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ABSTRACT

Abrupt transitions to strongly superrotating states have been found in some idealized models of the troposphere.
These transitions are thought to be caused by feedbacks between the eddy momentum flux convergence in low
latitudes and the strength of the equatorial flow. The behavior of an axisymmetric shallow-water model with an
applied tropical torque is studied here to determine if an abrupt transition can be realized without eddy feedbacks.
The upper-tropospheric layer is relaxed to a radiative equilibrium thickness, exchanging mass and thus momentum
with the nonmoving lower layer. For low values of the applied torque, the circulation is earthlike; however, for
larger values, an abrupt transition to a strongly superrotating state can occur. In some cases, the system remains
superrotating as the torque is subsequently decreased. A simple analytical model is used to better understand
the system. The bifurcation is caused by a feedback between the applied torque and the strength of the Hadley
cell. As the torque increases, the strength of the cell decreases, reducing the damping caused by momentum
transfer from the lower layer.

1. Introduction

Given the zonal mean zonal flow u, one can compute
the corresponding absolute angular momentum about
the axis of rotation

M [ a cosf(Va cosf 1 u), (1)

where a is the radius of the planet, V the rotation rate,
and f the latitude. We use the term superrotating to
refer to an atmosphere in which M at some latitude or
height exceeds Va2, the angular momentum of the sur-
face of the planet at the equator. Since the maximum
angular momentum of the solid planet is found at the
equator, a superrotating atmosphere achieves a value of
M larger than any surface values. In order for the cir-
culation to be inertially stable, M must decrease pole-
ward; thus equatorial winds invariably have the greatest
angular momentum. Therefore, on a counterclockwise
rotating planet, an atmosphere is superrotating if and
only if the winds at the equator are westerly.

Maintenance of superrotation requires the transport
of angular momentum from areas of low angular mo-
mentum to the region of maximum angular momentum
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at the equator. Assuming that such countergradient flux-
es exist, the strength of the superrotation is then deter-
mined by the response of the processes that decelerate
the equatorial winds (e.g., poleward momentum fluxes
or advection from regions of smaller M) to the equa-
torial acceleration.

On the earth, the mean equatorial tropospheric winds
are slightly easterly. Thus, the earth’s troposphere is not
superrotating. However, superrotation occurs during the
westerly phase of the quasi-biennial oscillation (QBO)
in the stratosphere, as well as on other planets, such as
Jupiter and Saturn, and on our sun. These cases raise
the question of whether the earth’s troposphere could
be superrotating under somewhat different conditions.

Strong superrotation has in fact been simulated in
some simple models of the earth’s atmosphere. Suarez
and Duffy (1992) obtain superrotating states in a two-
layer model when they apply a zonally asymmetric trop-
ical heating. For certain strengths of the heating, they
find multiple equilibria. Once superrotation is estab-
lished in the model, the system remains superrotating,
even if they remove the asymmetric heating. Saravanan
(1990) uses a two-layer model as well but applies a
zonally symmetric torque, rather than asymmetric heat-
ing, to produce superrotation, so as to study the feed-
backs between eddy fluxes and equatorial winds in the
simpler setting of a model with a zonally symmetric
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climate. Suarez and Duffy (1992) and Saravanan (1990)
attribute the abrupt transitions to strong superrotation
to a feedback between the equatorial acceleration
(whether generated by asymmetric heating or an applied
torque) and the deceleration due to poleward eddy an-
gular momentum flux in the Tropics. Strong winds make
the Tropics more transparent to Rossby waves, decreas-
ing the strength of the eddy deceleration. This weakened
deceleration, in turn, results in stronger equatorial winds
and a positive feedback.

Williams (2003) obtains superrotation in a dry mul-
tilayer primitive equation model by moving the location
of maximum baroclinicity equatorward. Williams de-
scribes a different process than Suarez and Duffy (1992)
and Saravanan (1990), attributing the acceleration to an
equatorward eddy flux generated by barotropic insta-
bility when the jet is close to the equator, but feedbacks
with the background poleward momentum fluxes still
play a central role, resulting in abrupt transitions be-
tween a superrotating and nonsuperrotating state.

Using an axisymmetric (no variation in the longitu-
dinal direction) model, we examine a different feedback
in a superrotating atmosphere, one that can occur in the
absence of wave-mean flow interactions. In order to
obtain equatorial westerlies, we specify a torque in the
Tropics. These superrotating equatorial winds are de-
celerated by the Hadley circulation, which advects a
smaller M from below. The strength of the deceleration
caused by the Hadley circulation depends on tropical
temperature gradients and, therefore, on the wind speed
at the equator. We are interested in whether this feedback
allows multiple equilibria for some ranges of the im-
posed forcing. Since the equatorial zonal wind is always
westerly when forcing is applied to this model, we look
for multiple steady superrotating states, one weakly su-
perrotating and one strongly superrotating, for the same
set of parameters.

In order to illustrate the mechanism in the simplest
context, we use a shallow-water model of the upper
troposphere. We also provide a generalization of the
Held–Hou Hadley cell theory to allow for nonzero equa-
torial winds and use this analytical model to explain the
shallow water results. By focusing on this axisymmetric
feedback mechanism, we do not mean to imply that the
eddy feedbacks discussed elsewhere are neither impor-
tant nor dominant. However, we think it is useful to
keep in mind this axisymmetric mechanism as well.

2. The model

We model the troposphere using an axisymmetric 1½-
layer model. The lower layer does not move, but it can
affect the thickness and zonal velocity of the upper layer
through the exchange of mass. The upper layer is mod-
eled using the shallow-water equations for a spherical
isentropic layer. The model determines the zonal ve-
locity u, meridional velocity y, and thickness of the
upper layer h as a function of time t, and latitude f:

]u y ]u uy tanf
1 2 2Vy sinf 2 5 F 1 R 2 ku

]t a ]f a
(2)

2]y y ]y u tanf g* ]h
1 1 2Vu sinf 1 5 2 2 ky

]t a ]f a a ]f
(3)

]h 1 ]hy cosf h 2 heq
1 5 2 , (4)

]t a cosf ]f t

where V is the rotation rate, a is the radius of the earth,
k is the frictional parameter, and g* is the reduced gravity;
F is an applied forcing, and the system is relaxed to a
radiative equilibrium thickness heq(f) with relaxation
time t and resulting effect on zonal momentum, R.

The relaxation of the layer thickness to the ‘‘radiative
equilibrium’’ thickness heq simulates the effect of ra-
diation on the system. The radiative equilibrium thick-
ness decreases away from the equator and then ap-
proaches a constant poleward of latitude fh:

 aV
2h 2 u sin f ( |f | , f )0eq 0eq h g*

h 5eq
aV

2h 2 u sin f ( |f | $ f ),0eq 0eq h hg*
(5)

where h0eq is the radiative equilibrium thickness at the
equator and u0eq is the corresponding equatorial wind.
This relaxation creates a Hadley circulation. In the Trop-
ics, the layer thickness is generally smaller than the
radiative equilibrium thickness; thus, the relaxation term
increases the layer thickness, corresponding to a mass
flux from below (i.e., the upward branch of the Hadley
cell). In the subtropics, the layer thickness is generally
higher than the radiative equilibrium thickness, and the
relaxation term models the downward branch of the cell.
We are interested in the interaction between the Hadley
cell and the tropical zonal wind and, since the high-
latitude profile of heq makes little difference to the results
presented here, we simplify the problem by restricting
the winds to the Tropics and subtropics. (If we were to
use the sin2 profile at all latitudes, the layer thickness
would become too small at the poles.)

The forcing F for the system is an applied torque
centered around the equator, constant in time:

nF 5 F cos f,0 (6)

where F0 is the forcing at the equator, and n is used to
vary the shape of the forcing. We apply a torque in
order to generate westerlies at the equator and study
feedbacks between the wind speed and the axisymmetric
Hadley circulation. The forcing mechanism is unspec-
ified and unimportant for our purposes since it is as-
sumed not to respond to the state of the upper layer.
One can think of it as due to a longitudinally asymmetric
process, such as organized tropical convection, which
produces a low-latitude eddy momentum flux conver-
gence. We have also generated solutions in which ac-
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FIG. 1. Steady state of the model with no forcing. The solid lines
are the computational model results. The dotted lines indicate thick-
ness and zonal winds from momentum conservation, and the dashed
lines are the radiative equilibrium profiles. High-latitude results are
omitted in this and all future figures since the zonal and meridional
winds are zero and the thickness is constant.

celeration in the Tropics is balanced by deceleration in
midlatitudes. The results are essentially unchanged; the
key quantity is the equatorial acceleration.

The term R represents the effect of mass exchange
with the lower layer on the momentum of the upper
active layer. Setting Q [ (heq 2 h)/t,

2Qu /h, (Q . 0)
R 5 50, (Q , 0). (7)

Air that is brought up from the lower layer carries with
it the zero relative angular momentum of that layer.
Since there is normally rising motion at the equator, this
term provides damping of the westerly equatorial flow.
Air that moves from the upper layer down to the lower
layer carries with it the momentum of the upper layer
and thus does not affect the upper-layer momentum. One
can think of surface friction as rapidly returning the
velocity in the lower layer to zero. Here R is equivalent
to the vertical advection of zonal momentum in mul-
tilevel models. [Note that the momentum transport as-
sociated with the mass flux should also affect the me-
ridional velocity. However, we have omitted this effect
from Eq. (3) because the model is always very close to
geostrophic balance.]

The deceleration of zonal wind by the upward ad-
vection of zero angular momentum air in the rising
branch of the Hadley cell is central to the model because
it provides the potential for positive feedback as the
applied forcing F is increased. At the equator, the ap-
plied force must be balanced by the combination of
momentum exchange, R, and frictional drag, 2ku. We
expect an abrupt transition to strong superrotation if the
combined deceleration provided by the momentum ex-
change and friction fails at some point to offset the
applied forcing. Since stronger forcing leads to higher
zonal wind speeds and thus stronger frictional drag, the
upward mass flux at the equator Q must decrease sharply
as the applied force F increases in order for a runaway
positive feedback to occur.

The model is solved numerically using a centered in
space, leapfrog in time scheme with a Robert (asselin)
filter to prevent time splitting. The grid is staggered,
with u and h grid points halfway between the y grid
points. The poles correspond to y grid points, and y is
set to 0 there. The equator is a u and h grid point. Rather
than solve the u equation directly, we actually solve the
absolute angular momentum equation so that the ad-
vection of angular momentum accounts for the Coriolis
and metric terms. We then set

]u 1 ]M
5

]t a cosf ]t

to determine the corresponding u tendency.
We search for stable equilibrium solutions of the mod-

el by integrating Eqs. (2) through (4) until we reach a
steady state. The solid lines in Fig. 1 show the steady
state of the model with no forcing. We use values of
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a 5 6.37 3 106 m, V 5 7.292 3 1025 rad s21, g* 5
0.08g with g 5 9.81 m s22, t 5 8 3 105 s, k 5
1028 s21, h0eq 5 16 500 m, u0eq 5 60 m s21, and fh 5
40.58. Later, when forcing is applied, we use a forcing
shape factor n 5 30 [see Eq. (6)], which results in a
half width for the forcing of roughly 128 latitude. These
are the default values for all runs.

It is difficult to make this shallow-water model fully
earthlike. Because the observed isentropic slope roughly
carries an isentropic interface from the surface in the
Tropics to the tropopause at the pole, our layer thickness
is inevitably large at the equator. As a consequence, the
friction must be very weak to avoid diffusive domi-
nation. To mimic the effects of a small gross moist
stability (Neelin and Held 1987) and the associated
strong meridional flow, one would require just the op-
posite, a very thin layer in the Tropics. If one tries to
make the layer thinner to strengthen the flow, one en-
counters problems with large Froude numbers due to
the fact that the transition to no flow in the lower layer
is occurring too rapidly in the vertical. More layers and
some representation of moist stability or latent heat
transport are needed to create a more realistic model.
However, we believe that the feedback captured in this
simple dry model will be present in more realistic mod-
els of the Hadley cell if these models are sufficiently
inviscid.

3. Analytical calculations

Before presenting solutions with nonzero F, we ap-
proximate the full system of equations with a simple
analytical model in order to gain insight into the pos-
sibility for bifurcation. The model relates the zonal wind
and layer thickness at the equator. We then determine
which zonal wind values result in steady states for a
given set of parameters. These equilibrium solutions
suggest parameter ranges where multiple equilibria are
expected in the full model.

The relation of equatorial zonal wind u0 to equatorial
layer thickness h0 can be explored using a simple Hadley
cell model similar to the one used in Held and Hou
(1980). The domain is divided into two regions. Close
to the equator, the thickness hm is in geostrophic balance
with the angular momentum conserving wind:

2u 1 Va sin f0u 5 . (8)m cosf

Integrating the geostrophic terms in Eq. (3) using the
small angle approximation and the fact that u0 K Va,

2 42aV f f
h 5 h 2 u 1 Va . (9)m 0 0[ ]g* 2 4

Toward the poles, the thickness is just the radiative
equilibrium solution, heq [Eq. (5)]. The thickness tran-
sitions from one solution to the other at the critical
latitude fc, where it is continuous:

h (f ) 5 h (f ).eq c m c (10)

In addition, mass conservation requires
f fc c

h cosf df 5 h cosf df. (11)E eq E m

0 0

Assuming u0 K Va, h0eq ø h0, and fc K 1, we obtain
equations for the critical latitude and the thickness at
the equator in terms of u0:

5 u 2 u0eq 02f 5c 3 Va

5
2h 2 h 5 2 (u 2 u ) . (12)0 0eq 0eq 018g*

Note that to get a real value for fc, u0 must be less than
u0eq.

Figure 1 compares the full model to the simple Hadley
cell model for the case of no forcing (corresponding to
u0 5 0). Near the equator, the full model thickness close-
ly follows the angular momentum conserving solution;
it transitions to the radiative equilibrium solution slight-
ly poleward of the critical latitude. The full model does
not exactly match the simple analytical model because
it does not completely conserve angular momentum, due
to friction and the flux of momentum from the lower
layer. Nevertheless, the simple Hadley cell model seems
a reasonable approximation to the full system of equa-
tions.

To obtain a steady state in the presence of forcing,
the applied torque at the equator must balance decel-
eration caused by friction and momentum exchange with
the lower layer:

h 2 h u0eq 0 0F 5 1 ku (h , h ). (13)0 0 0eqt h0

The key assumption here is that we need to consider
only the equatorial effects of the drag due to momentum
exchange with the lower layer. Away from the equator,
we continue to assume that angular momentum conser-
vation is an adequate approximation.

Assuming the system is not far from radiative equi-
librium, we approximate the thickness in the denomi-
nator as a constant h0eq. (Retaining the variation of thick-
ness in the denominator does not greatly alter the so-
lution.) Nondimensionalizing by

h 5 Hh , u 5 Uu ,0 0eq 0 0eq

Eqs. (12) and (13) become
21 2 H 5 p(U 2 1) (14)

q
1 2 H 5 2 r, (15)

U

where
25 u Ft0eqp 5 , q 5 , r 5 kt .

18 g*h u0eq 0eq
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FIG. 2. Region of multiple equilibria in the analytical model. The
dark region indicates values of r/p and q/p for which there exist
multiple equilibria; q corresponds to the strength of the applied forc-
ing, r corresponds to the friction, p relates to the Hadley circulation.

FIG. 3. Equatorial angular momentum terms as a function of u0.

All three parameters are positive; q is proportional to
the imposed forcing, r to the frictional damping, and p
to the square of the Froude number at the equator in
the unforced radiative equilibrium solution.

Combining Eqs. (14) and (15) to obtain a cubic equa-
tion,

r q
3 2U 2 2U 1 U 1 1 2 5 0. (16)1 2p p

The system is governed by two nondimensional param-
eters, r/p and q/p. The equation has three real solutions
when

3 21 1 r 1 1 r 1 q
2 1 1 2 2 1 , 0. (17)1 2 1 29 3 p 27 3 p 2 p

Otherwise, there is only one real solution, and we do
not expect multiple equilibria in our model. Note that
valid solutions are within the range U , 1 and 0 , H
, 1 since our analytical model requires that u0 , u0eq

and 0 , h0 , h0eq.
Figure 2 shows the parameter region where the simple

model predicts multiple equilibria. There are three so-
lutions in this region. If one adds time dependence to
this analytical model by including the time derivative
of the angular momentum at the equator in the equatorial
momentum budget, one finds that the solution corre-
sponding to the smallest u0 is stable while the middle
solution is unstable. [The stability of the solutions of
the analytical model can be verified using a potential
function (J. Moehlis 2000, personal communication)].
Model runs that start with initial conditions between the
lowest and the middle solutions will equilibrate to the
lowest superrotating state.

The third solution (highest u0) is also stable; thus we
expect the system to go to this state if the initial con-

ditions are above the middle solution. However, the so-
lution with the highest u0 obtained with our analytical
model is often not valid because u . u0eq, and therefore,
the Hadley cell model [Eq. (12)] is no longer valid. The
full system (described in the next section) still equili-
brates, but we do not offer a simple quantitative model
of the final equilibrated strongly superrotating state.

In order to understand the transition to the strongly
superrotating state, we further examine the relationship
between the zonal wind and the deceleration by the
upward branch of the Hadley cell. As the forcing in-
creases, u0 increases, which in turn decreases the Hadley
circulation. The resulting deceleration of the zonal wind
by the Hadley cell depends on the vertical mass flux,
which decreases as the zonal wind increases, and the
vertical wind shear, which increases as the zonal wind
increases. To determine the net effect of the zonal wind
on R, we use Eq. (12) to solve for R [Eq. (7)] in terms
of u0:

2u 25(u 2 u )0eq0 0R 5 . (18)[ ]t 18g*h0eq

The dashed line in Fig. 3 shows the response of R to
u0. When u0 is small, R decreases as u increases, R reach-
es its minimum value when u0 5 u0eq/3 (U 5 1/3). When
U is greater than this value, R becomes less negative.
Thus, in the frictionless case, we expect the deceleration
caused by the upward branch of the Hadley cell to no
longer be able to balance increases in applied forcing
when U 5 1/3.

When both friction and the vertical advection of mo-
mentum are included (solid line in Fig. 3), the maximum
and minimum decelerations are found at

2 6 Ï1 2 (3r/p)
U 5 .

3

The minus sign corresponds to the maximum weakly
superrotating U, where the deceleration terms begin de-
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FIG. 4. Nondimensional zonal wind at the equator for a range of
equatorial forcing values. Circles correspond to full model results,
asterisks to stable solutions of the analytic model, and 3’s to unstable
solutions. Analytic solutions with U . 1 are not valid and are shown
for illustrative purposes only.

creasing in magnitude with increasing U, while the up-
per value (assuming it is valid) corresponds to the min-
imum strongly superrotating U, where the deceleration
terms begin increasing in magnitude with decreasing U.
When r/p . 1/3, U never jumps to a different branch
as the flow is too frictionally dominated.

Using the variable values listed in section 2, the non-
dimensional parameters are p 5 0.0772, r 5 0.008, and
q 5 13 333 3 F0. The asterisks and 3s in Fig. 4 show
the steady states in the simple model. The asterisks cor-
respond to stable solutions, while the 3s indicate un-
stable solutions. The maximum U on the lower branch
is 0.39, corresponding to an applied forcing of 10.1 3
1027 m s22. The minimum U on the upper branch is
0.94 (F0 5 5.8 3 1027 m s22). For this set of parameters,
there are valid upper branch solutions (i.e., where U ,
1) for a small range of applied forcing. However, most
of the upper branch solutions are invalid.

Thus, the simple model predicts an abrupt transition
from weak to strong superrotation. However, the model
does not always predict valid strongly superrotating
states since Held–Hou theory no longer applies. Fur-
thermore, the simple model unrealistically assumes that
the applied forcing affects the angular momentum bud-
get only at the equator. Finally, the statements concern-
ing the stability of the different equilibria in the ana-
lytical model ignore the time dependence associated
with the adjustment of the Hadley cell to these equatorial
conditions. To address these limitations, we explore the
behavior of an axisymmetric atmosphere using a com-
putational model.

4. Results from the full model

We next look for multiple equilibria in the full model
by integrating our shallow-water system to steady states
using different initial conditions and forcing magni-
tudes. We sampled the forcing in increments of 2 3
1028 m s22. There are two distinct branches of solutions,
one similar to the simple angular momentum conserving
Hadley cell model (weakly superrotating) and one
strongly superrotating. The open circles in Fig. 4 show
how U changes with the forcing. As the forcing in-
creases from zero, the zonal wind increases, abruptly
transitioning to strong superrotation at F0 5 9.2 3 1027

m s22. When the forcing is subsequently decreased, the
model remains strongly superrotating until the forcing
is reduced to 7.6 3 1027 m s22. The results can be
classified into four regions of different behavior de-
pending on the magnitude of the forcing at the equator,
F0.

1) For small forcing, there is only one stable solution,
with a small zonal velocity at the equator. The zonal
wind and layer thickness approximately agree with
the simple analytical Hadley cell model; near the
equator, angular momentum is approximately con-
served. At the equator, the thickness relaxation term

[Eq. (7)] in the zonal momentum equation [Eq. (2)]
increases with increasing F, and friction is weak. The
dashed lines in Fig. 5 show a sample steady solution
in this region.

2) For somewhat higher forcing, the system has two
steady solutions. The lower branch approximates the
Hadley cell model, while the upper branch has a very
weak Hadley circulation. The upper solution layer
thickness is close to the equilibrium thickness; the
zonal momentum is far from angular momentum
conservation; and the meridional wind is small. In
the lower branch, similar to region 1, equatorial re-
laxation toward radiative equilibrium always in-
creases in magnitude and dominates friction, while
in the upper branch, the magnitude of R decreases
so that it is similar to the frictional term. The dashed–
dotted lines in Fig. 5 show a sample steady lower
branch solution, while the dotted lines show a steady
upper branch solution in this region.

3) When the forcing is further increased, the system has
only one steady state, similar to the upper solution
of region 2. As the forcing increases, an equatorial
jet develops and strengthens. Generally u is above
u0eq, but h is always below heq. The Hadley cell is
weak but still present. The relaxation term always
decreases with increasing F, so the friction term
dominates by the high end of the region. The thin
solid lines in Fig. 5 show a sample steady solution
in this region.

4) For the highest values of the forcing, h0 is above
h0eq. This corresponds to a collapse of the Hadley
circulation, with sinking at the equator and rising
slightly poleward of the equator. Thus the only zonal
momentum tendency term that can balance the forc-
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FIG. 5. Model steady states for F0 5 2 3 1027 m s22 (dashed), 8
3 1027 m s22 lower branch (dashed–dotted), 8 3 1027 m s22 upper
branch (dotted), 9.6 3 1027 m s22 (thin), and 12 3 1027 m s22 (thick).

ing is friction, and u0 has only one possible value:

u 5 F /k.0 0

Near the equator, the meridional winds reverse di-
rection, flowing toward the equator rather than away.
The equatorial jet is very strong. The thick solid lines
in Fig. 5 show a sample steady solution in this region.

The location of the multiple steady equilibria region
in the shallow-water model is thus within the predicted
range [5.8 to 10.1 (3 1027 m s22)]. However, the range
is less than that predicted by the simple model. For low
values of the forcing F, the full model closely follows
the predictions of the simple model. As the full model
approaches the end of the lower branch, the solutions
diverge since the simple model does not include any
off-equatorial forcing. The maximum U on the lower
branch is 0.29, smaller than the predicted value (0.39).
The upper branch solutions are very different, including
the minimum U (0.60), which is significantly lower than
the predicted upper branch minimum of 0.94. The full
model can no longer be well approximated by Held–
Hou theory since angular momentum is no longer con-
served (see the dotted and solid lines in Fig. 5). In
addition, the simple model predictions are not valid for
most of the upper branch solutions since U . 1. Thus,
it is not surprising that the two models produce different
results for the upper branch.

Although the simple model assumes that all momen-
tum exchange occurs at the equator and thus does not
depend on the shape of the forcing (the exponent n in
particular), this shape does affect the full model’s be-
havior to some extent by influencing the closeness of
the model to angular momentum conservation. As a
result, similar runs (not shown) with different values of
n have different ranges of multiple equilibria. However,
the runs display qualitatively similar behavior.

Finally, we explore the system behavior as we vary
the frictional parameter k. As k increases, the region of
multiple equilibria contracts and moves to higher values
of the forcing F until the system becomes too frictionally
damped and no abrupt transition occurs, as predicted by
the simple model. The transition to the single solution
region occurs for a smaller k than predicted by the sim-
ple model, consistent with the smaller range of multiple
equilibria found in the F experiments of the full model.

5. Conclusions

It is possible to get bifurcations in the superrotation
strength of an axisymmetric model for earthlike param-
eter ranges. When bifurcations exist, the stable equilib-
ria lie along two branches of zonal wind values as the
forcing is changed. On the lower branch, damping due
to vertical advection of momentum by the Hadley cell
increases with increasing forcing; on the upper branch,
the damping decreases with increasing forcing. Al-
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though the simple model approximately predicts where
the full model will have multiple equilibria, the range
is smaller than predicted and depends on the shape of
the applied forcing. The presence and location of the
bifurcation is related to how well angular momentum
is conserved in the Tropics.

In our model, we directly apply a constant zonal ac-
celeration centered around the equator. This forcing term
represents the net effect of all the processes not explic-
itly included in the model, such as stationary and tran-
sient eddies as well as transient changes in the mean
meridional circulation. Observed values of equatorial
momentum flux convergence for these processes range
from about 210 3 1026 m s22 for the transient merid-
ional circulation to 15 3 1026 m s22 for stationary
eddies (Lee 1999). Our model experiences an abrupt
transition to superrotation when the net imposed accel-
eration is equal to 7.6 3 1027 m s22, an order of mag-
nitude less than the individual terms. However, the ver-
tical mass flux in the unforced model is very small com-
pared with the observed Hadley cell transport, as dis-
cussed in section 2. Assuming the ratio of the mass flux
in the unforced model to the observed mass flux is ap-
proximately the ratio of the model’s critical forcing to
the actual critical forcing for the atmosphere, the critical
forcing for an abrupt transition is much larger for the
real atmosphere.

In a zonally asymmetric atmosphere, other feedbacks,
such as the feedback between zonal winds and decel-
eration due to eddy flux divergence, which are not in-
cluded in our model, may play the dominant role in an
abrupt transition to superrotation. However, the feed-
back described here, between the wind speed and up-
ward advection of momentum by the Hadley circulation,
is capable of producing an abrupt transition in the ab-
sence of wave–mean flow interaction and may amplify
transitions to superrotation in a zonally asymmetric at-
mosphere.

While abrupt transitions to superrotation are found in

simplified models, they have not yet been found in com-
prehensive GCMs. Weak superrotation, on the other
hand, has been observed. For example, Huang et al.
(2001) found slight superrotation in a coupled GCM
climate change simulation with tripled CO2. More work
is necessary to determine if an abrupt transition to strong
superrotation is possible in the terrestrial setting.
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