to the northeast and
to the southeast of the mountain.

For the 4 km mountain (Fig. 8b), the flow is quite
intricate, and it is questionable whether it would repay
very close scrutiny given the low resolution of the
model. (The vectors in the figure mark every point of
the GCM’s transform grid.) Closed isentropes are gen-
erated over the mountain. Outside these closed con-
tours the structure of the flow is similar to the flow
near the smaller mountains. Inside the closed contour
region cyclonic flow develops along the contours, so
that southerlies occur on the eastern flank and easterlies
replace westerlies on the north slope of the mountain.

Figures 9a and 9b show the vertical p velocities on
the lowest sigma level (o = 0.99) from the 2 and 4 km
mountain GCM experiments. In the 2 km case, as in
the 0.7 km, 1 km, and linear cases, there is a single
region of upward motion to the west of the mountain-
top, and a single region of downflow to the east. This
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pattern is aligned due east—-west for the linear and 0.7
km responses. In the 1 and 2 km cases, a progressive
clockwise rotation is evident in this pattern (as in the
response at all levels). To a first approximation, how-
ever, the air simply flows up the western slope of the
mountain and down the eastern slope for mountains
of 2 km height and lower.

For the larger mountains, two distinct regions of up-
ward motion near the surface develop. In the 4 km
case (Fig. 9b), the region of upward motion persists
over the northwestern quadrant of the mountain, in
the same location as in the 2 km mountain case but
stronger. At the latitude of the orography maximum
on the eastern slope of the mountain, a second region
of even stronger vertical velocities has developed.
(There are also two regions of upward motion in the
3 km case but they have comparable magnitudes.) The
second region of uplift is associated with the horizontal
circulation within the closed isentropes shown in Fig.
8b. The low-level cyclonic flow travels around the
mountain to the south, turns northward, and ascends
over the northeastern flank of the mountain. This up-
ward motion is associated with a significant precipi-
tation maximum that presumably has some effect on
the stationary wave pattern.

LATITUDE

LONGITUDE

LATITUDE

0 90 180

LONGITUDE

FIG. 9. Vertical p velocity in the GCM at the lowest level (¢ = 0.99)
for the (a) 2 km, {(b) 3 km, and (c) 4 km mountain experiments.
Contour intervals are 102 Pas™'.
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Clearly the range of orographic heights for which we
can set w = #(dh/a8x) is limited. The extent to which
the breakdown of this relation can be taken as an ex-
planation of the changes in the large-scale wave pattern
remains unclear, however. There are cases in which
the departure of the boundary condition from w
= 7(dh/dx) is offset by nonlinearities in the interior.
For example, in the simplest quasigeostrophic problem
with # independent of latitude, the linear solution for
the response of the geostrophic flow to a mountain
remains an exact solution to the fully nonlinear equa-
tions despite the fact that the relation Eq. (2) breaks
down as the mountain height increases. However, it is
possible that the poleward wave train in our solutions
is related to the generation of strong vertical velocities
on the northeast slope of the mountain. This is similar
to the results of Trenberth and Chen (1988), who also
find more prominent polar wave trains for larger orog-
raphy.

The existence of closed surface isentropes within the
linear framework can be predicted simply from the
geometry of the orography and the temperature struc-
ture of the control climate. This follows from the lin-
earized thermodynamic equation on the lowest layer
(in z coordinates)

u o0

00 10’30 90
acos¢ oA

a ¢ i 9z
where primes denote perturbation quantities, bars the
zonal means, and the zonal-mean meridional and ver-
tical wind velocities have been neglected. With the
boundary condition Eq. (2), if the first term dominates
the lhs, then

(4)

0 h p
and the air simply moves across the mountain at a
fixed latitude. But when the zonal-mean meridional
temperature gradient is large, as in wintertime, the sec-
ond term is also important (see Cook and Held 1988;
Held and Ting 1989 ). When the meridional advection
of the basic-state temperature by eddies dominates, Eq.
(4) tells us that the temperature perturbations are small
in the sense that

(3)

o 90

h < 0z
holds along the surface of the mountain. When this is
the case, one can estimate the surface potential tem-
perature distribution by ignoring @ and just allowing
the mountain to protrude into an unperturbed atmo-
sphere.

Figure 10 shows zonally averaged potential temper-
ature in a pressure-latitude cross section from the con-
trol climate at the longitude of the orography maxi-
mum. The dashed lines are surface pressure at the same
longitude from each of the mountain experiments.

(6)
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FIG. 10. Vertical cross section through the longitude of the max-
imum surface height showing isentropes from the GCM’s unperturbed
basic state (solid lines) and surface pressure from the five mountain
experiments (dashed lines). Potential temperature contours are 2 K.

Closed isentropes occur where the slope on the equa-
torward face of the mountain is steeper than the is-
entropic slope. Given our simple mountain shape and
the zonally symmetric potential temperature distri-
bution of the control integration, this construction
predicts the formation of closed contours for mountain
heights above 2 km. The figure also suggests that the
transition from open to closed contours may be sen-
sitive to the fact that the higher mountains are pro-
truding into regions with smaller isentropic slopes. The
two smallest mountains are completely embedded in
the boundary layer below about 850 mb, where the
isentropic slope is steep and closed potential temper-
ature contours are relatively easy to avoid.

The ratio of orographic to isentropic slopes is a key
parameter in determining the range of validity of linear
theory at low levels. Whether the departures from lin-
earity in the upper troposphere seen in Fig. 7 are also
controlled by the ratio of the orographic and isentropic
slopes is unclear, although it is tempting to argue that
enclosing the equatorward half of the mountain in
closed contours changes the effective source of the wave
trains.

6. Effects of transient eddies, diabatic heating, and
changes in the basic state

Even though our linear model is a steady-state
model, we can assess the role of transient eddies in
establishing the stationary wave response to orography.
The first step is to calculate the net transient forcing
in the GCM by substituting the climatological values
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of the prognostic variables, as well as the frictional
stresses and the diabatic heating field, into the GCM’s
vorticity, divergence, and thermodynamic equations.
The imbalance, or residual, is assumed to be due to
the action of transients eddies over the length of the
integration. These forcing functions are then used to
generate stationary waves in the linear model, alone
or with other forcing functions. (The effects of tran-
sients in the surface pressure equation are neglected
since they have little influence; the effects of transients
in the divergence equation also turn out to be negli-
gible.) Effects of diabatic heating can also be included
by using the sum of the three-dimensional fields of
radiative, condensation, and sensible heating from the
GCM climatology to force the linear model stationary
waves,

Adding the diabatic heating and transient eddy forc-
ing functions from the small-mountain cases to oro-
graphic forcing in the linear model changes certain de-
tails of the linear solution. Figure 11a shows the eddy
streamfunction response at 350 mb from a linear model
simulation with transients and diabatic heating from
the 0.7 km mountain GCM climatology in addition to
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forcing by 0.7 km mountain orography. The basic state
is from the control integration. The magnitude of the
first “downstream” low is unaffected and still stronger
than its GCM counterpart. The response to the north
of the orography has degraded, although the subtropical
response is weaker and more like the GCM’s.

Most of the differences between the total and orog-
raphy-only solutions are associated with transient ed-
dies. Figures 11b and 11c¢ show the individual contri-
butions of thermal and vorticity transients to the total
response of Fig. 11a. Thermal transients are effective
in damping the linear orographic wave train (Fig. 3a)
north of the mountain. The vorticity transients generate
a low-latitude wave train that is out of phase with the
orographic wave train and damps the tropical response.
These differences, however, are of the same order as
differences associated with the parameterization of dif-
fusion in the linear model. There is a suggestion that
the enhanced biharmonic diffusion may be crudely ac-
counting for some effect of the transients in the middle
and upper troposphere since both diffusion and tran-
sients weaken the response at high and low latitudes.

Adding the effects of transients and heating causes

LATITUDE

LATITUDE

LATITUDE

LONGITUDE

FI1G. 11. Normalized 350-mb eddy streamfunction from the linear model with forcing by
(a) diabatic heating, transient eddies, and orography, (b) thermal transients alone, and (c)
vorticity transients alone from the 0.7 km mountain GCM. Contours are 106 m?s~'.
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a more substantial difference in the response close to
the surface. Figure 12 shows the 940-mb eddy geopo-
tential from the linear model forced by transient eddies,
diabatic heating, and orography from the 0.7 km GCM
climatology for comparison with the linear orography-
only solution (Fig. 6a) and GCM 0.7 km simulation
(Fig. 6b). While the magnitude of the maximum to
the west of the mountaintop has hardly been affected,
the minimum to the east is even stronger, departing
further from the GCM simulation than the linear
orography-only case. A hint of the elongation of the
cyclonic center has been captured, however, due to the
inclusion of transient forcing.

For the large-mountain cases, effects of transients
and diabatic heating on the stationary waves are very
small relative to the large differences between the linear
orography-only and GCM simulations. There is no in-
dication that inciuding these forcings might lead to the
double stationary wave trains characteristic of the
nonlinear responses shown in Figs. 7c and 7d, and the
added forcings are not associated with the saturation
of the wave amplitudes with increasing mountain
height.

Until now we have focused on linear model solutions
in which the model is linearized about the zonal-mean
horizontal wind components and temperature from the
control (no mountain) integration. Changes in the ba-
sic state can be important for controlling how the at-
mosphere responds to adiabatic cooling (heating) as-
sociated with the ascent (descent) of air over the
mountains [see Eq. (4)]. Cook and Held (1988) discuss
a rather extreme case in which a doubling of the mag-
nitude of the zonal-mean meridional temperature gra-
dient in a model of the Last Glacial Maximum leads
to effective damping of stationary waves generated over
continental ice sheets. Held and Ting (1990) discuss
the role of changes in the low-level zonal-mean zonal
wind.

Here we find little modification of the mean fields
for the small mountain cases. At the latitude of the
mountain, the zonal-mean zonal wind on sigma sur-
faces in the 2 km mountain GCM is 1.5 m s~' smaller
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than in the no-mountain climatology throughout the
lower and middle troposphere. Changes in the zonal
mean temperature are at most 0.5 K at the lowest sigma
level. Linearizing the linear model about these per-
turbed zonal-mean fields has little effect on the linear
simulation.

For the 3 and 4 km GCM climatologies the decrease
in the zonal-mean zonal wind on the lowest sigma level
is just over 2 m s™', and the temperature changes are
about 0.5 K. While using the perturbed mean fields in
the linear model leads to some differences in the so-
lution, these differences are small compared to the dif-
ferences between the linear model and GCM large-
mountain stationary waves. There is no evidence that
changes in the basic state are associated with the sat-
uration of the waves or with the generation of a pole-
ward wave train.

7. The momentum budget

The convergence of the vertically integrated flux of
angular momentum by the mean flow and transients
balances the mountain torque and surface drag, Fp,
according to

Pdp 1 9 S mm—
(— 2 a¢)‘°°s o(TTo]
onl  —
+[u'v'1>>—[——a(f§5¢5] [Fo1=0. (7)

Here square brackets denote the time mean and primes
are deviations from the time mean; overbars once again
refer to the zonal mean; py is surface pressure, and a
the radius of the earth. Figure 13a shows each com-
ponent of this budget for the control integration. The
solid line represents the contribution by the time-mean
flow, the dashed line is the flux convergence associated
with the transients, and the dotted line is the surface
drag. The balance of terms is as expected. In middle
latitudes, the transient eddy flux largely balances the
surface drag, with the contribution from the time-mean
circulation about an order of magnitude smaller and

LATITUDE

=

L

360

180 270

LONGITUDE

FIG. 12. Normalized 940-mb eddy geopotential from the linear model with forcing by
transients, diabatic heating, and orography from the 0.7 km mountain GCM. Contours are

10 gpm.
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FIG. 13. (a) Vertically and zonally integrated components of the
angular momentum budget for the no-mountain control GCM in-
tegration. Solid line is the contribution from the time-mean flow,
dashed line is the transient contribution, and the dotted line is surface
drag,. (b) Differences in these terms for the 2 km mountain experiment
minus the control. Mountain torque is the dashed-dotted line.

the same sign as the drag. In lower latitudes, each com-
ponent changes sign, and the momentum flux by the
mean winds plays a relatively larger role.

Figure 13b shows the difference (experiment — con-
trol) in the terms of the momentum budget for the 2
km mountain experiment. The level of significance of
the changes in the Northern Hemisphere can be judged
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by comparison with the smaller differences in the
Southern Hemisphere, although in some of the other
experiments the noise level is not quite this low. The
contribution of the time-mean flow can now be divided
into two parts, one associated with the mean meridional
circulation and another due to the stationary eddy mo-
mentum flux. The change in the total time-mean flow
contribution is almost entirely due to the stationary
waves, the change in the mean meridional circulation
being small. The mountain torque is quite significant,
amounting to about 40% of the surface drag in the
midlatitude westerlies of the control run.

In a linear, inviscid stationary wave model the sta-
tionary wave flux convergence would balance the
mountain torque, but here we see that the torque is
substantially larger than the stationary flux component.
Thus, to maintain the momentum balance, the surface
winds decelerate and the magnitude of the surface drag
decreases (so that the difference plotted in Fig. 13b is
positive). The picture is complicated by changes in the
transient momentum flux convergence, which de-
creases poleward and increases equatorward of the
mountain by amounts comparable to the stationary
contribution. These results are reminiscent of those of
Manabe and Terpstra (1974). In their comparison of
a no-mountain GCM with a realistic mountain model
they found that the increased stationary contribution
to the momentum budget in the mountain climate
compensates for a decrease in the transient component,
while the total momentum flux changes little. A similar
effect occurs between about 40° and 60° latitude in
this calculation, although the transient differences are
displaced poleward of the stationary wave contribution.

Further evidence of convergence to the linear limit
is seen by examining the mountain torque. Linear the-
ory predicts that this torque is proportional to the
square of the mountain height. Figure 14 shows the
mountain torque normalized by (1 km/H)? for all of
the GCM mountain climatologies. Also shown are the
torques simulated by two versions of the linear model,
one with orographic forcing alone and the other with
orography plus the diabatic heating and transient eddy
fluxes generated by the 0.7 km GCM. The magnitude
of the normalized torque decreases with mountain
height. The linear model grossly overestimates the
torque for the larger mountains. For the smaller
mountains, the torque seems to be approaching its lin-
ear limit. The linear simulation of the mountain torque
changes by approximately 10% when the biharmonic
diffusion coefficient is reduced from » = 10'7 to 10'¢
or when the strength of the surface friction is doubled.
It is insensitive to the thermal damping,.

8. Conclusions

We have discussed the stationary wave response to
an idealized mountain in a GCM with zonally uniform
and hemispherically symmetric boundary conditions,
and how that response depends on the height of the
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F1G. 14. Mountain torque for each GCM experiment along with
the linear torques from the orography-only and full-forcing solutions.

mountain. Cases considered are for the five 0.7-4 km
mountains with Gaussian profiles centered at 45° lat-
itude. The results are compared with solutions from a
stationary linear primitive equation model that is for-
mulated to be compatible with the GCM.

The GCM response to the 0.7 km high mountain is
similar to the linear response to orographic forcing
alone. In the middle and upper troposphere, a single
stationary wave train emanates from the mountain
peak toward the southeast. The signal dies in the sub-
tropics, with no significant passage into the other
hemisphere. Several studies (e.g., Nigam and Lindzen
1989) have shown that the dominant ray paths in linear
models are sensitive to the zonal mean flow. The
agreement we find between linear theory and the GCM
suggests that these studies are relevant to the GCM as
well, at least when the orography is sufficiently small.
It would be of interest to try to modify the GCM’s
zonal mean flow and see if the linear model can predict
the change in the wave-train structure.

The stationary waves generated over the 1 and 2 km
mountains in the GCM have the same structure as the
0.7 km and linear waves, although the ratio of the re-
sponse-to the mountain height decreases as the height
of the mountain increases. Nonetheless, we think of
these cases as being in a “nearly linear regime” to dis-
tinguish them from the distinctly different response to
the larger mountains. Within this linear regime, the
low-level flow is essentially passing directly over the
mountain, although northward excursion around the
mountain is evident in the 2 km case. Adding the effects
of diabatic heating and transient eddy heat transports
does not consistently improve the linear simulation at
any level, and the differences are not greater than the
linear model’s sensitivity to the diffusion parameter-
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izations. The effects of linearizing about the GCM’s
zonal-mean fields as perturbed by the mountains are
inconsequential.

Global resonance and reflection from the tropics are
not important in the GCM simulations for any moun-
tain height. The linear response does not appear to
break down first in low latitudes, but rather close to
the mountain in association with the deflection of the
low-level flow. Critical-layer theory is sometimes in-
terpreted as suggesting that linear stationary wave the-
ory cannot be valid if critical layers exist anywhere in
the domain, since the wave would mix the potential
vorticity field in the critical layers and produce reflec-
tions that would not be present in a linear model. But
this conclusion neglects restoring forces on the mean
flow; a small incident wave will cause only a small
perturbation in the dynamic balance maintaining the
flow. Note, however, that some extra dissipation near
the critical layers is required by our linear model (per-
haps because of its low resolution) in order to obtain
a useful simulation. This dissipation may mask some
of the effects of nonlinearities and /or transients in the
tropics and at high latitudes.

The low-resolution GCM may be underestimating
the potential for reflection of stationary waves. The
Hadley cell is very weak (<0.5 m s™!) due to the annual
mean temperatures and the low resolution. A stronger
direct circulation could result in smaller vorticity gra-
dients in the tropics, which would be conducive to re-
flection. The critical-layer dynamics is also undoubt-
edly distorted by the low resolution. Furthermore, the
effects of transients could be misrepresented, particu-
larly in the upper troposphere where models of this
resolution are known to underestimate the strength of
the eddy momentum fluxes. .

In our GCM experiments, there is a transition from
the linear regime to a nonlinear regime when the
mountain height is around 2 km. A second, poleward
wave train is generated over the larger mountains in
addition to the equatorward wave train seen in the lin-
ear regime. The amplitudes of the two wave trains are
about equal in magnitude for the 3 km mountain case,
but the polarward wave train dominates the 4 km re-
sponse. Closed isentropes develop along the surface of
the larger mountains, with cyclonic flow generated in-
side the closed contour region. The existence of these
closed contours can be predicted for a given mountain
and basic state simply by imagining that the mountain
protrudes into the unperturbed potential temperature
field. Therefore, one important parameter controlling
the linearity of the lower troposphere’s response to
orography is the ratio of the meridional orographic
slope to the background isentropic slope. There are
undoubtedly other important sources of nonlinearity
that must be considered to fully understand the range
of validity of linear theory.

Fruitful directions for extending this work include
1) obtaining steady nonlinear solutions (as in Valdes
and Hoskins 1991) to determine the extent to which
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the large mountain flows can be understood without
considering the effects of transients; 2) studying anal-
ogous experiments in models with higher vertical and
horizontal resolution in which a detailed study of the
critical-layer dynamics and the effects of the stationary
wave on transient eddies would be more justifiable; 3)
examining the sensitivity of the results to the shape of
the mountain.
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