Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions

Marian B. Westley, Hiroaki Yamagishi, Brian N. Popp, Naohiro Yoshida

Abstract

The low-oxygen regions of the world’s oceans have been shown to be major sources of nitrous oxide, a trace gas in the atmosphere that contributes to both greenhouse warming and the destruction of stratospheric ozone. Nitrous oxide can be produced as a by-product of nitrification or an intermediate of denitrification; low oxygen conditions enhance the yield of nitrous oxide from both pathways. We measured the concentration and isotopic composition of dissolved nitrous oxide at several stations in the Black Sea, an anoxic basin with a well-defined suboxic layer that separates the ventilated surface waters from the sulfidic deep waters. Our data show that in contrast to other low-oxygen marine regions, nitrous oxide does not accumulate in the Black Sea at significant levels. Moreover, whereas the reduction of nitrous oxide by denitrification usually yields residual gas that is enriched in both stable isotopes, in the Black Sea declining nitrous oxide concentrations are accompanied by enrichment in 18O-N$_2$O but depletion in 15N-N$_2$O. We measured a minimum δ^{15}N-N$_2$O value of $-10.8 \pm 0.8\%$ vs. air N$_2$, by far the lowest measured to date for seawater. Measurements of the distribution of 15N within the linear nitrous oxide molecule reveal that this unusual isotopic signal is most pronounced in the end-position nitrogen, and that site preference, or the tendency for 15N to be found in the center-position nitrogen, co-varies positively with 18O-N$_2$O. We surmise that the highly unusual isotopic composition of Black Sea nitrous oxide is the result of two processes: production of 15N-depleted nitrous oxide by ammonium oxidation followed by its reduction by denitrification, which causes enrichment in 18O and enhancement of 15N-site preference. Bottle incubation experiments with
15N-ammonium and 15N-nitrite reveal that both oxidation and reduction pathways to nitrous oxide are active in the Black Sea suboxic zone.

Keywords: Suboxic; Nitrification; Denitrification

1. Introduction

Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to destruction of stratospheric ozone. Nitrous oxide exists in trace amounts in the atmosphere (about 318 ppb) but is increasing at a rate of 0.25% yr−1 and may significantly affect global climate over the next 100 yr (Albritton and Meira Filho, 2001). The oceans are a significant source of N2O to the troposphere (Nevison et al., 1995), contributing about 30% of natural sources and 17% of total identified sources (Albritton and Meira Filho, 2001). Nitrous oxide can be produced in the oceans by nitrification, the conversion of ammonium to nitrite and nitrite to nitrate in the presence of free oxygen, and can be produced and consumed by denitrification, oxidation of organic matter using nitrogen oxides as electron acceptors in the absence or near absence of free oxygen (Zafiriou, 1990; Capone, 2000). In the open ocean, nitrification most likely dominates N2O production in oxygenated water (Dore et al., 1998; Popp et al., 2002), but accumulation of N2O in the oxygen minimum zone has been attributed to both nitrification (Yoshinari, 1976; Cohen and Gordon, 1978; Kim and Craig, 1990; Butler and Elkins, 1991) and denitrification (Yoshida et al., 1989; Yamagishi et al., 2005), and the question as to which process is more important remains controversial. Nitrification and denitrification may both be significant sources of N2O in regions of intense upwelling and oxygen draw-down (e.g., seasonal upwelling off the west coast of India: Naqvi et al., 2000), and nitrifying organisms can produce N2O from nitrite using a denitrification pathway under low-oxygen conditions (Yoshida et al., 1989; Ostrom et al., 2000; Wrage et al., 2001; Casciotti, 2002). The remaining ambiguities in the marine N2O cycle make it difficult to constrain its current fluxes from the ocean, or to forecast response of this important greenhouse gas to such forcings as coastal eutrophication (Bange, 2000) or open-ocean iron enrichment (Fuhrman and Capone, 1991; Jin and Gruber, 2003). Recent identification of anaerobic ammonia oxidation (Dalsgaard et al., 2003; Kuypers et al., 2003) as a quantitatively significant process in the marine nitrogen cycle (Devol, 2003) further complicates our understanding of the processes that can produce and consume N2O.

The highest concentrations of N2O in the ocean have been found in low-oxygen conditions over the western Indian shelf (533 nM; Naqvi et al., 2000) and above the oxygen minimum zones in the eastern tropical North Pacific (173 nM; Westley et al., 2001) and eastern tropical South Pacific (173 nM, Codispoti et al., 1992). Nitrous oxide production by chemoaautrophic ammonia oxidizers has been shown to be enhanced by low oxygen conditions (Goreau et al., 1980). In addition, trace amounts of oxygen promote NO production by denitrifiers as the enzyme N2O reductase is more sensitive to inhibition by oxygen than are other enzymes in the denitrification pathway (Knowles, 1982). The association of N2O with low oxygen motivated our participation in the June 2001 R/V Knorr research cruise to the Black Sea, an anoxic basin with a well-defined suboxic layer that separates the ventilated surface waters from the sulfidic deep waters (Murray and Izdar, 1989). Murray et al. (1995) described a nitrate maximum at the upper boundary of the suboxic zone with nitrite maxima above and below the nitrate peak in concentration. They identified probable zones of nitrification in the upper nitrite maximum and denitrification in the lower nitrite maximum. Both regions are candidates for N2O production, and the lower region is a candidate for N2O consumption. We measured the concentration and stable isotopic compositions of N2O from three stations in the Black Sea, with additional concentration measurements near the mouth of the Bosporus and over the northwestern shelf (Fig. 1). Our data show that in contrast to other marine low-oxygen regions, N2O does not accumulate in the Black Sea at significant levels. This work accords well with initial measurements of N2O concentration performed on water samples collected during the 1988 Black Sea expedition (Butler and Elkins, 1991). Here, we apply the additional tools of stable isotope analysis of ambient N2O as well as stable isotope tracer
addition experiments to understand better the Black Sea N$_2$O cycle.

Culture studies have shown that bacterial production of N$_2$O by nitrification and denitrification produces gas depleted in 15N and 18O relative to its source material (Yoshida, 1988; Barford et al., 1999; Casciotti, 2002), whereas consumption of N$_2$O by denitrification leaves the residual gas isotopically enriched (Barford et al., 1999). Natural abundance stable isotope measurements of dissolved N$_2$O in seawater have been used to infer rates and pathways of N$_2$O production (Yoshida et al., 1989; Yoshinari et al., 1997; Dore et al., 1998; Naqvi et al., 1998; Ostrom et al., 2000; Westley et al., 2001; Popp et al., 2002). Recent innovations in mass spectrometry that enable determination of the position of 15N within the linear NNO molecule (Toyoda and Yoshida, 1999) provide an additional dimension for studying mechanisms of N$_2$O production in the ocean (Popp et al., 2002; Toyoda et al., 2002) and terrestrial ecosystems (Perez et al., 2001). Toyoda and Yoshida (1999) used the term “isotopomers” to distinguish between molecules of the same mass but different mass distributions. We report the first isotope and isotopomer measurements of N$_2$O from the Black Sea. We also present the results of bottle incubations with 15N tracers performed on water collected from above and within the suboxic zone (defined as that layer with oxygen concentration below 10μM and low oxygen gradients but no measurable sulfide) and discuss their implications for N$_2$O cycling in the Black Sea. The combined natural abundance isotope and isotopomer measurements, and isotope uptake experiments reveal that the N$_2$O pool is highly dynamic and that nitrous oxide is simultaneously produced and consumed in the suboxic zone of the Black Sea.

2. Methods

Water samples were collected from CTD casts at the mouth of the Bosporus (41.21°N, 29.12°E), the center of the western gyre (42.48°N, 30.76°E), a south shelf-break station (41.46°N, 30.26°E), and a northern shelf-break station (44.12°N, 30.92°E). Depth contours are drawn every 500 m from 500 to 2000 m.
using standard Winkler titrations (Konovalov et al., 2002) and a shipboard autoanalyzer system (Tugrul and Salihoglu, 2002). All CTD and nutrient data are available on the web at www.ocean.washington.edu/cruises/Knorr2001.

Nitrous oxide concentrations were measured at the University of Hawaii by headspace equilibration in a gas-tight syringe, followed by packed-column gas chromatography using an electron capture detector (Cohen, 1977) calibrated with commercial gas mixtures. Precision of this method is estimated to be ±5% based on replicate sample analyses.

Total or “bulk” δ15N and δ18O in N2O were measured at the University of Hawaii using a modification of the analytical system used to measure δ13C of dissolved methane in seawater (Sansone et al., 1997) as described in Dore et al. (1998) and Popp et al. (2002). Isotope values are reported using delta notation as per mil versus Vienna Standard Mean Ocean Water (VSMOW) for oxygen (e.g. δ18O = [(Rsample − Rstandard)/Rstandard] × 1000, where R = 18O/16O). Analyses of triplicate 240 ml samples of near-surface seawater (~6 nM N2O) yield reproducibilities of better than ±0.5% for δ15N and ±0.8% for δ18O. The isotopic composition of the laboratory standard gas was characterized using the traditional analytical methods of Yoshida and Matsuo (1983) and Kim and Craig (1993). Calibration of N2O concentration on the mass spectrometer is achieved using a commercial gas mixture and an appropriate range of sample loops, and corresponds well with those determined using the gas chromatograph.

Isotopomer analyses were performed at the Tokyo Institute of Technology using an MAT 252 mass spectrometer following the method of Toyoda and Yoshida (1999). Nitrous oxide is an asymmetric linear molecule (NNO) with one nitrogen atom in the central or α position and a second nitrogen atom in the end or β position. Given this structure and the stable isotopes of oxygen and nitrogen (14N, 15N, 16O, 17O and 18O), there are 12 possible isotopomers of N2O but only five are sufficiently abundant in nature to quantify. Toyoda and Yoshida (1999) devised a method for distinguishing between 14N15N16O and 15N14N16O by measuring the difference in mass between N2O ions and fragment NO ions produced in the ionization chamber of the mass spectrometer. Thus δ15Nα is a measure of 15N enrichment in the central or α position of N2O, whereas δ15Nβ is a measure of 15N enrichment in the end or β position. Total or “bulk” δ15N and δ18O data are also available from these measurements. The reproducibilities of this method reported for triplicate analyses of 125 ml samples of near-surface seawater (6.7 nM dissolved N2O) are ±0.9% for δ15Nα, ±1.5% for δ15Nβ, ±0.6% for bulk δ15N, and ±0.9% for δ18O (Toyoda et al., 2002). A comparison of 30 pairs of samples collected between the surface and 4000 m in the subtropical North Pacific shows that the University of Hawaii measurements differ from the Tokyo Institute of Technology measurements by an average of −0.13‰ in “bulk” δ15N and −1.37‰ in δ18O (Popp et al., 2002). We report values from both laboratories without adjustment.

Water samples for two sets of exploratory 15N-tracer incubation experiments were collected from CTD casts at the center of the western gyre (42.5°N, 30.75°E) using acid-washed (10% HCl) silicone tubing and new serum bottles that had been soaked for 24 h in 10% HCl at 60°C, prior to being rinsed in MilliQ water and combusted overnight at 500°C. Water was allowed to overflow twice to minimize gas exchange, the collecting tube was carefully withdrawn, chilled 15N tracer solutions were added by pipette, and the bottles were sealed with non-toxic, gas-impermeable Viton rubber stops and aluminum crimps. The tracers added were solutions of 99.9% 15N ammonium chloride and potassium nitrite, each added to separate bottles at a concentration estimated to make up 10% of the ambient concentration of the relevant ion. Tracer volumes were 200 μl or smaller to minimize the amount of dissolved oxygen introduced with the tracer solution, and sample handling time was kept as short as possible. An ammonium uptake experiment was performed on water collected from σt = 15.3, which had oxygen and ammonium concentrations of 14 μM and 100 nM, respectively, and an ambient temperature of 8°C. Parallel ammonium and nitrite uptake experiments were performed on water collected from σt = 15.6, which had an oxygen concentration of 4 μM, ammonium and nitrite concentrations of 100 and 40 nM, respectively, and an ambient temperature of 8°C. Experiments were incubated in the dark at 8°C for 12, 24 or 48 h before being terminated with an injection of mercuric chloride. Controls were handled in an identical manner as treatments, except no tracer solutions were added. Bottles were sent to the University of Hawaii and the Tokyo Institute of Technology by air freight and were analyzed by
mass spectrometry as described above to determine the uptake of tracer 15N into the dissolved N$_2$O pool. Many incubations showed increases in mass 46, which we interpret as evidence for doubly labeled N$_2$O (i.e. 15N15N16O), since it is unlikely that the 18O content of N$_2$O in our tracer incubations would vary between treatments and controls. We reallocate excess mass 46 units to mass 45 to account for the total concentration of 15N in the N$_2$O pool.

3. Results and discussion

3.1. Distribution of the concentration and isotopic compositions N$_2$O

Nitrous oxide concentrations measured at the center of the western gyre, the southern shelf break, and the northern shelf break are shown in Fig. 2. We show data from each station in two panels: the left panels (Fig. 2(A), (C) and (E)) show N$_2$O concentration with the calculated saturation value (i.e. the concentration of N$_2$O that would exist if the water were in equilibrium with air, calculated from CTD values of temperature and salinity following Weiss and Price (1980)) and nitrate concentration (Tugrul and Salihoglu, 2002) plotted for comparison. The right panels (Fig. 2(B), (D) and (F)) show oxygen, sulfide (Konovalov et al., 2002) and ammonium (Tugrul and Salihoglu, 2002) concentrations for the same density interval. At each station, the concentration of N$_2$O showed a small maximum near $\sigma_t = 15$, directly above the nitrate maximum and coincident with the base of the oxycline, where oxygen concentrations ranged between 30 and 100 µM. The maximum was most pronounced at the western gyre station (Fig. 2(A)), where N$_2$O concentration reached 14.4 nM at $\sigma_t = 15.3$ (70 m). This represented 118% saturation relative to water of the same temperature and salinity in equilibrium with air. The flux of N$_2$O to the mixed layer from this maximum in N$_2$O can be estimated from the concentration gradient (0.184 nM m$^{-1}$) assuming an eddy diffusion coefficient of 2.6×10^{-6} m2 s$^{-1}$ (Samodurov and Ivanov, 1998) was 147 nmol m$^{-2}$ d$^{-1}$. A similar calculation performed on data from the eastern tropical North Pacific (Westley et al., 2001) and assuming an eddy diffusion coefficient of 2×10^{-6} m2 s$^{-1}$ (Lewis et al., 1986) yielded 5950 nmol m$^{-2}$ d$^{-1}$ making the Black Sea a relatively insignificant source of N$_2$O to the troposphere.

Our western gyre N$_2$O profile was almost identical to measurements performed in 1988 from water collected near the center of the Black Sea (43°N, 34°E: see Fig. 1) and analyzed using gas chromatography (Butler and Elkins, 1991). The similarity suggests that the modest maximum in N$_2$O concentration near the base of the oxycline, above a zone of rapid N$_2$O decline, is a persistent and reproducible feature in the Black Sea. One characteristic of the N$_2$O concentration profile that did not appear in the 1988 measurements is the small peak in N$_2$O concentration at $\sigma_t = 15.9$ (92 m), which also appeared at the southwest shelf-break station at around $\sigma_t = 16.2$ (about 140 m) but did not appear at the northwest shelf-break station. These secondary N$_2$O concentration maxima are most likely caused by the lateral injection of oxygenated Bosporus water within and below the suboxic zone (Samodurov and Ivanov, 1998; Konovalov et al., 2003) allowing the oxidation of ammonium to N$_2$O, nitrite and nitrate. In addition, Mediterranean water injected into the Black Sea via the Bosporus plume contains elevated levels of N$_2$O (about 200% saturation, measured at $\sigma_t = 26.9$, or 60 m, at the mouth of the Bosporus during this study), and this N$_2$O may influence concentration measurements at the southwest shelf station and western gyre stations. The existence of pronounced N$_2$O anomalies at the southwest shelf station and their absence at the northwest shelf station are consistent with the entrainment of Mediterranean water in a counterclockwise rim current (Oguz et al., 1994). During June 2001, Bosporus inflow water appeared to exert its strongest influence on the southwest shelf region of the Black Sea (Luther et al., 2002; Konovalov et al., 2003).

The δ^{15}N and δ^{18}O values of dissolved N$_2$O measured at the center of the western gyre (measured at the Tokyo Institute of Technology), the southwestern shelf break and the northwestern shelf break (both measured at the University of Hawaii) are shown in Fig. 3. We consider the central western gyre station in detail: between the surface and $\sigma_t = 14.4$ (about 55 m), the δ^{15}N and δ^{18}O values of dissolved N$_2$O averaged 7.6‰ and 45.7‰, respectively, which were similar to those of clean tropospheric air (δ^{15}N = 6.4‰ vs. air N$_2$ and δ^{18}O = 45.5‰ vs. VSMOW: Rahn and Wahlen, 1997) taking into account the minimal fractionation (0‰ for 15N and -0.8‰ for 18O) due to air-to-sea
Fig. 2. The left panels show the concentration of nitrate (open triangles) and nitrous oxide (filled circles) measured at (A) the center of the western gyre, (C) the south shelf break and (E) the north shelf break. The solid line shows N$_2$O saturation calculated following Weiss and Price (1980) using CTD temperature and salinity data for each cast. The right panels show the corresponding concentrations of hydrogen sulfide (filled triangles), ammonium (open squares), and oxygen (filled diamonds) measured in the same water samples from (B) the center of the western gyre, (D) the south shelf break and (E) the north shelf break. The dotted horizontal lines mark the upper and lower boundaries of the suboxic zone defined by oxygen concentrations below 10μM, low oxygen gradients and no measurable sulfide.
transfer (Inoue and Mook, 1994). This indicates the strong influence of air-sea gas exchange on the isotopic characteristics of dissolved N$_2$O at these depths. Between $\sigma_t = 14.4$ and 15.3 (or 70 m), there was a slight depletion in 15N combined with a small enrichment in 18O (at $\sigma_t = 15.3, \delta^{15}$N = 6.6 ± 0.3‰ and δ^{18}O = 49.2 ± 0.6‰), corresponding to a concentration maximum of 14.4 ± 0.7 nM. Oxygen concentration declined from almost 200 to 14 μM in this interval (Konovalov et al., 2002). Between $\sigma_t = 15.3$ and 15.85 (or 70–90 m), as O$_2$ declined to 3 μM, N$_2$O concentration also decreased, and the residual N$_2$O became increasingly enriched in 18O but depleted in 15N, with a minimum δ^{15}N-N$_2$O value of -10.8 ± 0.8‰ vs. air N$_2$ at $\sigma_t = 15.85$. This value was significantly lower than the lowest δ^{15}N-N$_2$O reported for seawater to date (0.8‰ vs. air N$_2$ for upwelled waters in the Arabian Sea: Naqvi et al., 1998) and represented a depletion in 15N of 18.2‰ relative to surface values. The δ^{18}O-N$_2$O value at this location was 67.0 ± 1.1‰, representing an enrichment of 22.1‰ relative to surface values.

Below $\sigma_t = 15.85$, the isotopic trends reversed, with an increase in δ^{15}N and a decrease in δ^{18}O coincident with an increase in N$_2$O concentration. This trend reversal also was seen at the south shelf station but not at the north shelf station, which suggests that it is associated with the Bosphorus plume. However, since there are no isotopic measurements of N$_2$O in the Bosphorus, it is impossible to determine if the signal is produced by the transport and mixing of Bosphorus-derived N$_2$O into the Black Sea, or by processes induced by the oxygenated Bosphorus water creating new N$_2$O in situ.

3.2. Processes producing and consuming N$_2$O

The concomitant depletion in 15N and enrichment in 18O with decreasing N$_2$O concentration observed in the density interval of $\sigma_t = 15.3$ to $\sigma_t = 15.85$ contrasted with previously reported dual isotopic measurements of N$_2$O from other low-oxygen marine environments: Yoshinari et al. (1997), Naqvi et al. (1998), and Westley et al. (2001) all reported enrichment in both isotopes with decreasing N$_2$O concentration. The unusual isotopic signature in Black Sea N$_2$O could simply reflect unusual isotopic
compositions of precursor molecules. Alternatively, it could be derived from production and consumption processes, either an unusual combination of nitrification and denitrification reactions observed in other environments, or a novel biochemical pathway to N₂O. Available isotopic information for nitrate and ammonium, the presumed precursors to N₂O, cannot account for the unusually low δ¹⁵N-N₂O values. Dissolved nitrate samples collected from the same hydrocast as N₂O in the center of the western gyre were analysed for δ¹⁵N (see Murray et al., 2005) but showed the opposite trend to δ¹⁵N-N₂O. In the density interval between σₚ = 15.5 and σₚ = 15.85, δ¹⁵N-NO₃⁻ increased from ~8‰ to ~19‰ while δ¹⁵N-N₂O decreased from 2.9‰ to ~10.8‰. Fewer data are available for ammonium: Fry et al. (1991) reported a δ¹⁵N value of 3.8‰ for ammonium collected at a depth of 218 m in the Black Sea, well within the anoxic zone, and Velinsky et al. (1991) found low δ¹⁵N-NH₄⁺ (around 2‰) in Black Sea anoxic water, a maximum δ¹⁵N-NH₄ of ~8‰ at the suboxic/anoxic interface (around σₚ = 15.85), and a somewhat lower value of ~6‰ in the suboxic zone. There was no evidence for unusually low values of δ¹⁵N-NH₄ in the oxycline. These factors point instead to isotopic fractionations associated with the reactions that produce and consume N₂O. Here, the additional measurements of isotopomers of N₂O can provide valuable insight: since the precursor molecules only contain one atom of nitrogen, the distribution of ¹⁵N within the linear NNO molecule should depend largely on reaction processes and not on δ¹⁵N of the precursors (Toyoda et al., 2002).

The left panel of Fig. 4 shows the δ¹⁵N composition of N₂O from the western gyre station, with “bulk” or total δ¹⁵N plotted along with δ¹⁵N², a measure of δ¹⁵N in the central position nitrogen atom, and δ¹⁵Nβ, δ¹⁵N in the end position (following Toyoda and Yoshida, 1999). The right panel of Fig. 4 shows δ¹⁸O composition of N₂O as well as the ¹⁵N-site preference, or δ¹⁵N²–δ¹⁵Nβ, a measure of the distribution of ¹⁵N within the N₂O molecule. At all depths δ¹⁵N² was enriched relative to δ¹⁵Nβ, yielding a positive ¹⁵N-site preference. Between the surface and σₚ = 14.4, while there is considerable

Fig. 4. The isotopomer composition of N₂O measured at the center of the western gyre. In panel (A), the δ¹⁵N-N₂O vs. air N₂ (filled circles) is decomposed into δ¹⁵N² or ¹⁵N abundance at the central position in NNO (open triangles) and δ¹⁵Nβ or ¹⁵N abundance at the end position in NNO (filled triangles). Panel (B) shows ¹⁵N-site preference, calculated as δ¹⁵N²–δ¹⁵Nβ (filled squares) plotted with δ¹⁸O-N₂O vs. VSMOW (open squares) for comparison. The dotted horizontal lines mark the approximate upper and lower boundaries of the suboxic zone.
noise in the data, the average 15N-site preference was 19.8%, similar to the tropospheric value of 18.7 ± 2.2%, measured in air collected near the ground surface in Japan (Yoshida and Toyoda, 2000). The strong 15N-N_2O minimum at $\sigma_t = 15.85$ was present in both 15N2 and 15N$^\beta$, although it was considerably more pronounced in 15N$^\beta$. This yielded a sharp maximum in 15N-site preference at this depth, with a value of 46.5%, which coincided with the maximum in 18O. Site preference showed a positive linear correlation with 18O with a slope close to 1 ($R^2 = 0.72$) suggesting that the process that led to 18O enrichment also led to enrichment in 15N$^\beta$. In contrast, the correlations between 18O and 15N, 15Na and 15N$^\beta$ are all negative, suggesting the simultaneous action of two processes on the N_2O pool, one that introduces 15N-depleted nitrogen into N_2O, and another that consumes N_2O leaving the residual with greater 18O and site preference.

If consumption were the only process affecting the isotopic composition of N_2O in the Black Sea suboxic zone, we could treat the suboxic zone as a closed system and apply the Rayleigh fractionation model to evaluate isotope effects associated with N_2O removal (Mariotti et al., 1981). In this case, the isotope effects can be calculated from the slopes formed when each delta value is plotted against $-\ln(f)$, where f is the fraction of N_2O remaining. Fig. 5 shows 18O, bulk 15N, 15N-site preference, 15N2 and 15N$^\beta$ plotted as linear functions of $-\ln(f)$ for the density interval from $\sigma_t = 15.3$, the N_2O concentration maximum, to 15.85, the 15N-N_2O minimum. There is a strong, positive correlation between 18O and $-\ln(f)$ with a slope of 20.9 and an R^2 value close to 0.99. This implies that the reduction of N_2O yields a product that is depleted in 18O by 20.9% relative to the source N_2O, leaving the residual N_2O correspondingly enriched in 18O. Bulk 15N shows nearly the opposite trend, with a negative isotope effect of 18.2% ($R^2 = 0.99$), leaving residual N_2O depleted in 15N. This trend is enhanced in the end-position nitrogen: the isotope effect for 15N$^\beta$ is -28.0% ($R^2 = 0.96$) whereas the isotope effect for 15N2 is only -8.4% ($R^2 = 0.72$). This difference results in the 15N-site preference effect of 19.6% ($R^2 = 0.77$), similar in magnitude to the 18O isotope effect. It is difficult to imagine a bacterially mediated process that selectively consumes 15N-enriched N_2O causing a negative isotope effect: Barford et al. (1999) reported a positive bulk 15N isotope effect of 12.9 ± 2.6% for steady-state reduction of N_2O to N_2 by a typical denitrifier, *Paracoccus denitrificans*. Thus the assumptions of the Rayleigh model, that the Black Sea suboxic zone behaves like a closed system and that consumption is the only process affecting the isotopomer distributions of N_2O, are unlikely to be true. Instead, it is likely that the isotope effects inferred from the Black Sea data are the result of more than one reaction: a production process that yields N_2O depleted in 15N combined with a consumption process that selectively enriches the center position nitrogen in 15N and the oxygen in 18O.

Consumption that proceeds by attacking the N–O bond should yield residual N_2O with increased 18O and site preference because the presence of heavier isotopes increases bond strength. Yung and Miller (1997) showed that the relative bond strengths within isotopomers of N_2O vary inversely with their zero point vibrational energies, or ZPEs: 14N–14N–16O has the highest ZPE and thus the weakest bonds, followed by 15N–14N–18O, then 14N–14N–18O and then 14N–15N–16O. Thus regardless of the isotopic composition of the starting material, N_2O consumption should enhance the 18O and 15N of the residual (i.e. 14N–14N–16O is

![Fig. 5. Isotope values of N_2O from the suboxic zone at the center of the western gyre (from $\sigma_t = 15.3$ to 15.85) plotted against $-\ln(f)$, where f is the fraction of N_2O remaining. Open squares show 18O-N_2O, filled squares show 15N-site preference, filled circles show bulk 15N-N_2O, open triangles show 15N-N_2O, and filled triangles show 15N$^\beta$-N_2O. Results of linear regression analysis for each data set are shown as solid lines and linear equations with concomitant R^2 values: according to the Raleigh model, the slopes represent the isotopic fractions associated with N_2O consumption.](image-url)
consumed more readily than any other isotopomer), but this effect will be more pronounced in δ^{15}N$_a$ than δ^{15}N$_b$, leading to enhanced site preference. If we superimpose this consumption process onto a source of 15N-depleted N$_2$O, we can reproduce our measured isotope and isotopomer profiles. Since the net effect of N$_2$O consumption should be 15N-enrichment of the residual (e.g., Barford et al., 1999 reported a bulk 15N isotope effect of 12.9 \pm 2.6% for the steady-state reduction of N$_2$O), and we estimate an apparent 15N isotope effect of -18.2%, it is likely that the original N$_2$O produced in the suboxic zone of the Black Sea is more extremely depleted in 15N than our measurements reveal.

Both nitrification and denitrification produce N$_2$O that is depleted in 15N relative to its source material: Yoshida (1988) measured an isotope effect of more than 60% for N$_2$O production from ammonium by the soil nitrifier *Nitrosomonas europaea*; Casciotti (2002) estimated an analogous isotope effect of around 13% for the marine nitrifier, *Nitrosomonas marina*; and Barford et al. (1999) reported an isotope effect of 28.6 \pm 1.9% for the steady state production of N$_2$O from nitrate by the denitrifier, *Paracoccus denitrificans*. Let us first consider denitrification: at $s = 15.3$, bulk δ^{15}N-N$_2$O is 10.8% while δ^{15}NO$_3^-$ is -19% (Murray et al., 2005), a difference of -30%. This is within the range of uncertainty of the measured isotope effect for denitrification; however, the bulk δ^{15}N-N$_2$O value is likely to be an overestimate since it reflects combined isotope effects of production and consumption, and the isotope effect of consumption is strongly positive. Ammonium oxidation is a better candidate; measured δ^{15}NH$_4^+$ is 6% in the suboxic zone (Velinsky et al., 1991), and known isotope effects of N$_2$O production from ammonium range from 13% (Casciotti, 2002), which would be too small to yield δ^{15}N-N$_2$O of less than -10.8, to more than 60% (Yoshida, 1988), which would be adequate. Ammonium may be supplied by upward diffusion from the anoxic zone, where free ammonium is abundant (see Fig. 2), or by the remineralization of organic matter.

3.3. 15N uptake experiments

Results from the two 15N uptake experiments are summarized in Table 1. At $s = 15.3$, the uptake of 15N ammonium into N$_2$O was clearly apparent at 24 and 48 h, with additions that represented 2% and 4% of the ambient ammonium concentration resulting in δ^{15}N-N$_2$O values ranging from 220 to 620% vs. air N$_2$. The total concentration of N$_2$O

<table>
<thead>
<tr>
<th>Tracer added</th>
<th>Incubation time (h)</th>
<th>N$_2$O (nM)</th>
<th>δ^{15}N$_2$O (%)</th>
<th>15N in N$_2$O (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water from $s = 15.3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>24</td>
<td>11.8</td>
<td>5.2</td>
<td>87.4</td>
</tr>
<tr>
<td>2nM 15NH$_4$Cl</td>
<td>24</td>
<td>11.4</td>
<td>221.6</td>
<td>102.3</td>
</tr>
<tr>
<td>4nM 15NH$_4$Cl</td>
<td>24</td>
<td>8.1</td>
<td>621.9</td>
<td>96.4</td>
</tr>
<tr>
<td>None</td>
<td>48</td>
<td>11.8</td>
<td>4.4</td>
<td>87.3</td>
</tr>
<tr>
<td>2nM 15NH$_4$Cl</td>
<td>48</td>
<td>9.5</td>
<td>436.0</td>
<td>100.7</td>
</tr>
<tr>
<td>4nM 15NH$_4$Cl</td>
<td>48</td>
<td>9.6</td>
<td>541.1</td>
<td>108.9</td>
</tr>
<tr>
<td>Water from $s = 15.6$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>10.8</td>
<td>-0.2</td>
<td>79.4</td>
</tr>
<tr>
<td>None</td>
<td>24</td>
<td>9.8</td>
<td>-0.5</td>
<td>72.0</td>
</tr>
<tr>
<td>None</td>
<td>48</td>
<td>10.4</td>
<td>0.4</td>
<td>76.5</td>
</tr>
<tr>
<td>5nM K15NO$_2$</td>
<td>12</td>
<td>9.4</td>
<td>24.6</td>
<td>70.8</td>
</tr>
<tr>
<td>5nM K15NO$_2$</td>
<td>24</td>
<td>9.5</td>
<td>3.1</td>
<td>70.1</td>
</tr>
<tr>
<td>10nM K15NO$_2$</td>
<td>24</td>
<td>10.3</td>
<td>3.0</td>
<td>76.0</td>
</tr>
<tr>
<td>5nM K15NO$_2$</td>
<td>48</td>
<td>9.6</td>
<td>1.5</td>
<td>70.7</td>
</tr>
<tr>
<td>10nM K15NO$_2$</td>
<td>48</td>
<td>9.4</td>
<td>3.0</td>
<td>69.3</td>
</tr>
<tr>
<td>20nM 15NH$_4$Cl</td>
<td>12</td>
<td>10.9</td>
<td>178.7</td>
<td>94.5</td>
</tr>
<tr>
<td>40nM 15NH$_4$Cl</td>
<td>12</td>
<td>9.2</td>
<td>59.4</td>
<td>71.9</td>
</tr>
<tr>
<td>20nM 15NH$_4$Cl</td>
<td>24</td>
<td>10.4</td>
<td>54.5</td>
<td>80.6</td>
</tr>
<tr>
<td>40nM 15NH$_4$Cl</td>
<td>24</td>
<td>10.4</td>
<td>36.7</td>
<td>79.3</td>
</tr>
<tr>
<td>20nM 15NH$_4$Cl</td>
<td>48</td>
<td>10.6</td>
<td>129.5</td>
<td>88.0</td>
</tr>
<tr>
<td>40nM 15NH$_4$Cl</td>
<td>48</td>
<td>10.6</td>
<td>183.1</td>
<td>92.2</td>
</tr>
</tbody>
</table>
remained unchanged or declined slightly during the course of the experiment in treatments relative to controls (N\textsubscript{2}O concentration was 11.8 nM in both controls and ranged from 8.1 to 11.4 nM in the treatments) but the concentration of 15N in N\textsubscript{2}O increased in all four treatments (it is 87 pM in the controls and ranges from 96 to 109 pM in the treatments). If we ignore kinetic isotope effects and assume that the production of 15N-labeled N\textsubscript{2}O in our treatments above control levels represents 2% and 4% of the total N\textsubscript{2}O production in our treatments, then we can calculate N\textsubscript{2}O production rates from each treatment. They range from 110 to 370 pM d-1 or 110 to 370 nmol m-2 d-1, and are adequate to support the upward vertical flux of 147 nmol m-2 d-1 calculated from the concentration gradient.

The results of the tracer uptake experiment at \(\sigma_1 = 15.6\) were less straightforward. The incorporation of 15N-labeled ammonium into N\textsubscript{2}O was apparent in all ammonium treatments but did not increase consistently with time, appearing highest at 12 h, and lower at 24 and 48 h. This was likely caused either by natural heterogeneity in the discreet water samples collected for this experiment or an experimental artifact that enhanced growth in the 12-h bottle or inhibited growth in the 24- and 48-h bottles. The nitrite addition experiments also showed 15N uptake after 12 h, but not after 24 or 48 h. Concentration of N\textsubscript{2}O declined slightly in all but one treatment relative to the time zero value, yielding net N\textsubscript{2}O consumption. While we cannot quantify net production of N\textsubscript{2}O from this experiment, the elevated \(\delta^{15}N-\text{N}_2\text{O}\) values for all ammonium treatments and the 12-h nitrite treatments demonstrated that N\textsubscript{2}O can be produced in this environment by both ammonium oxidation and nitrite reduction, and that N\textsubscript{2}O is simultaneously produced and consumed. This finding supports the argument that the anomalous isotopomeric characteristics of N\textsubscript{2}O in the suboxic waters of the Black Sea are the result of simultaneous production and consumption processes.

3.4. Comparison with other low-oxygen environments

The low N\textsubscript{2}O concentration in the oxygen-depleted waters of the Black Sea is puzzling when compared to the much higher concentrations found in other low-oxygen environments, such as the shelf off western India (Naqvi et al., 2000), the eastern tropical North Pacific (Westley et al., 2001), and the eastern tropical South Pacific (Codispoti et al., 1992). The low N\textsubscript{2}O concentration in the Black Sea could be caused by lower production rates, higher consumption rates, or some combination of both. Since N\textsubscript{2}O production by nitrification and denitrification is tied to remineralization of organic matter, relatively low fluxes of organic matter from the Black Sea euphotic zone may cause low production of N\textsubscript{2}O. Burlakova et al. (2002) calculated particulate organic carbon fluxes from the euphotic zone to the oxygencline for data collected on nine cruises from 1988 to 1994. Their June 1989 value is 22 mg C m-2 d-1, which is similar to the average value of 29 mg C m-2 d-1 obtained from 5 yr of monthly sediment trap deployments at Station ALOHA in the oligotrophic subtropical North Pacific (Karl et al., 1996), and significantly lower than the organic carbon flux rates of 48–276 mg C m-2 d-1 for the eastern tropical South Pacific (Lipschultz et al., 1990 in Voss et al., 2001). Considerations of the stable isotope and isotopomeric characteristics of N\textsubscript{2}O at Station ALOHA yield a minimum estimate of 200±100 nmol m-2 d-1 for the flux due to in situ N\textsubscript{2}O production (Dore et al., 1998; Popp et al., 2002). This is essentially indistinguishable from our estimates of 147 nmol m-2 d-1 for N\textsubscript{2}O production in the Black Sea. Our results were obtained in June 2001; particulate organic carbon fluxes from the Black Sea euphotic zone are higher in the spring (e.g., Burlakova et al., 2002, report values of 57 and 47 mg C m-2 d-1 for March and April 1988, respectively), and it is possible that measurements performed shortly after a spring bloom would yield higher estimates of N\textsubscript{2}O production. This would lend support to the hypothesis that N\textsubscript{2}O production in the Black Sea is controlled by the supply of particulate organic matter.

The alternative hypothesis is that low N\textsubscript{2}O concentrations are maintained by high rates of N\textsubscript{2}O consumption in the Black Sea suboxic zone. Certainly the rapid declines in both nitrate and N\textsubscript{2}O concentrations within the suboxic zone are consistent with complete denitrification of all nitrogen oxides to dinitrogen gas. The simultaneous increase in \(\delta^{18}O-\text{N}_2\text{O}\) and \(\delta^{15}N\)-site preference with depth and decreasing N\textsubscript{2}O concentration provide evidence for a reduction reaction that attacks the N–O bond, since N\textsubscript{2}O molecules containing \(^{15}\text{N}–^{16}\text{O}\) bonds disappear at a greater rate than molecules containing either \(^{15}\text{N}–^{16}\text{O}\) or \(^{14}\text{N}–^{18}\text{O}\) bonds. However, denitrification alone cannot account for the full
isotopomeric signal: while 15N-site preference increases, bulk δ^{15}N-N$_2$O decreases, with the decrease more pronounced in δ^{15}N-N$_2$O (end position N), but also present in δ^{15}N2N$_2$O (central position N). To generate this signal requires the initial production of N$_2$O that is strongly depleted in δ^{15}N, which can then yield N$_2$O with high δ^{18}O-N$_2$O and 15N-site preference values following partial consumption by denitrification. The production of 15N-depleted N$_2$O appears to occur within the suboxic zone, where δ^{15}N-N$_2$O reaches a minimum, suggesting that its nitrogen source is not the rain of organic matter from the euphotic zone above but the diffusion of free ammonium from the anoxic zone below. This production is balanced by consumption due to denitrification, generating the low concentrations and distinct isotopomer characteristics of N$_2$O observed in the Black Sea suboxic zone. It is interesting to note that the only other species of nitrogen that shows a δ^{15}N minimum in the suboxic zone is nitrogen gas, and this isotopic feature has been attributed to in situ production of nitrogen gas by ammonium oxidation with nitrite as the oxidant (see Murray et al., 2005). 15N uptake experiments performed on water collected from $\sigma_1 = 15.6$ confirm the existence of pathways for the conversion of both ammonium and nitrite to N$_2$O, demonstrating the potential for simultaneous ammonium oxidation and denitrification in the middle of the suboxic zone.

4. Conclusions

In terms of N$_2$O cycling, the Black Sea appears significantly different from other marine low oxygen environments: unlike the eastern tropical South Pacific (Codispoti et al., 1992) and North Pacific (Westley et al., 2001) and the Arabian Sea (Naqvi et al., 1998), there is no significant accumulation of N$_2$O in the Black Sea oxycline. Our lowest value of δ^{15}N-N$_2$O ($-10.8 \pm 0.8\%$ vs. air N$_2$) is much lower than the lowest value for a marine environment reported to date (0.8% vs. air N$_2$ for upwelled waters in the Arabian Sea; Naqvi et al., 1998) and falls within the range of values reported for soil emissions: 0.1$\%$ to -25% vs. air N$_2$ (Kim and Craig, 1993) and 4.5$\%$ to -33.9% vs. air N$_2$ (Perez et al., 2000). However, the combination of very low δ^{15}N-N$_2$O with very high δ^{18}O-N$_2$O found in the Black Sea suboxic zone is unprecedented. The highest reported value of soil δ^{18}O-N$_2$O is 49$\%$ vs. VSMOW (Perez et al., 2000), much lower than our maximum value of $67.0 \pm 1.1\%$ vs. VSMOW. In general δ^{15}N-N$_2$O and δ^{18}O-N$_2$O covary in a positive manner in marine and terrestrial systems (Rahn and Wahlen, 2000). Here the additional information of 15N-site preference within N$_2$O proved invaluable, enabling us to distinguish between two processes affecting the N$_2$O pool, one that produces severely 15N-depleted N$_2$O and one that subsequently consumes this N$_2$O by attacking the N–O bond, leaving residual N$_2$O with high values of δ^{18}O-N$_2$O and 15N-site preference. Denitrification is the consumption process, and we have argued that the 15N-isotope effect of the production process is consistent with ammonium oxidation by nitrifiers and falls between the range of values measured for marine (Casciotti et al., 2003) and terrestrial (Yoshida, 1988) species of Nitrosomonas bacteria.

The difference in nitrous oxide dynamics between the Black Sea and other low-oxygen marine environments may simply result from the permanent presence of a high concentration of ammonium directly below the suboxic zone, providing a steady supply of substrate for ammonium oxidizing bacteria. The low-oxygen regions of the eastern tropical Pacific do not exhibit high concentrations of free ammonium (Codispoti and Christensen, 1985; Westley et al., 2001), and intense low-oxygen conditions over the South West Indian shelf are driven by seasonal upwelling and are thus transient. However, we cannot rule out the possibility that N$_2$O in the Black Sea is influenced by processes other than conventional nitrification and denitrification, such as the recently discovered activity of anaerobic ammonium oxidizers at the suboxic/anoxic interface (Kuyper et al., 2003), or the proposed coupling between the nitrogen and manganese redox cycles (Luther et al., 1997; Murray et al., 2002). While the Black Sea does not emerge from this research as an important source of N$_2$O to the troposphere, the highly unusual isotopomer distributions reported here challenge our current understanding of the production of N$_2$O by nitrification and denitrification. Future work in the Black Sea suboxic zone should explore other biotic and abiotic pathways of N$_2$O formation.

Acknowledgments

The authors thank Chief Scientist J.W. Murray for providing M.B. Westley with the opportunity to participate in the June 2001 cruise and for his
subsequent support and encouragement of this research. Captain George Silva and the crew of the R/V Knorr ensured a safe and productive cruise. S. Toyoda assisted in the isotopomer analysis at the Tokyo Institute of Technology and T.M. Rust assisted in the stable isotope analysis at the University of Hawaii. Funding was provided by NSF Grants OCE 9810640 to B.N. Popp, F.J. Sansone and E.A. Laws, and OCE-0240787 to B.N. Popp. NASA training Grant NGT-30207 to M.B. Westley and the Japan Science and Technology Corporation. During the preparation of this manuscript, M.B. Westley was supported by the National Oceanic and Atmospheric Administration’s Educational Partnership Program. This is SOEST contribution # 6833.

References

