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Phys. Rev. A 66, 051401(R) (2002).

35. E. A. Donley, N. R. Claussen, S. T. Thompson, C. E.
Wieman, Nature 417, 529 (2002).

36. D. Jaksch, C. Bruder, J. Cirac, C. Gardiner, P. Zoller,
Phys. Rev. Lett. 81, 3108 (1998).

37. M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, I.
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Anthropogenic CO2 Uptake by
the Ocean Based on the Global
Chlorofluorocarbon Data Set
Ben I. McNeil,1* Richard J. Matear,2 Robert M. Key,1

John L. Bullister,3 and Jorge L. Sarmiento1

We estimated the oceanic inventory of anthropogenic carbon dioxide (CO2)
from 1980 to 1999 using a technique based on the global chlorofluorocarbon
data set. Our analysis suggests that the ocean stored 14.8 petagrams of an-
thropogenic carbon from mid-1980 to mid-1989 and 17.9 petagrams of carbon
from mid-1990 to mid-1999, indicating an oceanwide net uptake of 1.6 and
2.0 � 0.4 petagrams of carbon per year, respectively. Our results provide an
upper limit on the solubility-driven anthropogenic CO2 flux into the ocean, and
they suggest that most ocean general circulation models are overestimating
oceanic anthropogenic CO2 uptake over the past two decades.

Despite improvements in our understanding of
the partitioning of anthropogenic CO2 between
the atmosphere, ocean, and terrestrial bio-
sphere, substantial uncertainties and insufficient
direct observational constraints continue. Re-
cent decadal-scale changes in oxygen concen-
trations that have been observed in the ocean (1,
2) imply large and uncertain corrections (3–5)
to the oceanic and terrestrial sinks for anthro-
pogenic CO2 that have been estimated based on
atmospheric O2/N2 observations (6, 7), which
was the method used in the 2001 report by the
Intergovernmental Panel on Climate Change
(8). Because the O2/N2 technique is based on
atmospheric observations, it inherently requires
assumptions regarding the partitioning of an-
thropogenic CO2 between the ocean and terres-
trial biosphere. Ocean general circulation mod-
els (OGCMs) currently simulate oceanic an-
thropogenic CO2 uptake, assuming a steady-
state circulation and biological production (9).
We present here an observational estimate of
the decadal inventory of anthropogenic CO2 in
the ocean based on the global chlorofluorocar-
bon (CFC) data set. Our estimates provide in-

dependent observational insights into the con-
temporary global carbon budget and provide a
framework that can be used for direct validation
of ocean model predictions.

The most direct way of estimating anthro-
pogenic CO2 accumulation in the ocean is to
compare dissolved inorganic carbon (DIC)
measurements made at one time with those
made later in the same region. To isolate the
long-term trend from changes due to natural
variability, DIC measurements along isopyc-
nal surfaces (10) can be compared, or multi-
ple linear regression (MLR) of DIC against
hydrographic properties (11) can be used
(Fig. 1C legend). Although these methods
provide direct evidence for regional anthro-
pogenic CO2 accumulation (10, 12, 13), they
currently cannot be used in the global context
because of the lack of adequate historical
DIC measurements.

Another way to estimate anthropogenic CO2

is to study the distribution of CFCs in the ocean.
The release of CFC-11 (CCl3F) and CFC-12
(CCl2F2) to the atmosphere began in the 1930s
and accelerated in the 1950s. CFCs are entirely
anthropogenic and biologically inert in the
ocean. The oceanic CFC distribution thus pro-
vides valuable information about the rates and
pathways of water mass ventilation processes
(14). As part of the World Ocean Circulation
Experiment (WOCE) carried out in the 1990s,
dissolved CFCs were measured with great ac-
curacy and unprecedented global resolution
(Fig. 2). The patterns of oceanic accumulation
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of CFCs and anthropogenic CO2 are quite dif-
ferent as a result of regional differences in car-
bonate chemistry, solubilities, and rates of air-
sea gas exchange. Concentrations of CFCs (Fig.
1A) are highest in the cold, high-latitude surface
ocean and decrease equatorward because of
lower solubility at warmer temperatures. Al-
though CO2 solubility also increases with colder
temperatures, the observed surface water accu-
mulation of anthropogenic CO2 shows a differ-
ent pattern (Fig. 1C), with the lowest concentra-
tions in the Southern Ocean and concentrations
increasing northward. This pattern is mainly due
to regional variations in sea surface alkalinity
(15). Because of lower alkalinity in surface wa-
ters, the Southern Ocean has less capacity to
accumulate anthropogenic CO2 for a given in-
crease in atmospheric CO2 than oceans that are
located farther north. Because of these regional
differences, the direct use of CFC concentra-

tions to infer anthropogenic CO2 accumulation
in the ocean is problematic.

The method used here is based on using
observed CFC concentrations to estimate water
“ages” (defined as the amount of time since the
parcel of water was last at the surface). These
age-based methods have been applied on a re-
gional scale (16, 17). However, they have yet to
be applied and validated on a global scale. The
conversion to water ages requires CFC, temper-
ature, and salinity measurements, along with
CFC solubility functions (18) and CFC atmo-
spheric histories (19). The ages used in this
study were calculated using the oceanic CFC-12
concentration and atmospheric observations
(20). The conversion from CFC-12 concentra-
tion to CFC age produces a tracer that normal-
izes the variations in the CFC-12 distribution
due to oceanic temperature and salinity distribu-
tions (Fig. 1B). Because of mixing, a water

parcel is composed of a distribution of transit
times since it was last in contact with the atmo-
sphere. The mean of these transit times (or ages)
is sometimes referred to as the ideal age (21).
Water ages estimated from CFC-12 (22, 23)
have been shown to reflect the mean transit time
(the ideal age) to within 25% for waters from 0
to 25 years old because of the quasilinear atmo-
spheric history of CFC-12 from 1970 to 1995
(23, 24). For older waters, CFC ages significant-
ly underestimate the ideal ages because of a
nonlinear mixing bias resulting from the expo-
nential increase of CFCs earlier than 1970 (23,
24). We focus on water with CFC ages younger
than 30 years, based on the good agreement with
independent direct anthropogenic CO2 estimates
in the Indian Ocean (Fig. 1) and Southern Ocean
(25) and the results from our modeling study.
The contribution of waters older than 30 years to
the decadal anthropogenic CO2 inventory has
only a modest impact on our estimates, as dis-
cussed below. We now combine our estimates
of water mass ages with the atmospheric CO2

history (26) and carbonate chemistry equilibri-
um equations (27) to calculate the change in
DIC in the ocean from one period (t1) to another
(t2) by using the equation

Canth�t2) – Canth(t1) �

DICeq �S, T, ALK0, f CO2(t2 – �)] –

DICeq �S, T, ALK0, f CO1(t1 – �)]

where Canth(t2) – Canth(t1) is the accumula-
tion of anthropogenic CO2 between year (t1)
and year (t2), DICeq is the equilibrium con-
centration of seawater with atmospheric CO2

concentration (f CO2) when the water parcel
was last at the surface (28), T is the temper-
ature, S is the salinity, ALK0 is the preformed
alkalinity (29), and � is the water parcel age
in years (30).

From the above equation, we can calculate
the change in DIC throughout the 1980s and
1990s. When a comparison is possible, the dec-
adal accumulation of anthropogenic CO2 that is
estimated with the CFC age method (Fig. 1D)
agrees well with direct observations that have
been obtained using the MLR technique (Fig.
1C). Using all available measurements in the
Indian Ocean, we use the CFC age method to
estimate a basinwide accumulation of 6 Pg of C
from 1978 to 1995, in agreement with the direct
MLR-based estimate of 6.1 � 1 Pg of C (12).
The accumulation between 20°S and 5°N was
1.5 Pg of C, also in good agreement with the
independent estimate from isopycnal analyses
of 1.64 Pg of C (10).

Although the CFC age technique reproduces
the observed decadal accumulation of anthropo-
genic CO2, we must carefully evaluate the main
assumptions in the CFC age technique: (i) that
CFC ages give a reasonable estimate of ideal
water mass ages, (ii) that CFCs and anthropo-
genic CO2 maintain similar saturation states at
the surface ocean, and (iii) that the air-sea CO2

Fig. 1. (A) Zonal mean CFC-12 concentrations (in pmol/kg) for the Indian Ocean. (B) Estimated
CFC-12 ages (years) for the Indian Ocean. (C) Zonal mean estimate of anthropogenic CO2 (in
�mol/kg) accumulation in the Indian Ocean from 1978 to 1995 made with the MLR method (12).
The MLR method involves regressing DIC against Geochemical Ocean Sections hydrographic data
from 1978 and applying the resulting regression to WOCE hydrographic data from 1995 to predict
DIC concentrations that would have been present without anthropogenic CO2 accumulation. The
difference between the measured DIC during WOCE and the DIC predicted from the regression is
the change in DIC due to anthropogenic CO2 from 1978 to 1995, corrected for changes in DIC due
to natural variability. (D) Zonal mean anthropogenic CO2 accumulation (in �mol/kg) for the same
period (1978 to 1995), estimated using the CFC age technique.
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disequilibrium does not change over the time
interval in question (31). To explore these com-
bined uncertainties, we used results from a sim-
ulation with an OGCM forced with the observed
atmospheric histories of CO2 and CFCs (32),
following the protocol of the Ocean Carbon
Model Intercomparison Project (9). By compar-
ing the simulated global anthropogenic CO2 in-
ventory from between 1980 and 1999 to those
computed using the CFC age method in the
model, we evaluated the potential biases in the
CFC age method. We found that the CFC age
method reproduces the simulated decadal an-
thropogenic CO2 inventory to within 10% (Fig.
3A). The Southern Ocean (south of 40°S) is the
region of greatest error, because the rapid ex-
change of surface waters with deep waters re-
sults in a violation of all three of the assump-
tions of the CFC age approach (Fig. 3B). How-
ever, the bias in the Southern Ocean may be
overestimated in the model, given the good
agreement between the observational CFC age
estimates and the direct estimates south of 40°S
(Fig. 1) (25). In any case, because the total
anthropogenic CO2 inventory in the Southern
Ocean is small, the biases in this region have
little effect on our global inventory estimates.
An important factor in the relatively small bias
in estimating the decadal anthropogenic CO2

inventory using CFC ages is the relatively linear
atmospheric histories between CFCs and CO2

from 1970 to 1990 (19, 26). Any mixing effects
that result in biases in the CFC age estimation
for young waters (23, 24) will have a similar
impact for anthropogenic CO2 and will result in
a relatively small bias when the CFC age meth-
od is used to infer decadal anthropogenic CO2 in
the ocean.

The decadal accumulation of anthropo-
genic CO2 shows a similar pattern in each
ocean (Fig. 4). The lowest values are found in
the Southern Ocean (south of 40°S) and the
equatorial regions (10°S to 10°N), associated
with the upwelling of old water to the surface
(12, 13). The largest inventories are found in
the southern subtropical gyre (20° to 40°S)
and in the North Atlantic, where anthropo-
genic CO2 penetrates throughout the water
column, consistent with penetration of North
Atlantic Deep Water.

The global inventory (33) is estimated to be
14.8 Pg of C from mid-1980 to mid-1989 and
17.9 Pg of C from mid-1990 to mid-1999, with
the Pacific (�46%) and Atlantic (�35%) con-
tributing the most (Table 1). These estimates
imply an average uptake rate of 1.6 � 0.4 and
2.0 � 0.4 Pg of C per year for the 1980s and
1990s (34).

The CFC age method assumes a steady-
state ocean, whereas both models and recent
observations (1, 2) suggest that the ocean may
be changing as a result of global warming.
CFCs were added to the model described above
(1, 32) to evaluate climate change impacts on
the CFC age–derived estimates of anthropogen-

Fig. 2. Global distribution of CFC measurements used for this study and taken as part of the WOCE
(see http://whpo.ucsd.edu).
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Fig. 3. (A) The change in
global inventory of an-
thropogenic CO2 from
1980 to 1999 simulated
in the CSIRO model
(black line) compared
with the model invento-
ry in waters with an age
younger than 30 years
(red line) and the inven-
tory change calculated
using the CFC age tech-
nique for waters young-
er than 30 years (data
points). From 1 June
1980 to 1 June 1999,
the total simulated an-
thropogenic CO2 inven-
tory change is 32.8 Pg of
C. In waters younger
than 30 years, the inven-
tory change is 27.8 Pg of
C. The CFC age tech-
nique gives an inventory
change of 30.1 Pg of C
for waters younger than
30 years, overestimating
the inventory change in
waters younger than 30
years by 2.3 Pg of C be-
cause of age biases and
air-sea exchange as-
sumptions (data points
versus red line), but
missing the 5 Pg of C
inventory in waters old-
er than 30 years. These
partially cancel to give a
reasonably consistent
estimate of the decadal
anthropogenic CO2 inventory (�10%) in the model. (B) Fractional error in the water column inventory of
anthropogenic CO2 from 1980 to 1999 calculated from the CFC ages as compared to the simulated
inventory of anthropogenic CO2 in themodel. Negative values indicate that the CFC age estimate is too high.
This plot highlights the regions with most bias in using the CFC age technique from our model analysis. In
the Southern Ocean, analysis of observations south of 40°S (Fig. 1) (25) shows that the model is most likely
overestimating the extent of the bias based on the CFC age approach.
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ic CO2 accumulation (35). We compared the
change in anthropogenic accumulation for the
period from 1980 to 1999 that was estimated
from the CFC simulation with and without
climate change. As the ocean warms and be-
comes more stratified because of global warm-
ing, CFC transport into the ocean slows, which
results in older water masses remaining in the
ocean interior. From the model simulations,
climate change reduces the oceanic uptake dur-
ing the 1990s by less than 1% relative to a
simulation that neglects this process. Hence, the
potential error associated with climate change is
small enough to neglect.

The CFC age technique used here explicitly
addresses the abiotic solubility-driven anthropo-
genic CO2 flux into the ocean and is indepen-
dent of other observational estimates of anthro-
pogenic CO2 uptake. The assumptions used for
our observational estimate here are exactly the
same as those used to estimate anthropogenic
CO2 from models (36). The potential biases in
the CFC age technique result in an overestima-

tion of the anthropogenic storage in the ocean
and can therefore provide a firm upper limit on
anthropogenic CO2 uptake in the ocean. How-
ever, our estimates only include waters younger
than 30 years and will therefore miss the anthro-
pogenic CO2 inventory in older waters. To de-
termine the likely contribution of waters older
than 30 years, we used the results from the
OGCM and also from the direct observations of
Sabine et al. (12). Based on the model (Fig. 3),
the anthropogenic CO2 inventory for waters old-
er than 30 years is about 18% of the total from
1980 to 1999 and only 5% using the direct
observations reported by Sabine et al. (12). If
we take the model results as the upper bound
and add the contribution to our estimates, then
the absolute maximum net oceanic solubility-
driven anthropogenic CO2 flux from 1980 to
1999 is about 39 Pg of C, corresponding to 1.9
and 2.3 Pg of C per year for the past two
decades. In a recent intercomparison project of

12 international models that simulate anthropo-
genic CO2 uptake (37), three models are close to
this observational upper limit [Princeton Uni-
versity in Princeton, New Jersey (PRINCE), the
Lawrence Livermore National Laboratory in
California (LLNL), and the Commonwealth
Scientific and Industrial Research Organisation
in Hobart, Australia (CSIRO)], whereas the
majority of models overestimated the uptake
of anthropogenic CO2 during the past two
decades (Table 2). The reason for this is not
clear and requires closer regional examination
in the models.
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Satellite Observations of
Magnetic Fields Due to

Ocean Tidal Flow
Robert H. Tyler,1* Stefan Maus,2 Hermann Lühr2

The ocean is an electrically conducting fluid that generates secondary magnetic
fields as it flows through Earth’s main magnetic field. Extracting ocean flow
signals from remote observations has become possible with the current gen-
eration of satellites measuring Earth’s magnetic field. Here, we consider the
magnetic fields generated by the ocean lunar semidiurnal (M2) tide and dem-
onstrate that magnetic fields of oceanic origin can be clearly identified in
satellite observations.

In a fully magnetohydrodynamic process, the
flow and electromagnetic fields are coupled. In
the ocean, however, flow generates electromag-
netic fields but the electromagnetic fields are not
thought to affect the flow appreciably. This
reduced magnetohydrodynamic case is often
called “motional induction” and can be under-
stood as follows. The dissolved salts in seawater
form hydrated, electrically charged ions. As the
charged ions are carried by the ocean flow
through Earth’s main magnetic field, they are
deflected by the Lorentz force, which acts in a
direction perpendicular to both the velocity and
magnetic field. This leads to various combina-
tions of two effects. First, the migrating ions can
accumulate to form electrical spatial charge den-
sities that in turn create electric fields that tend
to prevent further migration of charge. Second,
the spatial charge densities can be relieved by
electrical shorting through surrounding sections
of the water or electrically conducting sedi-
ments. The latter effect involves electrical cur-
rents and the associated secondary magnetic
fields, which are the subject of this paper.

Two components of the ocean-generated
magnetic field can be distinguished. The first is
a “toroidal” component that has been estimated
to reach maximum amplitudes of 100 nT but is
confined to the ocean and sediments and is
therefore not observable remotely (1–5). This
component results from electric current circuits
closing in planes containing the vertical axis.
The second is a much weaker (1 to 10 nT)
“poloidal” component with large spatial decay
scales that allow the magnetic fields to reach
remote land and satellite locations (4, 6–10).
This component involves electric current cir-
cuits closing horizontally and is the least under-
stood because it is generated by large-scale
integrals of ocean flow transport and estimates
typically require large-domain integrations.

But this dependence of the far-reaching
poloidal magnetic fields on transport integrals
also makes these fields attractive. In principle,
information about past and present ocean vari-
ability is contained in the land and satellite
magnetic records, and this variability would pri-
marily reflect integrated transport quantities (in-
cluding in ice-covered regions) that are difficult
to obtain using other methods (11). Understand-
ing such ocean variability is a key factor in
addressing climate and global change concerns,
and although an assessment of the potential for
exploiting the magnetic fields in this way is
beyond the scope of this paper, here we describe
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