
554 VOLUME 31J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

q 2001 American Meteorological Society

The Scales and Equilibration of Midocean Eddies: Freely Evolving Flow

K. SHAFER SMITH AND GEOFFREY K. VALLIS

Geophysical Fluid Dynamics Laboratory, Princeton University, Princeton, New Jersey

(Manuscript received 8 December 1999, in final form 8 May 2000)

ABSTRACT

Quasigeostrophic turbulence theory and numerical simulation are used to study the mechanisms determining
the scale, structure, and equilibration of mesoscale ocean eddies. The present work concentrates on using freely
decaying geostrophic turbulence to understand and explain the vertical and horizontal flow of energy through
a stratified, horizontally homogeneous geostrophic fluid. It is found that the stratification profile, in particular
the presence of a pycnocline, has significant, qualitative effects on the efficiency and spectral pathways of energy
flow. Specifically, with uniform stratification, energy in high baroclinic modes transfers directly, quickly (within
a few eddy turnaround times), and almost completely to the barotropic mode. By contrast, in the presence of
oceanlike stratification, kinetic energy in high baroclinic modes transfers intermediately to the first baroclinic
mode, whence it transfers inefficiently (and incompletely) to the barotropic mode. The efficiency of transfer to
the barotropic mode is reduced as the pycnocline is made increasingly thin. The b effect, on the other hand,
improves the efficiency of barotropization, but for oceanically realistic parameters this effect is relatively un-
important compared to the effects of nonuniform stratification. Finally, the nature of turbulent cascade dynamics
is such as to lead to a concentration of first baroclinic mode kinetic energy near the first radius of deformation,
which, in the case of a nonuniform and oceanically realistic stratification, has a significant projection at the
surface. This may in part explain recent observations of surface eddy scales by TOPEX/Poseidon satellite
altimetry, which indicate a correlation of surface-height variance with the scale of the first deformation radius.

1. Introduction

Over the last two decades or so it has become in-
creasingly apparent that the ocean is literally a sea of
eddies. In midlatitudes these eddies arise primarily from
baroclinic instability of the mean flow, although in some
regions barotropic instability may also be important.
Although the linear theory of the processes that give
rise to such eddies is well understood, the presumably
nonlinear processes that determine how and at what
scales these eddies ultimately equilibrate are less so.
The latter is the subject of this paper.

Recent satellite altimeter measurements of the ocean
surface by the TOPEX/Poseidon experiment (e.g., Stam-
mer 1997) have renewed interest in this problem. Time
series from satellite measurements such as these are not
yet long enough to analyze interannual phenomena, but
are rich in information relevant to short timescale eddy
dynamics. A particularly puzzling result regards the hor-
izontal length scale of the eddies, as manifested in the
surface height field—surface eddy scales appear linearly
correlated with the first baroclinic radius of deformation,
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LRo. This result is surprising for two reasons. First, while
we know baroclinic instability to be the source of most
mesoscale ocean eddies (e.g., Gill et al. 1974; Beckman
et al. 1994), the scale of midocean baroclinic instability
itself need not be at the deformation scale. If, for ex-
ample, the thermocline contains two maxima in strati-
fication, separated by mode water, as over much of the
subtropical gyres (Samelson and Vallis 1997), then the
fastest growing mode may have scales much smaller
than the deformation scale, due to a defect instability,
which results from kinks in the vertical profiles of shear
or mean velocity (Samelson 1999). Thus, in general, the
deformation scale does not correspond to the most un-
stable wavelength. [This is also true for the problem of
Charney (1947)]. The second reason is that, in a tur-
bulent geostrophic fluid, we should expect an inverse
cascade of energy to scales much larger than the de-
formation scale, interrupted only by the b effect, fric-
tion, or the domain scale itself (e.g., Rhines 1975; Mal-
trud and Vallis 1991). One measure of the halting scale
produced by the gradient of planetary vorticity (b) is
the scale Lb . y rms/b, where y rms is the root-mean-Ï
square barotropic velocity (Rhines 1975). Stammer
compares the horizontal scale of maximal eddy kinetic
energy (EKE) with both LRo and Lb as a function of
latitude—the result demonstrates a correlation of peak
EKE scale with LRo, and not with Lb.
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Our lack of understanding concerning the (measur-
able) surface scales of eddies raises other important
questions. Mean current profiles are generated primarily
by wind stress, concentrating the shear near the ocean
surface. Thus, one also expects eddy generation from
baroclinic instability to occur primarily near the surface.
How, then, do eddies, which are at least initially surface
intensified and far from any boundaries (where energy
might be lost in the form of lateral or bottom drag),
come to steady state with the mean flow? Classical geo-
strophic turbulence theory (e.g., Charney 1971) would
argue that turbulence in a (uniformly) stratified geo-
strophic fluid leads to an inverse energy cascade in both
vertical and horizontal scale, which would lead us to
expect these initially surface intensified (hence baro-
clinic) eddies to barotropize, allowing bottom friction
to ultimately limit their growth. But barotropic eddies
must certainly be unconcerned with any (baroclinic) de-
formation scale, so that, if we believe the satellite data,
the picture of eddy energy evolving quite efficiently into
barotropic energy cannot be the whole story.

In sum, the mechanisms that set the scales and mag-
nitudes of mesoscale ocean eddies, and bring them to
statistical steady state with the mean flow, are not fully
understood. This paper concentrates on understanding
the dynamics of the energetic transfers in perhaps the
simplest relevant setting: freely evolving quasigeo-
strophic flow (Pedlosky 1987) in an oceanically real-
istic, fixed, stratification. A second paper will consider
the arguably more oceanically relevant, and certainly
more complex, forced-dissipative dynamics. We moti-
vate our approach and briefly review relevant existing
theory in section 2. Section 3 lays the groundwork for
the theory that is developed in 4. Numerical simulations
are described in section 5, and the paper concludes in
section 6.

2. Geostrophic turbulence in the ocean

Geostrophic turbulence in the ocean, and hence the
processes of equilibration of baroclinic eddies, is to be
distinguished between the corresponding processes in
the atmosphere in (at least) two significant ways. First,
the deformation scale in the troposphere is O(1000 km),
so that its ratio to the domain size is not too much
smaller than unity, while in the ocean the deformation
scale is O(50 km), yielding a significant scale separation
from the basin size. Second, in the troposphere the mean
stratification is fairly uniform, whereas in the ocean
there is a sharp gradient in potential density near the
surface, that is, the thermocline. The buoyancy fre-
quency, N(z), is thus nearly an order of magnitude larger
in the thermocline than in the abyss. Likewise, the mean
velocity shear in the atmosphere is roughly uniform,
while in the ocean it is concentrated, like the thermo-
cline, within the uppermost kilometer.

The oceanic case has some aspects that are simpler
and some more challenging to understand. The lack of

a significant scale separation between eddy and mean
flow in the atmosphere leads to the possibility of order–
unity feedback by the eddies onto the mean flow that
generated them. In this way they may in fact aid in their
own equilibration by stabilizing the mean circulation,
as in the baroclinic adjustment hypothesis (Stone 1978),
although other equilibration mechanisms undoubtedly
also occur (e.g., Vallis 1988). Although there exists an
oceanic analog, namely the homogenization of potential
vorticity in gyres (Rhines and Young 1982), the mean
shear and stratification are to lowest-order consequences
of the very-large scale, quasi-steady, wind and buoyancy
driven circulation, and it seems unlikely that oceanic
eddies can equilibrate solely by modifying these prop-
erties to bring about a stable mean state. While this
hypothesis needs to be tested explicitly, we feel its rea-
sonable, in the first instance, to consider eddy-induced
alterations to the mean state as perturbative in scale.

In the ocean, then, in some contrast to the atmosphere,
it may be sensible to separate the effect of the mean
flow and stratification on the eddies from the effect of
the latter on the former. The same attribute of oceanic
variability that makes this a sensible first approximation,
namely the large-scale separation between the baroclinic
radii of deformation and the scale of the mean circu-
lation, allows for the possibility of a significant cascade
of energy between scales. These features together imply
that significant understanding of ocean eddy dynamics
may be gained through the modeling of geostrophic tur-
bulence on a fixed stratification and mean flow back-
ground. Furthermore, quasigeostrophic scaling will usu-
ally hold for oceanic domains chosen to be on O(10LRo).
Thus the use of the stratified quasigeostrophic equations
in a model with periodic boundaries is well posed for
the study of eddies in localized regions of the ocean.
Allowing us to specify the stratification and mean shear
simplifies the problem in one sense, although it means
that we must seek a nonlinear mechanism of equilibra-
tion a priori.

The second characteristic difference, the nonunifor-
mity of stratification and mean shear, is an unambigu-
ously complicating factor. The surface intensified nature
of the mean stratification and shear leads us to expect
that eddy generation occurs near the surface, and poses
the possibility that the eddies remain surface intensified.
By contrast, typical models of geostrophic turbulence
(with uniform stratification) give rise to baroclinic in-
stability more uniformly throughout the interior and
need only a linear bottom drag (mimicking the effect
of Ekman layer) to remove energy from the system. It
is by no means clear that this will be sufficient in the
more oceanic case, and we are still left with the question:
How can eddy energy, generated near the surface, be
dissipated, and hence bring the system to a statistical
steady state? The sufficiency of bottom drag would im-
ply efficient downward transfer of energy, likely as bar-
otropization of the eddies. This may of course be a red
herring, as it is possible that other effects not included
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in such a limited model (e.g., topography) may further
inhibit this transfer. But certainly, the possible insuffi-
ciency of bottom drag in bringing the system to equi-
librium would imply the existence of alternate energy
removal or transfer mechanisms in the ocean, where in
fact a statistical steady state exists.

The current work is intended to be a step toward
modeling turbulent behavior in a more realistic (though
still quite idealized) oceanic setting, thereby gaining a
more complete understanding of the interplay between
turbulent eddy dynamics and the large-scale dynamics
of the ocean. This task necessitates a small extension
of geostrophic turbulence theory, particularly as it ap-
plies to regimes with nonuniform stratification.

3. Quasigeostrophic preliminaries

Equations of motion

The evolution equation for the unforced, nearly in-
viscid, quasigeostrophic perturbation potential vorticity,
q 5 q(x, y, z, t), is

qt 1 J(c, q) 1 bcx 5 2n¹8q, (3.1)

where n is a hyperviscosity parameter, J(a, b) 5 axby

2 aybx is the Jacobian operator, and b is the meridional
gradient of the Coriolis parameter, f. Hyperviscosity is
used as a scale-selective dissipation mechanism, essen-
tially as a subgrid-scale parameterization, to absorb
small-scale enstrophy. The perturbation potential vor-
ticity is related to the perturbation streamfunction,
c(x, y, z, t), by

d dc
2 2q 5 ¹ c 1 S(z) , (3.2)[ ]dz dz

where ¹2c 5 cxx 1 cyy and S(z) 5 f/N(z) is the ratio
of the Coriolis frequency, f, to the buoyancy frequency,
N(z).

We can project c onto a Fourier series in the x, y
plane,

i(kx1ly)c(x, y, z, t) 5 c (z, t)e , (3.3)O kl
k,l

in which case spectral components will be distinguished
from their physical counterparts by the presence of the
wave-vector subscripts, k, l. The reality of the physical
field implies that ckl 5 . Substitution of (3.3) intoc*2k,2l

(3.1) yields the spectral equations of motion

q̇kl 1 Ĵkl(c, q) 1 ikbckl 5 2nK8qkl, (3.4)

where

d d
2 2q 5 2K 1 S(z) c , (3.5)kl kl[ ]dz dz

and the Jacobian term is understood now to represent
the full spectral sum of the nonlinear products of the
spectral coefficients, and K 2 5 k2 1 l2. Numerical in-

tegration of these equations is most efficiently per-
formed in height coordinates (see appendix), but to un-
derstand energetic transfers a transformation to vertical
modes is convenient.

NORMAL MODES

The vertical normal modes, or stratification modes f,
and the baroclinic deformation wavenumbers, l, are the
eigenvalues and eigenfunctions of the vertical differ-
encing operator in (3.2), which is the Sturm–Liouville
equation

d df
2 2S(z) 5 2l f, z ∈ (2H, 0), (3.6)1 2dz dz

with the boundary conditions df/dz 5 0 at z 5 0, 2H
5 0 (i.e., a rigid lid and flat bottom). We demand that
the modes be orthonormal, which yields the condition,

0

f f dz 5 d , (3.7)E i j ij

2H

where dmn is the Kronecker delta, and the subscripts refer
to the mode numbers (m 5 0 for the barotropic mode,
m 5 1 for the first baroclinic mode, etc.).

The quasigeostrophic equation of motion can be pro-
jected onto these modes (following, e.g., Flierl 1978;
Hua and Haidvogel 1986) utilizing the orthonormality
of the eigenfunctions, f m. We will consistently represent
the modal components by uppercase symbols. We ex-
pand the streamfunction

`

c (z, t) 5 C (t)f (z), (3.8)Okl klm m
m50

which upon substitution into (3.4) and integration over
z yields the equation of motion for the spectral triplet
(klm)

8˙ ˆQ 1 « J (C , Q ) 1 ikbC 5 2nK C , (3.9)Oklm mij kl i j klm klm
i, j

where

Qklm 5 2(k2 1 l2 1 )Cklm
2lm (3.10)

and Ĵkl( , ) is shorthand for the spectral Jacobian.
The triple interaction coefficient, «mij arises as the

factor controlling the strength of nonlinear mode cou-
pling and in the modal forcing. This coefficient is given
by the vertical integral over the product of the vertical
modes in the triplet,

0

« 5 f f f dz. (3.11)mij E m i j

2H

In the case where all mode numbers are the same, the
coefficient gives the strength of the self-interaction of
that mode, or in a loose sense, the resistance of energy
in that mode to transfer to another mode. Note also that
its presence in the summation over the nonlinear Ja-
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cobian terms in (3.9) makes the direct use of the modal
equation in numerical code highly inefficient—each
time step then requires multiple executions of the most
time-consuming calculation. This inefficiency is made
extreme when the stratification is nonuniform—in this
case, there are very few zeros in the coefficient «mij and
the calculation becomes huge, growing roughly as the
cube of vertical resolution.

Modal energy budgets are formed via multiplication
of (3.9) by 2 , whenceC*klm

Ėklm 5 Tklm 1 Hklm, (3.12)

where the individual terms on the right-hand side rep-
resent the energetic rates into mode (klm) of, respec-
tively, internal transfers and the hyperviscous dissipa-
tion. Note that the sum over wavenumbers and modes
of Tklm is formally zero, and that, due to the presumed
inverse cascade, Hklm, when summed, is small. Expres-
sions for the kinetic and available potential energy spec-
tra, whose sum is Eklm, are, respectively,

2 2K 5 K |C | , (3.13)klm klm

2 2A 5 l |C | . (3.14)klm m klm

Budget and energy spectra will be used later to diagnose
numerical results. In this usage, they will generally be
summed in shell-integral form over isotropic horizontal
wavenumber, K 5 k2 1 l2.Ï

4. Effects of nonuniform stratification: Theory

Here we seek to apply geostrophic turbulence theory
to the case in which the mean stratification is nonuni-
form, and in particular to the case in which the strati-
fication is concentrated in an upper region whose depth
is a small fraction of the total. The goal is a general
picture of the eddy production and internal energy trans-
fer dynamics. We concentrate specifically on how the
shape of the thermocline affects key scales, such as the
first radius of deformation, and on the strength of en-
ergetic transfers between modes.

The simplest system that can represent nonuniform
stratification is the two-layer quasigeostrophic model
with unequal layer thicknesses. We thus investigate this
first, followed by a more general treatment of the fully
stratified case.

a. Two-layer case

We begin by investigating the normal modes of a
system with two layers of generally unequal thickness.
In the discretized system considered here the eigenvalue
equation (3.6) becomes the two-by-two system of linear
equations

1 2
(f 2 f ) 5 2l f , n 5 1, 2, (4.1)32n n ndn

where l
2

[ l2(HgDr/ ), in which Dr is the density2f 0

difference between layers, dn is the fractional thickness
of the nth layer and l is the original eigenvalue in (3.6)
(or, the separation constant that arises when separation
of variables is applied to the stratified quasigeostrophic
equation). Nondimensional variables are denoted by an
overbar. This system has eigenvalues

1/21 1
l 5 0, l 5 1 .0 1 1 2d d1 2

The second eigenvalue (l 1) is that of the baroclinic, or
internal mode; since this is what we are concerned with,
we drop its subscript. For clarity, we define d [ d1 and
write the lower layer thickness as d2 5 1 2 d. In this
case the baroclinic eigenvalue is

1
l 5 . (4.2)

Ïd(1 2 d)

If we consider the two-layer system most relevant to
the ocean, then d K 1, so that l ; d21/2.

The normalized eigenvector corresponding to this ei-
genvalue is

Ï(1 2 d)/d
f 5 .bc 1 22Ïd /(1 2 d)

Note that in this two-layer case the vertical integral in
(3.7), used in normalization, is replaced by the vector prod-
uct weighted by the fractional layer thicknesses (dn) as

0 N

dz → d .OE n
n512H

We can now calculate the interaction coefficients from
(3.11). There are in fact only three possible values. In
any case where one of the modes is the barotropic mode
(say l 5 0), the resulting integral is that of the product
of two modes, which by the orthonormality condition
yields

«0ij 5 dij, (4.3)

and all permutations thereof, hence this accounts for
two of the three possibilities. The exceptional case is
the interesting case—namely the baroclinic self-inter-
action term, whose value is

1 2 2d
« 5 . (4.4)111 Ïd(1 2 d)

Plainly, in the case of equal layer thickness (d 5 ½),
the interaction vanishes. In the oceanlike case d K 1,
implying «111 ; d21/2, just as for the deformation wave-
number.

To illustrate explicitly the relevance of this factor in
the equations of motion, we write the two-layer form
of (3.9) in physical space,

] ]
2 2 2(¹ c) 1 J(c, ¹ c) 1 J(t , ¹ t) 1 b c 5 0, (4.5)

]t ]x
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FIG. 1. Exponential density profile with d 5 0.1 and D 5 0.001.

]
2 2 2 2 2(¹ t 2 l t) 1 J(c, ¹ t 2 l t) 1 J(t , ¹ c)

]t

]
21 «J(t , ¹ t) 1 b t 5 0,

]x
(4.6)

where c [ C0, t [ C1, « [ «111 and l is as in (4.2).
Only one term, the baroclinic self-advection term in the
baroclinic evolution equation (4.6), is affected by «—
its strength is thus modulated by the thickness of the
thermocline and vanishes in the special case of uniform
stratification.

b. Continuously stratified case

To proceed, we choose a density profile. A suitable
nondimensional form is

r(z) 5 1 1 D(1 2 ez /d), (4.7)

where Dr [ (rbottom 2 rtop)/r0 is the fractional change
in density over the depth of the ocean, d [ a/H is the
fractional scale depth, and z is the fractional depth co-
ordinate, defined as z [ z/H (see Fig. 1).

The buoyancy frequency is N 2(z) 5 2(g/rr0)dp/dz,
which we nondimensionalize, N 2(z) 5 (H/g9)N 2(z),
where g9 [ gDr. In terms of our density profile, this is

z /d2 e
N (z ) 5 . (4.8)

d

With these definitions we have the nondimensional, ex-
plicit form of the mode equation (3.6),

d 1 df 2
5 2l f, z ∈ (21, 0), (4.9)21 2dz dzN (z )

in which l
2

[ (g9H/ )l2.2f 0

To solve (4.9), we apply the WKB approximation of
Chelton et al. (1998), who consider the related vertical
velocity eigenvalue equation,

2d w 2 2
1 N l w 5 0, w(z 5 0, 21) 5 0, (4.10)2dz

to which they derive general approximate solutions

z1
9 9w (z ) . B sin l N(z ) dz , (4.11)m m E1 2!l N(z )m 21

where the eigenvalues are

2101
9 9l . N(z ) dz ,m E1 2mp

21

m ∈ [1, 2, · · · , `). (4.12)

Substitution of (4.8) into (4.12) yields

mp
l . , (4.13)m

2Ïd

and we see again that the deformation wavenumbers
scale as d21/2, just as for the two-layer case.

The streamfunction modes of (4.9) are related to the
vertical velocity modes by
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FIG. 2. Comparison of WKB approximation to numerical solution of first four baroclinic vertical
modes, with d 5 1/10. Solid lines are the numerical solutions and broken lines are the analytical
approximation.

z
2

9 9 9f (z ) 5 l N (z )w (z ) dz , (4.14)m m E m

21

whence with the explicit form of N(z) in (4.8) we have

zB mp
9 93z /4d z /2d 9f (z ) . e sin(mpe ) dz . (4.15)m E!d 2

21

In order to calculate explicit triple interaction coeffi-
cients we must derive a closed form for the eigenfunc-
tions (4.15). The integral therein (whose value we will
refer to as I) can be rewritten in terms of the substitution
x 5 ,z9/2de

z1
9 93z /4d z /2d 9I 5 e sin(mpe ) dzEd

21

z /2de

1/25 x sin(mpx) dx, (4.16)E
0

where the lower limit of integration is approximated as
0 under the assumption d K 1. The result of the in-
definite integral is

1 1
I(x) 5 2 Ïx cos(mpx) 1 C(Ï2mx ) ,[ ]mp Ï2m

where C(x) is the Fresnel cosine function (Abromowitz
and Stegun 1972, section 7.3). Evaluated at the lower
limit, I(0) 5 0. The upper limit, x 5 , is always lessz /2de
than 1 for the domain of integration, so it may be ad-
vantageous to consider an expansion of C(x). In fact,

x p
2 5C(x) 5 cos x 1 O(x ),1 23 2

so that for all values of xu in our domain, the higher-
order terms are truly negligible, and hence

2Ïxu
I(x ) . 2 cos(mpx ).u u3mp

Substituting this result into (4.15) (and absorbing nu-
merical constants into a redefined constant B), we have

2
z /2d z /2df (z ) . B e cos(mpe ), m $ 1,m !mp

which form an orthogonal set of basis functions. The
additional requirement that m $ 1 is all right since for
the barotropic mode (l0 5 0), f 0 5 1 is obviously a
solution to (4.9). Requiring orthonormality via (3.7), we
find that B 5 mp/2d so that the normalized eigen-Ï
functions are

f m(z) ù d21/2 ), m $ 1.z /2d z /2de cos(mpe (4.17)

In Fig. 2 we compare numerical solutions of (4.9) to
this analytical approximation for the first four baroclinic
modes in a case with d 5 0.1. Given that our goals in
this study are but semi-quantitative, the agreement of
the fit with the ‘‘true’’ curves is perfectly sufficient.

Finally, using (4.15) in (3.11) we can explicitly cal-
culate triple interaction coefficients,
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0

23/2 3z /4d z /2d z /2d z /2d« . d e cos(lpe ) cos(mpe ) cos(npe ) dz, (4.18)lmn E
21

which can be solved using the same substitution (x 5
) used to get (4.16). The resulting integral isz9/2de

1

21/2 1/2« . 2d x cos(lpx) cos(mpx) cos(npx) dz.lmn E
0

(4.19)

This is solvable again in terms of Fresnel functions, but
a few comments are in order regarding the result so far.
First, the integral is now a purely numerical function of
the mode numbers, and in fact the result will obviously
be independent of their permutations (as it should be).
Second, all of the factors in the integrand are bounded
on [0, 1], so that the integral itself, which has the same
range, is order unity. Third, if one of the modes is the
barotropic mode, then the same argument applies as for
the two-layer case and again (4.3) holds. Hence we ar-
rive at the interesting fact that all of the coefficients
except those with transfers into the barotropic mode
scale as d21/2. This means that internal transfers between
baroclinic modes can occur with relatively greater ef-
ficiency than can transfers to (or from) the barotropic
mode. We will return to this important point later.

Eigenvalues (deformation wavenumbers) and triple
interaction coefficients are calculated numerically for
the range of thermocline thickness d ∈ [0.05, 0.3] and
the results are plotted in Fig. 3 against d21/2. Both curves
are essentially linear, verifying the scaling result. Note
that the slight variation from linearity in the curve for
l1 occurs where d is becoming large, hence the ap-
proximations made based on its smallness start to break
down.

For the sake of completeness we give the explicit
result,

1 sin(p f ) sin(p f ) sin(p f )l,m,n l,m,2n l,2m,n« . 1 1lmn [ f f f2pÏd l,m,n l,m,2n l,2m,n

S(Ï2 f )sin(p f ) l,m,nl,2m,2n1 2
3/2f Ï2 fl,2m,2n l,m,n

S(Ï2 f ) S(Ï2 f )l,m,2n l,2m,n
2 2

3/2 3/2Ï2 f Ï2 fl,m,2n l,2m,n

S(Ï2 f )l,2m,2n
2 ,

3/2 ]Ï2 f l,2m,2n

where f lmn 5 l 1 m 1 n and S(x) is the Fresnel Sine
series (see again Abromowitz and Stegun 1972). The
Fresnel functions start from 0 and oscillate about ½ as
their argument increases. Hence for all modal triplets,
the numerical factor is O(1) and hence the interaction

coefficient is O(d21/2). As a useful example, the first
baroclinic self-interaction term is «111 ù (0.255)d21/2.

c. Energetic transfers

In the case of two layers of equal thickness, large-
scale baroclinic energy evolves essentially as a passive
tracer being advected by the barotropic flow, and is thus
likely to cascade directly toward smaller scales (Salmon
1980; also Rhines 1977). On the other hand, at small
scales vortex stretching is very weak and layers are
essentially decoupled—in this case small-scale energy
will cascade inversely toward larger scales in each layer
separately. The separation scale between these two re-
gimes is the radius of deformation. Ultimately, then,
energy in baroclinic modes will cascade from either
direction toward the first baroclinic radius of defor-
mation. It will then proceed to cascade toward the bar-
otropic scales and, unless this process is somehow less
efficient, there is no reason to expect a build up of
energy at the deformation scale.

With two layers of unequal thickness, or in the con-
tinuously stratified cases with a pycnocline, transfers
involving the barotropic mode are independent of d,
while all others scale as d21/2. Hence as the thermocline
becomes thinner, the relative strength of the baroclinic
advection of baroclinic energy increases over the
strength of both transfers into the barotropic mode and
over barotropic self-advection. Thus, if all of the inter-
nal baroclinic energy transfers are enhanced, and pre-
suming that turbulent geostrophic energy does indeed
move toward large isotropic scale, then we should ex-
pect energy in high modes to concentrate in the first
baroclinic mode, since energy there is relatively inhib-
ited from transfer into the barotropic mode.

Our argument that energy may concentrate in the first
baroclinic mode is consistent with that of Fu and Flierl
(1980). They demonstrate, through calculations involv-
ing the relative growth rates of triad Rossby wave in-
stabilities in continuously but oceanically stratified, qua-
sigeostrophic motion, that energy in high baroclinic
modes should preferentially transfer to the first baro-
clinic mode (in agreement with the argument of the
previous paragraph), from whence it is expected to cas-
cade from either direction toward the first radius of
deformation. From here the energy can transfer to the
barotropic mode, albeit with reduced efficiency over the
uniformly stratified case. Once in the barotropic mode
it is expected to cascade upscale toward an arrest scale
(likely set by planetary b and/or frictional effects). This
differs significantly from the uniformly stratified case,
in which energy in high baroclinic modes may transfer



FEBRUARY 2001 561S M I T H A N D V A L L I S

FIG. 3. Left axis corresponds to dashed line (e111) and solid line (l1) corresponds to right axis.

FIG. 4. Most likely energetic transfer paths as a function of verti-
cal mode and horizontal scale (adapted from Fu and Flierl 1980).

directly to the barotropic mode. A schematic of the
transfer preferences is shown in Fig. 4. The preference
of transfers from high modes to the first baroclinic mode
can be understood intuitively, as pointed out by Fu and
Flierl, as a result of the surface intensification of the
vertical modes—it is more difficult for high mode en-
ergy concentrated near the surface to spread directly to
motion, which is constant with depth. Furthermore, this
concentration will be enhanced by any inhibition of
transfers to the barotropic mode.

Finally, statistical mechanical arguments (Salmon et
al. 1976) seem to suggest that, with a thin upper layer,
a secondary peak near the deformation scale will be
found in the upper-layer kinetic energy spectra. Thus,
the statistical-mechanical equilibrium state contains a
slight concentration of surface intensified energy near
the radius of deformation.

d. Projection at the surface

It is not only the energetic transfers that differ in the
case of nonuniform stratification, but their projection at
the surface as well. In particular, in the case of ocean-
ically realistic stratification, the surface signal reflects
baroclinic modes more than it reflects barotropic modes
when the two are comparable in magnitude, a result
noted also by Wunsch (1997). Using an extensive col-
lection of mooring data, he shows that variability in
most of the extratropical ocean has its energy contained

primarily in the barotropic and first baroclinic modes,
but that altimeter data primarily reflects the first bar-
oclinic mode, not the barotropic mode. If this is so, then
we should not expect the satellite data to reflect the scale
at which beta might affect or even arrest the inverse
cascade, because the inverse cascade is largely a bar-
otropic phenomenon.

In forced-dissipative flow, eddy generation by the
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TABLE 1. Summary of primary simulations considered. Here Nx,y is horizontal resolution, Nz is vertical resolution, m0 is initial mode, and
K0 is initial isotropic horizontal wavenumber. The first radius (l1) is a function of both dtc and the parameter F, which is the same for all
runs and essentially determines the domain size. The term ‘‘LIN’’ as an entry for dtc implies that the stratification is uniform in this case
(the density varies linearly with depth). Other parameters are as described in the appendix. The final column displays the final state baroclinicity
ratio for each run.

Simulation Nx,y Nz dtc l1 b m0 K0 n Ebc/Ebt

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

128
128
128
128
128
128
128
256
256
256
256
128
128
128
128
128

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

LIN
LIN
LIN
0.08
0.08
0.08
0.08
LIN
0.05
0.10
0.20
LIN
0.08
0.20
0.20
0.20

7.8
7.8
7.8

10.5
10.5
10.5
10.5
14.6
23.7
18.0
14.2

7.8
10.5

8.2
8.2
8.2

0
10
10

0
10
10
10
25
25
25
25
50
50

0
10
50

6
6
6
6
6
6
1
6
6
6
6
6
6
6
6
6

30
30

4
30
30

4
4
5
5
5
5

30
30
30
30
30

8 3 10214

8 3 10214

8 3 10214

8 3 10214

8 3 10214

8 3 10214

8 3 10214

8 3 10216

8 3 10216

8 3 10216

8 3 10216

8 3 10214

8 3 10214

8 3 10214

8 3 10214

8 3 10214

1.1 3 1022

1.7 3 1023

4.4 3 1023

1.1
0.17
0.22

2.5 3 1022

4.7 3 1023

0.14
0.15
0.10

2.7 3 1023

0.11
0.97
0.15
0.12

mean flow is independent of nonlinear internal trans-
fers—that is, the eddy energy generation term in the
energy budget is linear. For the surface intensified mean
flows found in the ocean, eddy energy will be spawned
predominantly in the baroclinic flow, so that if transfers
to the barotropic mode are inhibited, while other trans-
fers prefer to move energy to the first baroclinic mode,
we might expect a residual concentration of energy in
the first baroclinic mode and near the first deformation
scale in steady-state flow as well. This, in combination
with the expectation that baroclinic energy will be better
represented in the surface signal than barotropic energy,
may explain the finding that surface ocean eddy scales,
calculated from TOPEX/Poseidon altimetry, are pro-
portional to the local first radius of deformation (Stam-
mer 1997).

5. Numerical simulations

Freely decaying simulations of geostrophic turbu-
lence are performed to test some of the hypotheses set
forth in section 4. The numerical model is described in
the appendix, but is based on the horizontally spectral
quasigeostrophic equation of 3.4. Primarily we are in-
terested in two possible features. First, we would like
to know whether the conjectures of Fu and Flierl (1980)
are valid—that is, energy in high baroclinic modes
should preferentially transfer to the first baroclinic mode
before decaying to the barotropic mode. Second, ac-
cording to arguments presented in section 4, transfers
between high baroclinic modes should be faster than
those to the barotropic mode. Additionally, we expect
the equilibrium state to show a higher final ratio of
baroclinic to barotropic energy, and expect the energy
in the baroclinic mode to be peaked near the first bar-
oclinic deformation wavenumber.

We initialize the simulations with energy contained

solely in a given high baroclinic mode and at various
horizontal isotropic wavenumbers, with initial total en-
ergy set to unity. The results are analyzed particularly
in terms of two-dimensional spectra of kinetic energy
as a function of vertical (modal) and isotropic horizontal
wavenumber. Evolution is conveyed by a series of time
slices taken at intervals of the eddy turnaround time,
given by

2p
t 5 , (5.1)

zrms

where zrms is the root-mean-square vorticity. (There is
some subjectivity involved in choosing the proper rms
vorticity, as it is not constant. The eddy turnaround time-
scale quickly settles down to a nearly constant value
and we thus use an average that begins at the time when
this value is close to its final value, and ends at the end
of the simulation.) For all of the simulations considered
here, we use eight vertical layers, and 1282 or 2562

equivalent horizontal gridpoints. The horizontal reso-
lution is such that all of the baroclinic radii of defor-
mation are resolved horizontally (Barnier et al. 1991
discusses the importance of this restriction).

The simulations presented are summarized in Table
1; refer to Fig. 5 for shapes of the density profiles.1

Additionally, vertical mode structures corresponding to
solutions of (3.6) for the uniform and most nonuniform
profiles are shown in Fig. 6, in which the surface in-
tensification of the modes for the thermoclinelike case
is clear. The lower-resolution runs were performed pri-

1 Note that the generating functional for the density profiles is given
by (A.6), rather than a simple exponential. This expression is more
a realistic representation of oceanic stratification, which still allows
us to vary the thermocline depth/thickness with a single parameter.



FEBRUARY 2001 563S M I T H A N D V A L L I S

FIG. 6. Barotropic and first three baroclinic vertical modes for cas-
es with uniform stratification (left) and with dtc 5 0.05 (right).

FIG. 5. Vertical profiles of density using (A.6) with Dr 5 0.002 and a 5 0.0005.

marily as early tests, and we will concentrate primarily
on the two runs with higher horizontal resolution, cases
H and I. These cases also correspond to initialization at
low wavenumber (large horizontal scales), which, for
reasons discussed earlier and taken up again in the next
section, is more representative of the scales at which
eddy energy is generated by mean shear forcing in the
ocean.

Time slices of the kinetic energy spectra for simu-
lations H and I as functions of isotropic horizontal wave-
number, K, and vertical mode number, m, are shown in
Figs. 7 and 8. It is clear that in the case with realistic
stratification (simulation I), energy in high baroclinic
modes decays preferentially to the first baroclinic mode,
from where it cascades toward larger scale. Near the
first radius of deformation (which is about 23 for case
I), energy transfers to the barotropic mode and continues
cascading to the largest scales. By contrast, in the case
of simulation H (uniform stratification), energy cascades
quite efficiently and directly to the barotropic mode
(also near the first radius, which is about 15 for case
H).

Figure 9 shows the baroclinicity, defined here as the
ratio of all baroclinic energy to barotropic energy, versus
eddy turnaround time for the four simulations A, B, D,
and E. Runs A and B utilize uniform stratification, the
latter includes the b effect while the former does not.
Runs D and E use realistic stratification, and the dif-
ference between them is just as that between A and B.
Each of these runs was initialized at high horizontal
wavenumber (K0 5 30) and high baroclinic mode (m0

5 6). This set of simulations was chosen to demonstrate

in the clearest possible fashion that the timescale on
which conversion from baroclinic to barotropic energy
occurs is a strong function of the stratification, as pre-
dicted. The magnitude and direction of the trend in the
dependence of the baroclinicity on b is more surprising,
and we have no strong argument to explain it—we take
it as an interesting but empirical fact that b increases
the efficiency of barotropization.

The wary reader may question whether the relative
differences shown are a strong function of the particular
numerical values chosen for the parameters. In fact,
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FIG. 7. Time sequence of kinetic energy spectra for decay simulation H. Times are given in
terms of eddy turnaround time, t eddy, and axes are vertical mode number, M, and horizontal isotropic
wavenumber, K. Contour values are linear over the range of values at each frame. The first radius
of deformation is l1 5 14.6.

FIG. 8. As for Fig. 7, but for simulation I. In this case the first radius of deformation is l1 5
23.7.
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FIG. 9. Ratio of baroclinic to barotropic energies vs time (in units of eddy turnovers) for the
decay simulations A, B, D, and E.

these four runs are part of a larger set of nine runs, the
remainder including runs with each of the included strat-
ification profiles, but with b 5 50, and three runs with
dtc 5 0.2 and b 5 0, 10, 50 (these are runs L, M, N,
O, and P in Table 1). The results of these runs are
omitted to prevent clutter, as the differences are minor.
In particular, the runs with weaker but still nonuniform
stratification (d 5 0.2) are barely different from the ones
with strong stratification (d 5 0.08). Moreover, increas-
ing b to 50 in each case has a smaller effect (about
20%) than the initial jump from b 5 0 to b 5 10. The
above results are also qualitatively similar to those ini-
tialized at low horizontal wavenumber, the primary dif-
ference being an initial timelag in the barotropization
process due to the slow initial eddy turnaround times
engendered by low wavenumber motion. Final state bar-
oclinicities for all runs are tabulated in Table 1.

Given these facts, we can say with some generality
that stratification profiles of the type found in the mi-
doceans can increase the baroclinicity of eddying mo-
tion by nearly two orders of magnitude over that in the
presence of uniform stratification. While one should
keep in mind that these are spindown runs, and may
differ qualitatively from forced-dissipative results, it is
interesting to note that the final baroclinicity ratio for
the realistic cases (D and E) are nearly unity, implying
near equipartition between barotropic and first baro-
clinic energy, similar to the ratio determined by Wunsch
(1997) for much of the midlatitude oceans. The results

of studies such as Treguier and Hua (1988) imply that
topography should increase this ratio even further, per-
haps compensating for the decrease in baroclinicity due
to b.

Now we will consider the spectral characteristics of
central cases H and I, averages (over approximately the
last five eddy turnaround times) of which are shown in
Fig. 10. The top two panels show barotropic and first
baroclinic kinetic, and available potential energies as
functions of isotropic horizontal wavenumber. In the
case with realistic stratification (right panels), note the
positions of the peaks in the barotropic and baroclinic
spectra—the barotropic spectra is peaked near K 5 5,
while the baroclinic spectrum is peaked near K 5 21.
The barotropic spectrum for the uniformly stratified case
(left panels) is peaked in a similar position, but the
baroclinic peak is at much higher K. Furthermore, there
is utterly negligible energy remaining in the baroclinic
mode.

With regard to the barotropic peaks, note that b 5
25 in both cases. Since the energy of the problem varies
by less than 50% from that at the beginning, the rms
velocity does not change significantly, and we can thus
calculate the Rhines scale. In terms of our choice of
nondimensionalization, it turns out that kb 5 b, soÏ
that both of these cases have barotropic energy peaked
near the predicted Rhines scale, kb 5 5.

The baroclinic peak for case I happens to lie very
near the first radius of deformation for the stratification
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FIG. 10. Energy spectra for decay simulations H (on the left) and I (on the right). Top two
plots show barotropic (solid), first baroclinic (dashed), and available potential energies. The
bottom two figures show the barotropic (solid) and first baroclinic (dashed) kinetic energy spectra
at the surface (the top model layer) for these two simulations. Averages were taken over the last
five eddy turnaround times.

parameters used in this problem, while that of the uni-
formly stratified case does not, apparently. In order to
quantify the possible relation between baroclinic kinetic
energy peak position, we consider a scatterplot of peak
maxima and first radii of deformation in Fig. 11. Ap-
parently, for the realistically stratified cases, there is a
relatively good correlation between these two quantities,
as predicted.

Returning to Fig. 10, the bottom panels support yet
another hypothesis made earlier. These panels represent
the projections of the barotropic and first baroclinic
modes onto the surface (or top model layer). In partic-
ular, if we set z 5 0 in our vertical modal expansion
(3.8), we have

`

c (0) 5 C f (0).Okl klm m
m50

The bottom panels of the figure represent the first two
terms of this expansion, as functions of isotropic wave-
number, K 5 k2 1 l2. The barotropic component doesÏ
not change with this projection (since it is by definition
independent of depth). The baroclinic component of
case I (left), however, changes significantly—as ex-
pected from the findings of Wunsch (1997), the baro-
clinic mode is overrepresented at the surface. Never-
theless we should not overinterpret these results, for they

represent decay simulations whose dynamics are fun-
damentally simpler than those of the forced-dissipative
case, which are probably more representative of the sit-
uation in the ocean.

If it is indeed the b effect that is halting the cascade,
then we expect anisotropy, at least in the barotropic
mode (Rhines 1975; Vallis and Maltrud 1993). Figure
12 presents barotropic and baroclinic streamfunction
snapshots from cases I and H to this effect. Both of the
barotropic cases (left panels) show relatively strong zon-
al elongation. The anisotropy is less evident in the bar-
oclinic fields, although at least in case I, there appears
to be a slight degree of zonal elongation as well.

Finally, in Figs. 13 and 14 we show iso-vorticity plots
of the two cases, H (top) and I (bottom). Each snapshot
is of the last frame of the respective simulation. Iso-
vorticity values are 29 and 9 for case H and 27 and
7 for case I—a higher value was required for the uni-
formly stratified case (H) in order to see any of the
columnar vortex structures. Case I shows some colum-
nar (barotropic) structures as well, but is dominated by
the presence of coherent vortices, which are trapped
above the thermocline. This situation stands in contrast
to the simulations of, for example, McWilliams (1989),
whose results are similar to our case H, showing a ten-
dency toward depth-independent columnar vortices.
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FIG. 11. Scatterplot of centroids of kinetic energy in sum of baroclinic modes for each simulation
listed in Table 1 vs their respective first radius of deformation, l. Realistically stratified cases
are plotted with triangles, while those with uniform stratification are plotted with crosshairs.

There is a somewhat subtle issue that should be dis-
cussed here. The presence of relatively intense surface-
trapped vortices occurs despite the fact that at the end
of the simulation, most of the energy is barotropic. The
energy comprising the surface-trapped vortices is cer-
tainly baroclinic and kinetic, so one might at first see a
contradiction. In fact, though the bulk of the kinetic
energy is barotropic, the vorticity maxima are apparently
baroclinic, which is an allowable state of affairs in qua-
sigeostrophic dynamics. A stability analysis for a vortex
in the presence of nonuniform stratification might add
clarity to this issue.

6. Conclusions

In a uniformly stratified background state, energy
transfer in geostrophic turbulence is characterized by an
inverse cascade toward the barotropic state—the system
seeks the gravest state, both horizontally and vertically.
In some contrast, if the stratification is nonuniform, and
specifically if the stratification is characterized by an
upper-ocean pycnocline, then both theoretical argu-
ments and numerical simulation show that energy trans-
fer to the barotropic mode is inhibited. Rather, energy
in high baroclinic modes cascades preferentially toward
the first baroclinic mode, and toward horizontal scales
near the corresponding deformation scale of the first
mode. Indeed numerical simulations show a correlation
between the first radius of deformation and the peak in

the final baroclinic kinetic energy spectrum. Baroclinic
fields in the realistically stratified cases contain a strong
population of near-surface coherent vortices, whereas
the vortices in the uniformly stratified case have much
greater vertical extent. And although the presence of a
nonzero b effect will tend to aid in barotropization, the
inhibiting effects of a nonuniform stratification are, in
an oceanic parameter regime, overwhelmingly stronger.

Since the baroclinic mode projects substantially on
the surface in the case of nonuniform, pynoclinelike
stratification (see also Wunsch 1997), a concentration
of eddy energy in the first baroclinic mode at the radius
of deformation will be reflected in a corresponding con-
centration of variance in the surface height field, as
observed by TOPEX/Poseidon. Nevertheless, the bar-
otropic arrest scale, in the cases that included the b
effect, is likely to be at or larger than the Rhines scale,
kb (at least in the flat- bottom case we have investigated).
Numerical simulations indeed demonstrated this, with
barotropic streamfunction contours becoming zonally
elongated, while baroclinic fields exhibit only weak an-
isotropy. We thus conjecture that the barotropic scales
of the ocean are both much larger and more anisotropic
than the baroclinic scales. We also expect that mesoscale
eddies may provide a nonnegligible source of abyssal
motion. Current observational evidence is inconclusive
on both of these points.

Our study has neglected a number of important pro-
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FIG. 12. Barotropic and baroclinic streamfunctions in the physical plane for cases H and I.

FIG. 13. Iso-vorticity plot of decay simulation H. Light and dark gray values are z 5 7, 27, respectively.
Snapshot taken at t . 40t eddy.
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FIG. 14. Iso-vorticity plots of decay simulation I. Light and dark gray values are z 5 9, 29, respectively.
Snapshot taken at t . 40t eddy.

cesses. In particular, the equilibration of oceanic eddies
is ultimately a forced-dissipative process, with forcing
arising from a baroclinically unstable background shear
and the dissipation from lateral or bottom friction. These
topics will be addressed in a forthcoming paper. Second,
topographic effects are almost certainly important in
increasing baroclinicity in the ocean (Treguier and Hua
1988), and possibly in scattering energy into small-
scale, nongeostrophic motion thereby providing an in-
direct energy sink in addition to bottom drag. Inho-
mogeneity, lateral boundaries, and the presence of sig-
nificant nonzonal mean flows (which are not stabilized
by the b effect) are additional complicating factors.

Nevertheless, nonuniform stratification clearly has a
first-order influence on the evolution of mesoscale ed-
dies. It seems that the energetic pathways taken by geo-
strophic turbulence in the presence of such nonuniform
stratification may be at least partly responsible for the
concentration of energy at the first deformation scale,
which would then, in turn, explain the observed surface
scales of mesoscale eddies in the midlatitude oceans.
Moreover, while the caveats of the previous paragraph
will undoubtedly change some details of the picture,
there is no reason to expect that the correlation between
the deformation scale and the apparent scale of eddies
(i.e., the dominance of the first baroclinic mode in the
surface height field) will be altered by the inclusion of
any such effects.
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APPENDIX

Numerical Model Details

The numerical model is based upon the layered, spec-
tral quasigeostrophic equations, (3.4), which we non-
dimensionalize as follows (dimensional values are as-
terisked): 0 # (x*, y*) # L and 0 # (x, y) # 2p, hence
(x*, y*) 5 L̂(x, y), where L̂ 5 L/2p (this scaling will
yield integer wavenumbers for the horizontal spectral
representation). Velocity is scaled as U (the vertical av-
erage of the mean zonal velocity profile), time is scaled
as L̂/U, and the following nondimensional parameters
arise:

2 2 2ˆ ˆf L b L H0 0 nF 5 , b 5 , d 5 ,ngH U H

in which Hn is the mean thickness of the nth layer, f 0

is the Coriolis frequency at some latitude u0, and b0 5
. The equation of motion (with all variables now(df/dy)u0

nondimensional) is nearly the same as (3.4) with sub-
scripts n added to denote the layer,

q̇kln 1 Ĵkl(cn, qn) 1 ik(unqkln 1 qn,yckln)

5 2nK8qkln 1 kK2cklndn,N, (A.1)

for n ∈ (1, N), where N is the bottom layer, and
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qkln 5 (2K 2 1 FDn)ckln. (A.2)

In the above expression, Dn is the layer differencing
operator, which replaces the vertical derivatives in (3.5),
and is explicitly

1 1 1 1
D c 5 c 2 2 cn n n21 n1 2[d r 2 r r 2 r r 2 rn n n21 n n21 n11 n

1
1 c ,n11]r 2 rn11 n

(A.3)

in which rn 5 /r0 is the nondimensional potentialr*n
density of the nth layer. Here rn is subsampled at layer
centers.

Energetics for the layered representation follow as for
the others—multiply (A.1) by 2 and sum for totalc*kln

budgets. The kinetic and available potential energy
spectra for layer n are, respectively,

2 2K 5 K r d |c | , (A.4)kln n n kln

2|c 2 c |kln11 klnA 5 F . (A.5)kln r 2 rn11 n

Budget and energy spectra are used to diagnose nu-
merical results. In this usage, they are generally summed
in shell-integral form over isotropic horizontal wave-
number, K 5 k2 1 l2.Ï

The numerical model uses a leapfrog time step with
a weak Robert filter, as well as an occasional Euler step
in order to suppress the computational mode. Dissipa-
tion terms are time-lagged to avoid linear numerical
instability. The nonlinear term is calculated via a de-
aliased spectral transform method (Orszag 1971) using
isotropic truncation.

The potential density, r(z) (where z ∈ [0, 21] is now
nondimensional) is set analytically via a function that
mimics the basic shape observed in the ocean when
internal parameters are set correctly. The function is

r(z) 5 [1 1 Dr tanh(z/dtc)2](1 2 az), (A.6)

where Dr is approximately the difference in the non-
dimensional densities at top and bottom, and the linear
multiplicative function involving a approximates the
roughly linear increase in density below the thermocline
(which is the result of the small but nonnegligible de-
pendence of seawater density on pressure). The param-
eter dtc is essentially the scale thickness, which sets the
degree of surface intensification. Typical profiles in the
midlatitude ocean have dtc between 0.05 and 0.15 and
a between 1024 and 1023 (our simulations used a 5
0.0005).

The vertical discretization (i.e., the layer thicknesses,
dn) is set by making the layer interfaces lie close to the
zeros of the highest resolved vertical normal mode, fol-
lowing Beckman (1988). The discretization is obtained
iteratively by calculating the normal modes first using
a very large number of layers relative to the final number

of layers (N) desired. The zeros of the resulting (N 2
1)th eigenfunction are then used to set the operational
discretization function, dn.
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