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in Stratified Fluids

L. H. KANTHA

Institute for Naval Oceanography, Stennis Space Center, Mississippi

A. RosaTi

Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

B. GALPERIN

Department of Mechanical and Aerospace Engineering,

Program in Applied and Computational Mathematics

Princeton University, Princeton, New Jersey

Combined effects of stratification and rotation

on vertical mixing and the characteristics of

associated small-scale turbulence are explored using second-moment closure methodology; the
rotational terms in the equations for Reynolds stresses and turbulent heat fluxes are retained, not
ignored as in earlier works. Semianalytical results valid for arbitrary values of rotation and
stratification are derived by further invoking: the local equilibrium limit of closure. Two cases are
considered: nonzero vertical rotation and nonzero meridional rotation; the latter case is of more
general interest in geophysics because of its potential application to equatorial mixed layers. In both
cases the influence of rotation on mixing coefficients and Monin-Obukhov constant flux layer similarity
relations is investigated for arbitrary values of rotation and stratification. In both cases, turbulent
mixing coefficients assume tensorial properties. However, meridional rotation appears to have a

stronger influence on vertical mixing and turbulence

characteristics than does vertical rotation. These

results, along with perturbation expansions for weak rotation, suggest that for geophysical flows, in
most cases, the direct effect of rotation on vertical turbulent mixing itself is but a small correction, a
few tens of percent at best. It is seldom large, although it might not be negligible in some particular

cases. Nevertheless, the study of rotational effects

on small-scale turbulence provides a fascinating

insight into the direct impact of rotation on the characteristics of small-scale turbulence and mixing in
stratified fluids; the results are also of interest in other fields such as engineering.

1. . INTRODUCTION

Stratification is well known to strongly affect small-scale
turbulence that is directly responsible for vertical mixing in
geophysical flows, but rotational effects have traditionally
been ignored as negligible. We do know that rotation exerts
a profound influence on fluid flows, two excellent examples
being geophysical flows and flows in turbomachinery. On a
planet such as Earth, fluid motions at planetary scales are
dominated by rotational effects. Therefore rotational terms
have been routinely incorporated in the governing equations
for mean flow quantities in these flows. On such large scales,
the turbulence itself is strongly affected by Earth's rotation.
Indeed, the study of geostrophic turbulence has been an
important preoccupation of geophysicists. The reader is
referred for example to the classical work on the subject by
Rhines (1975, 1977, 1979).

However, vertical mixing in geophysical boundary layers
is principally due to small-scale turbulence, with scales
ranging from Kolmogorov scale at the lower end to a fraction
of the vertical extent of these layers. Therefore there is a
natural upper bound on turbulence scales responsible for
vertical mixing. Since the effects of rotation can be expected
to scale with the turbulence length scale, they have tradi-
tionally been assumed to be negligibly small as far as vertical
mixing and small-scale turbulence are concerned. However,
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the validity of this assumption has not been rigorously
tested, and the effect of rotation on the small-scale turbu-
lence field has received little attention so far. In a geophys-
ical context, it was a common practice to ignore rotational
terms in turbulence equations [e.g., Mellor and Yamada,
1982; Lewellen, 1977; Launder et al., 1975; Rodi, 1987], even
though the need for investigating their effects has been
acknowledged [Mellor and Yamada, 1982]. Only recently
has attention been called to the potential importance of
rotation on the small-scale turbulence itself [Garwood et al.,
1985a, b] in geophysics, although engineers have studied this
aspect in the context of turbomachinery for quite some time
(see, for example, the recent review by Lakshminarayana
[1986]), because in high-speed turbomachinery and labora-
tory flows with background rotation, it is important to
account for the effect of rotation both on the mean and
turbulent flow.

It is our intent in this paper to explore the effects of
rotation on small-scale turbulence and vertical mixing in the
presence of strong gravitational stratification as appropriate
to geophysical flows. As a corollary, we will investigate
these effects on turbulence in neutrally stratified flows (of
importance to engineers) as well. Such an investigation is a
natural and logical extension of earlier works on vertical
mixing and turbulence in geophysical boundary layers [e.g.,
Mellor, 1973; Lewellen, 1977; Launder et al., 1975; Mellor
and Yamada, 1982). We are interested, in particular, in
quantifying the effect of rotation on small-scale turbulence in
the geophysical context. In pursuit of this goal, we will
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explore analytically tractable solutions in the limit of local
equilibrium and cite numerical solutions in the more com-
plex situations. We will retain the rotational terms in the
equations for the second moments; this does introduce
algebraic complexity, as we will see later.

Large-scale turbulence is obviously strongly affected by
rotation. There is also no doubt as to whether small-scale
turbulence is affected by strong rotation. Experimental evi-
dence on this in neutral flows is rather convincing. For
example, experiments by Johnston et al. [1972] on a duct
flow with spanwise rotation showed that rotation damps
turbulence on the leading side and enhances it on the trailing
side. More recently, Koyama et al. [1979) and Watmuff et al.
[1985] have also shown that strong rotation has a profound
effect on turbulence in boundary layers. Therefore engineers
dealing with fluid flows in rapidly rotating devices such as
turbomachinery have always been concerned with rotational
effects on turbulence (see the review by Bradshaw [1973)),
but only recently have they attempted a systematic study of
these effects using higher-order closure techniques (se¢e the
recent review by Lakshminarayana [1986); see also Galperin
and Kantha [1989]).

Experiments on turbulence generated by an oscillating
grid in a rotating tank by Hopfinger and his colleagues
[Hopfinger et al., 1983; Hopfinger, 1987] have also shown
that far away from the generating grid, where rotational
effects become stronger, the nature of turbulence changes
drastically, and turbulence no longer has its characteristic
three-dimensional structure. Experiments on turbulence
generated in a wind tunnel by a rotating grid show the rather
subtle effect of rotation on turbulence [Wigeland and Nagib,
1978]. Rotation appears to slow down the rate of turbulence
decay! Bardina et al. [1985] have also shown a similar effect
in their numerical simulation of isotropic turbulence using
direct computational techniques.

On the other hand, there appear to be no laboratory
experiments on the combined effects of rotation and strati-
fication on turbulence, and observational data have not been
carefully examined to discern the effects of rotation on
geophysical shear layers and turbulence in them. In these
flows, stratification exerts an overwhelming influence, and
geophysicists have naturally concentrated their attention on
that. However, Garwood et al. [1985a, b] have recently
questioned the wisdom of neglecting rotational effects on
small-scale geophysical turbulence. Their study suggests
that at least in some situations, rotational effects cannot be
ignored. They postulate that it is because of the influence of
the horizontal component of Earth's rotation that the mixed
layer in the equatorial Pacific is deeper on the western side.
Their reasoning is, however, based on a series of assump-
tions, whose validity is not beyond any question. A system-
atic study of the combined effects of stratification and
rotation on geophysical mixing, from fundamental consider-
ations that would show conclusively the rotational influence,
has so far not been undertaken. It is our objective to do so,
using well-known second-moment closure techniques.

This effort was undertaken in parallel with the study of
Galperin et al. [1989], which uses a one-dimensional numer-
ical ocean model that involves the solution of prognostic
equations for turbulence quantities. While that study con-
centrates on numerical solutions for near-equatorial oceanic
mixed layers, this study aims to derive semianalytical results
in the limit of local equilibrium that are amenable to more

straightforward interpretation. While both approaches are
valid for arbitrary rotation and stratification, this study does
not involve explicit consideration of the turbulence length
scale. On the other hand, this approach uses a simplified
turbulence model for reasons of analytical tractability,
whereas the turbulence model of Galperin et al. [1989] is
more general in that it retains diffusion, advection, and
tendency terms.

The reader is referred to Galperin et al. [1989] and
Galperin and Kantha [1989] for detailed discussions of the
effect of rotation on neutrally stratified flows, for which there
do exist some laboratory data. The focus of the latter paper
is the rotational effect on turbulence in flow machinery of
engineering interest, while a substantial portion of the
former is devoted to rotational effects on turbulence in
unstratified geophysical boundary layers.

2. GOVERNING EQUATIONS

The governing equations for mean quantities under Bouss-
inesq approximation can be written in their component form
as
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The velocities in the zonal (x), meridional (y), and vertical (z)
directions are U, V, and W; 7, and 7, are the kinematic shear
stresses in the zonal and meridional directions; Q is the heat
flux; p, P, and © are density, kinematic pressure, and
potential temperature; and f'and f, are the components of the
Coriolis term (twice the angular rotation of Earth) in the
vertical and meridional directions (f; is zero). Time is de-
noted by ¢.

For geophysical shear layers, because the scales in the
horizontal are much’larger than those in the vertical (/92 >
a/dy), it follows that

WU,V 6

Therefore the term f, W in (1) can be ignored, as has been
done traditionally. Terms containing f in (1) and (2) are
important in geophysical flows and, of course, cannot be
ignored.

It is also the usual practice to neglect the acceleration
terms in (3): the so-called hydrostatic approximation. How-
ever, when f, # 0, the accuracy of this assumption is
somewhat less (even though it is still valid in most situations)
because the rotational term, f, U, is still 2 orders of magni-
tude less than the dominant buoyancy term, gp/p,. (For the
atmosphere, typical values mightbe f, ~ 107*s™', U~ 10 m
s~', and p/p, ~ 0.02.) Also, for consistency in energetics it is
necessary to neglect (or retain) f, terms in both (1) and (3).
Equation (5) does not contain any rotational terms. Thus
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only the vertical component of rotation, f, enters the equa-
tions for mean momentum. In contrast, both components
appear in the equations for the turbulent (Reynolds) stresses
and heat fluxes. However, no explicit rotational terms ap-
pear in the turbulence KE (kinetic energy) equation
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and traditionally, rotational terms have also been ignored in
the length scale equation. However, it may be appropriate to
include rotational terms in the equation for turbulence mac-
roscale [Bardina et al., 1985], which can then be written as
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where the shear production P,, the buoyancy production P,,
and dissipation ¢ are given by
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and f; is the rotational vector equal to (0, f,. f) in geophysics.
The constants E, to E are defined below.

The rotational term in (8) follows from the studies of
grid-generated turbulence under rotation [see Bardina et al.,
1985] although Launder et al. [1987] suggest that its effect on
their simulation of a rotating channel flow was not signifi-
cant. Besides, empirical evidence for this term is still rather
scanty, and rotational influence on dissipation rate needs to
be explored further. Therefore the influence of rotation on
turbulence length scale is as yet not fully understood and will
doubtless be the subject of future research. Nevertheless,
the term is included here for completeness, although in our
subsequent analysis, the length scale equation does not
enter, and therefore explicit effect of rotation on length scale
does not matter.

The governing equations for the second moments, (u,u,)
(u;6), and (%), can be simplified following the expansnon
scheme of Mellor and Yamada [1974), resulting in the
so-called level 2; model for turbulent mixing [Mellor and
Yamada, 1982]. Using a slight modification of this expansion
scheme [Galperin et al., 1988] results in a somewhat simpler
set of algebraic equations for the second moments:
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If only the explicit rotational terms are retained in the
equations for Reynolds stresses and heat fluxes, then A, =
A, = 1. Note that in this case, there is no modeling
whatsoever as far as rotational terms are concerned (unlike
for example, dissipation terms). This is a decided advantage,
as it removes the modeling aspect from the picture and
therefore renders the influence of rotation less ambiguous
and the results more easily interpreted. However, rotation
may influence the modeling of terms, in second-moment
equations, that involve pressure fluctuations, namely, the
pressure-strain covariance and (p 36/dx;) term. The model for
the pressure-strain covariance involves two terms, one being
the return to isotropy (Rotta hypothesis) and the other
accounting for rapid distortion pressure effects (see Mellor
and Yamada [1982] and Rodi [1987], for example). It can be
shown [Zeman and Tennekes, 1975] that the rotational
influence on these terms can be modeled using terms,
containing the rotational vector, whose form is identical to
that of the explicit rotational terms in the second-moment
equations (see also Galperin et al. [1989]). Thus the only
change in (10) and (11) that results from including both the
implicit and explicit rotational terms is that the values of
coefficients A, and A, are no longer unity. However, there is
at present no reliable empirical information as to the likely
value of A; or A,. There are some indications that A, is
somewhat less than unity, and the implicit terms tend to
counteract the explicit ones [Zeman and Tennekes, 1975].
However, A, is not much different from 1, and equating it to
1 perhaps overestimates slightly the influence of rotation on
turbulence. In the following analysis, we will put A; = 1, but
it is easy enough to modify the results, once incontrovertible
evidence becomes available, just by replacing f; by A, f; in
the Reynolds stress and by A, f; in the heat flux equations.
Equations (7), (8), and (10)<«(12) can be simplified for shear
layers by taking advantage of the faci that the length scale in
one direction is much smaller than those in the other
directions. For geophysical shear layers, d/dz > d/dx, d/dy,
where z is the vertical direction. Also g, = g, = 0and g; =
—-g, so that

aU 1%
P;= —(uw) i (vw) %
(13)
Py = Bg(wb)

The equations for the second moment turbulence quantities
can therefore be written, in their component form, as
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Constants, A,, A,, B, B,, C,, E,, E,, E,, E,, E;, S,and §,
are 0.92, 0.74, 16.6, 10.1, 0.08, 1.8, 1.33, 1.0, 1.0, 0.04, 0.2
and 0.2 [Mellor and Yamada, 1982] and are assumed to be
invariant. Note that the rotational terms redistribute energy
among the three components of turbulence KE but do not
change it, at least not directly (equations (7) and (14)<(15)).
However, they do affect the Reynolds shear stress and heat
flux terms (equations (17)~(22)) and therefore affect the
production terms in (7) and therefore indirectly modify the
turbulence KE. It is worth pointing out that it is essential to
consider the entire set of equations (14)<(23), since rotational
terms affect all the Reynolds stress and heat flux compo-
nents. Considering only a subset of these equations (fol-
lowing Garwood et al. [1985)) is not self-consistent.

The presence of f and f, in (14)«22) imparts tensorial
properties to the mixing coefficient for momentum (equation
(25); see Galperin and Kantha [1989] and Galperin et al.
[1989]) and makes it harder to derive algebraic expressions
for the mixing coefficients. Nevertheless, it is possible to
derive a set of three equations for the three quantities, S MU
Sy, and Sy,

An A A || Smu . B " a,
A Ap Ap || Smyv o, | = B " q, (24)
A3 Ay Ay Su A;[1 - (6AyB))]
where
P U
MU ™ 19aUraz) (25a)
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Mixing coefficients for momentum and heat are K, =
19Spu. Kpv = 1984y, and K, = 1qS,,. The coefficients
A, -A;; are given by
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The quantities Ro and Ro, are inverse Rossby numbers
defined by
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q
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The quantities a, and a, denote components of nondimen-
sional shear

(10

a, = ; FZ- (36a)
1%
a,=-— (36b)
q 92
Gy=a+a a7
P 40
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Note that unlike the case of f; = 0, S,,, and S,,, are not
necessarily equal. Under the assumption of local equilibrium
(level 2), the left-hand side of (7) can be neglected, and (7)
can be written as

SMUa,2, + SMyaf +SyGy =By ! 39)

If we use the level 2} equations of Mellor and Yamada
[1982] instead, it is easy to show that the coefficients A,,-A,;
are replaced by A},-A}; in (24), where

Al = Ay +64lal, Al = Ap

+ 6Ala,a,, Aly= A3 + 6A3Gha, (40a)
A}y = Ay, + 6A3a,a,, AYy = Ay
+6A%al, A)y = Ay + 6AIGya, (40b)
A} = Ay + 64,Asa,, Al = Ay
+6A,Aza,, A}y = A3 + 6A,A4,Gy  (40c)
and the right-hand side of (24) is replaced by
A1 =3C)a,
A1 =3C)a, A1)
A;

Equations (7) and (8) along with (24) can be solved
numerically for arbitrary values of Ro and Ro, [see Galperin
et al., 1989]. Equation (24) can be solved rather efficiently
using Cramer’s rule for inverting matrices (the matrix dimen-
sion is only 3 x 3).

When Ro = Ro, = 0, equations (24) to (34) yield the modified
21 level model results of Galperin et al. [1988] for Sy, = Sasv
= S, and S, (their equations 24 and 25). It can be shown that
for the level 21 approximation, we recover equations (34) and
(35) of Mellor and Yamada [1982]. If in addition, we appeal to
their equation (34) and invoke the local equilibrium limit, it can
be shown that both of these approximations yield (41) of Mellor
and Yamada [1982]. In this limit, turbulence production and
dissipation are assumed to balance each other, and the diffu-
sion, advection, and tendency terms are ignored in the equation
for the second moments. This approximate balance between
production and dissipation often prevails in geophysical bound-
ary layers [see Mellor, 1973) and the local equilibrium limit is
therefore useful, especially since it reduces the differential
equations to algebraic equations and allows for semianalytical
solutions.

In general, the limit of local equilibrium is also useful when
the rotational effects, i.e., the inverse Rossby numbers Ro and
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Ro,, are nonzero. However, the algebra is rather messy for the
general case. We will therefore deal separately with two cases,
the first one where Ro, = 0 but Ro # 0 and the second where
Ro = 0 but Ro, # 0. By dealing with the local equilibrium limit
in these subcases, it is our hope to be able to quantify rotational
effects and investigate their importance or lack thereof in
geophysical boundary layers, which are strongly dominated by
stratification effects. As a corollary we will also derive results
for the case of strong rotation but weak or no stratification, a
situation of interest to engineers.

An attractive feature of this approach is that while in the
approach of Galperin et al. [1989], the turbulence macroscale
has to be predicted explicitly, in the present approach this is
not necessary; therefore analytical results can be obtained, and
to some extent a more straightforward interpretation can be
made of the rotational influence on turbulence.

3. CASE OF ZERO MERIDIONAL, NONZERO VERTICAL
RoTATION (Ro, = 0, Ro # 0)

In this case, (24) can be written in complex notation as
s i 94,4, G
¢ 1+94JRo* ¥
+i3ARo| 1 + 9A§ G
PR\ T T ¥ 9alRo?

A,
- S”[ZAl + m (1 BAzko)]

“9A,Gyac = B ac (42)
Sull — 3A,(6A, +BZ)G”]=A2(I —ggll) (43)
while (39) becomes
Re [Scag]l+ SuGy =By (44)
where
Sc = Smua, + iSyva, (45)
ac = a, + ia, (46)

and o is the complex conjugate of a.. Because of the absence
of f,(Ro, = 0), there is no loss of generality in aligning the x
coordinate in the direction of the local stress. Then by defini-
tion, S,,v = 0, and algebra is greatly simplified.

3.1

In this section we would like to investigate the effect of Ro
on mixing coefficients S,,, and S,,(S,,, = 0 by definition). If
we define Rig by

Mixing Coefficients

:19)

Rig=f % (47)

noting that because (vw) = 0, Ri,is given by

___—Bgwo
T —(uw)(aU/dz2)

and substituting g = q/u,, where w3 = —(uw), equations
(42)-(46) can be reduced to

R (48)
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(D% + DP)g%— By(1 - Ri)(NgDg + N;D) =0 (49)
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The set of equations (49)«55) can be solved readily by -

Newton-Raphson technique for coupled nonlinear equa-
tions. Figure 1 shows S,,., and §,, as functions of Ri, for
various values of Rig. S, is not affected by rotation and
therefore is a function not of Rig, but only of Riy. Figure 1
shows that the stratification flux Richardson number Ri, for
extinction of turbulence is a function of the magnitude of the
rotational Richardson number Rig. At IRigl = 1.5, the
extinction Ri,is nearly zero, and at 0.75 it is about 0.1, about
half the value for zero rotation.

We note that in (49)~(55), Rir occurs only in powers of 2
or more; there are no terms linear in Ri,. This means that to
O(Ri%) the momentum mixing coefficient Sau is not affected
by nonzero f.

It is also worth noting that even though S,,, = 0, aV/az is
nonzero and is in fact given by

aV | N;Dg — NgD;| oU
3z |NgDg+ N,D;| 3z
For Rip = 0, N, = D, = 0; also V/3z = 0, and we recover

zero rotation values for mixing coefficients. On the other
hand, for Ri, = 0, i.e., for neutral stratification, D, = 0 and

- 6A
Smu=B" q,=8]" sH=Az(l~B—'

(56)

i
(57)

ﬂ/= _p-13 ¢
a2 3A,Ro Ro =B, ""Rig

v
J
0 1 1 1 A
-4.0 -3.0 -20 -1.0 0 1.0
Ri,
3.0 T T T T T T T T T
2.5 4
-
-4
1
1.0
Fig. 1. Plots of mixing coefficients (a) for momentum S, and (b)

for heat S, as functions of the stratification flux Richardson number
Rij for various values of rotational Richardson number Rig, for the
case of nonzero vertical rotation (f # 0, f, =0).

These results can be readily put in the form given by
Galperin and Kantha [1989], with x and y axes oriented in
the zonal and meridional directions, by a simple coordinate
transformation. In the new coordinate system, the Reynolds
stresses can be written as

— E144 3
= (uw) = ql\ Squu l + Smuv Fr

(58)
Si a0 3
=(ww) = ql| Syvu l + Smvy o

where overbars emphasize the fact that the relevant quanti-
ties are in the new cdordinate system. It can be shown that
the mixing coefficients in (58) are given by

g (8Uraz)?
" oMU GUrez)T + (aViaz)?

Smuu = Suvy

(59
Swiv= —Swvi =S (aUr3z)(aV/az2)
MUV = T OMVU S MU G2 + (aViaa)?
and therefore making use of (57), we get
Suuu =B (1 + 9A’Ro?) !
(60)

Swuuv =3A,B] ">Ro (1 + 9A2R0?) = !

in agreement with Galperin and Kantha [1989). Cousteix and
Aupoix [1981] have also studied rotating, neutrally stratified
fluids, except that their results are valid only for weak
rotation.

o — e
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MUV

0
-4.0

Ri,

Fig. 2. Plots of tensorial components of momentum mixing
coeﬂ‘ic'nems (@) Syyu and (b) S,y as functions of the stratification
flux Richardson number Ri, for various values of rotational Rich-

ardson number Rig, for the case of nonzero vertical rotation (f # 0.
£ =0.

If we define the rotational Richardson number by

f

Ri = [(@Uraz)* + (aVraz)T 1" 61)
i.e., on the basis of total shear, it can be shown that
Suuu =By (1 - 9438 PRij)
(62)

Suuv = 3A,B; PRig(1 - 9438 PRi})'?
Figure 2 shows § muu and S,y plotted as functions of Ri,

for various values of Rig.

3.2. Constant Flux Region

In the constant flux region adjacent to a solid surface,
(42)—(44) can be written as

Ng +iN;

v = DR¥ D, - dmu + idmy (63)
2 64, 3 -
dn =qa Ay ] ~B, qx— 3A2(6A, + By){m (64)
B\(dmu — {n) = 93 (65)
1
Ni = ——[a%+ 9A1Astu by + 9A(R) (66)
34 ,

N, = —q'f—” (@s? = 9A3 Ly by + 9ANE) 67)

*
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Fig. 3. Plots of Monin-Obukhov similarity functions for (a) the
U component of velocity and (b) the V component as functions of ¢,
the Monin-Obukhov stratification similarity variable, for various
values of the rotational similarity variable {, for the case of nonzero
vertical rotation (f # 0, f,=0).

- 9A1¢
Dg =B, g3+ 9433 - —,—q‘ “
*

(A1 + ADgl+943%]  (68)
D, = 27A,A}mir/al (69)
where
1 U [ v U, 30
¢MU"’LT‘32‘9¢MV—U:6_Z' bu = H a2 (70)

are Monin-Obukhov type similarity functions for the veloc-
ity and temperature profiles, U, is the friction velocity and is
equal to (—(uw))"”?, and H = —(w#) is the heat flux. The
variables ¢ and {; are

;:Ii‘ (71a)
! (71b)
iR -L—R

where L = -UYBgH is the stratification Monin-Obukhov
length scale and L, = U,/f is an analogous rotation length
scale (Ekman scale).

Figures 3 and 4 show ¢,,,, drv, and ¢, plotted as
functions of { for various values of {z. The effect of rotation
is clearly small, despite the large values used for .

In the geophysical context, {z seldom exceeds 0.1 or so
(see Galperin et al. [1989] for discussion of typical values of

<




4850 KANTHA ET AL.: EFFECT OF ROTATION ON STRATIFIED FLUIDS

U W Y W B B A G G SN S

|
by
(-]
|
-~
°
1
hd
=]
3
b4
o
!
-
o
o
O
~)
o

mvi

-4.01 4

-5.0 | S N N W U WY W WUNNN WU S S
-50 -40 -30 -20 -1.0 0 1.0 20

§

Fig. 4. (a) Plot of Monin-Obukhov similarity functions for tem-
perature as a function of the similarity variable ¢, for various values
of the rotational similarity variable {; for the case of nonzero
vertical rotation (f # 0, f, = 0). (b) Plot of the first-order term ¢,y
in the expansion @y = dpyyo + (g Parvi. as a function of ¢, the
Monin-Obukhov stratification similarity variable, for the case of
nonzero vertical rotation (f # 0, f, = 0).

{g), and therefore small perturbation expansions in terms of

{r are in order. It can be shown that the first-order terms are

=0 ¢y =0

but

3A1[qy — 9A3{dmo)
axlB; ady— 9A,Uq.02A, + Aj)]

bmvi =

27A3A30q 2 + 9A,Ax{w0)
T qidBa"ady - 9A,Uq w24, + AT

(72)

where @py = dpvo + {rbuvy. Figure 4b shows &,
plotted as a function of ¢{. For neutral stratification,

duvi =3A,B] " =1.08

When both the stratification and rotation are weak (i.e., { <
1 and {r << 1), it is possible to expand in terms of both ¢ and
{g to show that

dpyy = 1.0 +3.273¢

¢MV = 108§R (73)
éy = 0.794 + 2.755¢
4. CASE OF ZERO VERTICAL, NONZERO MERIDIONAL
: RoTATION [Ro = 0, Ro, #0]

In the preceding section we considered the case of non-
zero Ro. While interesting, it was apparent that Ro does not

have a large effect on turbulence, especially at parametric
values of interest to geophysics. In this section, we will deal
with the geophysically more important case of nonzero
meridional rotation (Ro, # 0). We will show that Ro, can
have a large influence on turbulence, although in the geo-
physical context, the effect is seldom very large. It is worth
pointing out that f, does not enter the mean momentum
equations, unlike f, and therefore its influence on the mean
flow is only indirect, through the second-moment equations.
In this case, (24) can be written as

Suvadl — 94,A:Gy + 36ARo,(a, + Ro,)]
+ Si{-9A\2A, + AYGyla, + Roy)] = B, Pa, (14)
Suva27ARoya,) + Syva,
‘(1 - 94,A4;Gy + 9A{Ro,(a, + Ro))
+Sy[-9A,(24, + A)Gya,) = B Pa, (79
Suuad9A22A, + A)Ro,] + Syl — 3A,(6A, + By)Gy

2 6A,
+ 9A3Ro0,(a, + Roy)] = A| 1 - - (76)
1

along with the turbulence KE equation in the limit of local
equilibrium:

SMUa,:: + SMValz, + SHG” = Bl_ ! (77)

4.1. Mixing Coefficients

Unlike the previous case, the direction of the flow (or
equivalently, stress) is important. We will therefore use the
conventional coordinate system, with x and y axes aligned in
the zonal and meridional directions. Let a be the angle
between the shear stress vector and the east, measured
positive in the counterclockwise direction. Then if the mix-
ing coefficients and the relevant Richardson numbers are
defined by

= {uw) = (vw)

Supr = _ —(w8)
MU ™ qlaUraz)

My = qldaViaz) “H~ ql0,

U 1%
Rir= — Bg(wo) / ( ~(uw) 57— ow) —-) (78)

wen/|(3) ()] az

Smus Smv. and S, become functions of Ri, and Rig, and
equations (74)<(77) can be written as

cos a{(SMUSMVq;‘.)SMUSMy+ 36A%RI.R(S,2“V cos? a
+8%,ysin’a)'?
‘[Smy cos a + (Shyy cos? a + Sy, sin? @) Rig]

SmuSmy

+ 9A,A,Ri,
|A.le s”

(Suv cos’ a + Smu sin’ a)}

+9A,(2A) + ADRif(Syy cos® a + Syy sin’ a)
[Smv cos a + (S3y cos® a + S, sin? a)'?Rig]

& .

o gl

———
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= B, Sy cos a(SyuSuvad (79
27A%Rig Spu(Shy cos? a + §%, sin? a)"? cos a
SmuS
+ qShuShy + A1 Rip —
H
“(Smy cos? a + Spy sin? @)
+9A? R:R(SMV cos’ a + SMU sin? a)"?
[Smv cos a + Rig(8%y cos? a + §3,, sin? @)'?)
+9A4,(2A, + A)SyuRi{Syy cos? a + Syy sin’ a)
=By Suu(SmuSmuva® (80)
QiShuSYy + 94,24, + Ay)
“cos a — SMUSMV(SMV cos? a + Siy sin® )2
+ 9A§RiR{S§,V cos? a + Sfm, sin? a]'"?
+ [Smy cos a + Rig(S3,y cos? a + Sy sin? a)'?)
SmuS
+ 3A,(6A, + By)Riy —H¥_MY
Su
* (Smv cos? a + Suu sin? a)
6A,\ SyuS
- Az(l - _B.‘) =5 SuuSuvad 81

q8SmuSuy = B(1 - Rip[Smu sin? @ + Syy cos? a] (82)

These equations can be solved for arbitrary values of Riy,
Rig, and a. The solutions are symmetric with respect to the
zonal plane; for example, the solution for a = 45°is the same
as that for a« = —45° if proper allowance is made for the sign
of various quantities. We will present results for only the
case of zonal flow (a = 0° and 180°), of most importance in
the geophysical context. In the following plots, positive
values of Riy correspond to a = 0°, while negative ones refer
to a = 180°.

Figure 5 shows the variation of S,,,, and S, with Ri, for
various values of Rig. Increasing rotation (Rig) tends to
counteract the effect of unstable stratification and suppress
turbulence when a = 0°, while the tendency is exactly the
opposite when a = 180°. There is exchange of turbulence KE
between the vertical and zonal components with changing
Rig (meridional component (v2)/q? does not change), while
q2 itself undergoes dramatic changes with Rig. Thus it is
clear that unlike the case of £, f, can exert a large influence
on turbulence. For example, strong stabilizing rotation (Rig
> 0) can suppress turbulence, even when the gravitational
stratification is strongly unstable. On the other hand, turbu-
lence can be kept alive for much higher values of stable
stratification, by destabilizing rotation (Rig < 0), than would
otherwise be feasible. Figure 6 shows the value of critical
Richardson number Rif, for which turbulence is quenched,
as a function of Rig . Outside the domain delineated by the
curve, turbulence is extinguished. Thus for neutral flows,
turbulence can exist only for —1.18 < Rip < 0.18 [see
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Fig. S. Same as Figure 1, except for nonzero meridional rotation
f, #0,f=0).

Galperin et al., 1989; Galperin and Kantha, 1989]. When
rotation is destabilizing, turbulence is kept alive at higher
stable stratification, up to Rigr = —1; beyond this value,
rotation tends to suppress turbulence and it takes increas-
ingly unstable gravitational stratification to keep turbulence
alive, as in the case of stabilizing rotation.

The most important aspect in the geophysical context is
the possible range of Riz. While strong rotation certainly
does have a dramatic influence on turbulence, those values
of Rip may not be attainable in practice. In fact, Rig seldom
exceeds 0.1 or so for atmospheric and oceanic boundary
layers (typical values are f, ~ 107*s™', aU/3z ~ 107> s™"),
and therefore while the effect of rotation is nonnegligible,
neither is it dramatic. For small values of Rig, a small
perturbation expansion is appropriate:

SMU(R‘j" R‘R) SMUO(RU) + R’RSMUI(R‘[) +
Su(Rip, Rig) = Spo(Rip + RipS(Rip) + -+

Figure 7 shows the variation of the first-order terms Sy,
and S,;, (Spvy = 0) as a function of Ri,. The maximum
values occur very near neutral stratification. If we take a
typical value of 0.1 for Rig, it is apparent that rotation can
change mixing coefficients by about 30%, a nondramatic but
nevertheless a nonnegligible value.

4.2. Constant Flux Layer
In the constant flux layer, (24) can be written as

cos afgl + 3643 g, (duu + Lry) + 9A1A2 4]

+9A,(24, + AD{(dmu + &) = By Pduuai (83)
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Fig. 6. Critical stratification flux Richardson number Ri; for

extinction of turbulence as function of the rotational Richardson
number Rig for nonzero meridional rotation (f, # 0, f = 0).

cos a[27Af{R_v dmv] + sin a
‘(g + 941420y + 9AT Lry (dmu + L&V

+9A,(24, + A){dyy = B, Vodyval (84)

@i+ cos {94, (24, + A)lry &) + 9AI DMy + LRy

= 64, 3
+ 3A2(6A| + BZ)£¢H =A,| 1 - _Bl_ duqs (85)

while the turbulence KE equation in the limit of local
equilibrium becomes

q%= B (dmy cos a + dyy sin a— ) (86)
where a denotes the angle that the stress vector makes with
respect to the east (positive in the counterclockwise direc-

tion). The various nondimensional quantities in (83)~(86) are
defined as

! aU 1

¢MU=U—*B—Z' =

aVv 1

= i 87)
VU, oz ¢“_9. az ¢
where U, is the total friction velocity (U2 = u% + v3) and ©,
is the friction temperature based on U, (@, = —(wé)/U,).

The quantities { and {,, are given by

l
{= z (88a)
{ —L (88b)
Ry LRy
and
Ui
=— 89
L=3 Bg(w6) (63e)
U.
Lgy, = T (89b)
y

are the Monin-Obukhov length scales for stratification and
for rotation.

It is possible to solve the set of equations (83) to (86) for
any arbitrary value of angle a to obtain ¢,,,, $sy. and ¢,, as
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functions of { and {g,. We will present results only for the
cases a = 0° and 180°, which represent cases of zonal flow,
of primary importance to geophysical boundary layers.

Figure 8 shows ¢,,,, and ¢,,(d,,y = 0) as functions of { for
various values of {g,. Note that positive values of (g,
correspond to a = 0°, while the negative values denote a =
180°. The dramatic influence of rotation on Monin-Obukhov
similarity functions is clearly seen in these plots.

In the geophysical context, g, is seldom large, and a small
perturbation expansion can be made in terms of {, for
arbitrary values of {:

dmu(ls Lry) = dmun (D) + Lrydyun(D + <+
Su(L. Lry) = b0 (D) + Lry () + -+

First-order correction terms ¢,,,,, and ¢,,, are as shown in
Figure 9.

When both stratification and rotational effects are small, it
can be shown that

dmu(l. Lr) = cos a{l + 3.273¢ + 3.512 £z, cos a]
dmv (L, Lg) = sin of 1 + 3.273¢ + 3.512 {, cos a)

du (L, Lr) = 0.794 + 2.775( + 1.335 {g, cos a

For the zonal case, ¢,,, vanishes. The coefficients of { in
(90) are well known (see, for example, Mellor [1973] and
Galperin et al., [1988]).

Finally, let us note that the relative importance of strati-
fication and meridional rotation in the constant flux region is
governed by the ratio

(90)

HR,. = (9”

~| 5

L

Lpy
where L = U¥YxBgH is the well-known Monin-Obukhov
length scale that indicates the relative magnitude of buoy-
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Fig. 7. Plots of the first-order terms (a) Sy, and (b) Sy, as

functions of the stratification flux Richardson number Ri for non-
zero meridional rotation (f, # 0, f = 0).
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ancy production vis-a-vis shear production in the surface
layer (H = —(w@)), while

92)

is the corresponding rotation length scale. (For the case of
nonzero vertical rotation, f, is replaced by f).

Equations (24) for the mixing coefficients and their coun-
terparts for the Monin-Obukhov similarity function can in
principle be solved for arbitrary values of Ro and Ro,, the
two inverse Rossby numbers. However, the algebra is
messy, and since in the geophysical context we are inter-
ested primarily in the limit of weak rotational effects, we can
obtain the necessary solutions from the small perturbation
solutions of sections (3) and (4). The small-perturbation
solutions for zero £, nonzero f and for zero f, nonzero f, can
simply be added to produce the desirable solutions for small
but nonzero values of both Ro and Ro,.

5. CONCLUDING REMARKS

In this paper we have given a systematic accounting for
the effect of rotation on small-scale turbulence and vertical
mixing in stratified fluids, with special emphasis on geophys-
ical flows. A simple turbulence model applicable to a general
rotating, stratified flow has been derived using second-
moment closure. By invoking the local equilibrium limit, we
have derived simple semianalytical results that provide a
better insight into the rotational effects on turbulence in
stratified flows. The analysis confirms the hitherto widely
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Fig. 9. Plots of first-order terms (a) ¢y, and (b) &, as
functions of ¢, the Monin-Obukhov stratification similarity variable,
for the case of nonzero meridional rotation (f, # 0. f = 0).

held (without rigorous proof, we might add) notion that
rotation does not have a profound effect on small-
scale turbulence characteristics in geophysical mixed layers.
However, the effect on vertical turbulent mixing coefficients
can amount to a few tens of percent under certain condi-
tions, clearly nonnegligible though small.

It is clear that strong rotation, especially meridional, can
exert a profound influence on turbulence. Laboratory exper-
iments (Johnston et al. [1972] and others) in neutrally
stratified flows have shown that turbulence can be strongly
enhanced or quenched by strong rotation. The model results
are in good agreement with these experiments (see also
Galperin and Kantha [1989]). Unfortunately, there are no
observations either in the laboratory or in the field that can
shed any light on rotational effects on turbulence in stratified
fluids. Geophysicists have seldom had to worry about these
effects until a recent suggestion by Garwood et al. [1985a,
b]. Although the results of this paper and that of Galperin et
al. [1989] suggest that these effects are seldom profound
enough to influence geophysical mixed layers drastically,
any relevant empirical data that would clarify these aspects
further are highly welcome. In addition, rotational effects on
turbulent mixed layers might be more dramatic on a more
rapidly rotating planetary fluid body.
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