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Improvements to the Algorithm for Computing CO, Transmissivities and
Cooling Rates

M. DANIEL SCHWARZKOPF AND STEPHEN B. FELS

Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, New Jersey

A new interpolation algorithm is derived for obtaining CO, 15-um transmissivities at any pressure
from tables of transmission functions at standard pressures. The new method is a revision of the
Fels-Schwarzkopf (1981) technique. Improvements to the standard transmissivity tables are also dis-
cussed. An extension of these methods to calculate transmissivities at CO, concentrations other than

those used for the tables is described.

1. INTRODUCTION

Fels and Schwarzkopf [1981] (hereinafter referred to as FS)
have published a method for the efficient and accurate calcula-
tion of CO, 15-um band transmissivities and cooling rates. In
this approach, transmission functions are precomputed using a
detailed line-by-line procedure on a fixed pressure grid for
three standard temperature profiles at CO, mixing ratios of
330 and 660 ppmv. An interpolation scheme is provided to
allow the determination of transmissivities, for each temper-
ature profile, at any two pressures p and p'. A further interpo-
lation obtains the transmissivity at any specified temperature
profile. Cooling rates may be computed from these transmis-
sivities after correcting for the variation of the Planck function
across the width of the 15-um band.

Since their publication the tables and algorithms of FS have
been used for a number of different purposes: (1) as was orig-
inally envisioned, for the calculation of cooling rates in gener-
al circulation models; (2) for calculating radiative damping
rates for waves of various scales in the stratosphere; and (3) as
a reference standard for various more highly parameterized
calculations.

All of these applications require the accurate computation
of transmissivities at arbitrary pressures by means of an inter-
polation scheme. Our own experience, and that of other users,
has shown that an improvement of this interpolation scheme
would be desirable, especially for uses which require transmis-
sivities for small paths. It is also clear that the utility of the
method for all purposes would be enhanced if it could be used
at arbitrary mixing ratios rather than only at the standard
330- and 660-ppmv cases. Finally, it is obvious that the line-
by-line calculations ought to make use of the best available
spectroscopic data.

In light of the above considerations, we have completely
revised both the precomputed tables of transmission functions
and the method of interpolating these to user-defined pres-
sures. In addition, we have developed a procedure for com-
puting transmissivities at concentrations other than those of
the tables. It is the purpose of this short paper to describe
these improvements.

2. CHANGES TO THE PRECALCULATED
TRANSMISSIVITY TABLES
2.1. Changes in Line Data

The line-by-line calculations of FS include 19 bands of the
CO, fundamental and 8 isotopic bands, comprising about
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3800 lines (see Table 7 of FS). In this revision we have includ-
ed all CO, lines listed in the 1980 Air Force Geophysics Lab-
oratory compilation [Rothman, 1981]. Lines less than 0.01
cm™! apart in frequency are combined, with a weighted line
width and a summed line strength being employed. The total
number of lines thus becomes about 12,500.

Line-by-line (LBL) computations using the revised data are
performed exactly as in the work of FS. We note, in particular,
that all lines are cut off at a distance of 3 cm~! from the line
center; the effects of this assumption, as well as a comparison
with experimental data [Gryvnak et al, 1976; Gryvnak and
Burch,.1978] have been reported by FS (p. 1226). The actual
choice of the cutoff value is not critical; our results, as pub-
lished in the WMO .intercomparison of radiation codes
[World Climate Programme, 1984] agree closely with those of
other investigators, despite the adoption of different formu-
lations of the cutoff. For example, downward fluxes at the
surface computed by the various investigators agree to within
2%. In a future paper we will discuss our LBL results in
greater detail.

Results of these revised calculations show a fractional in-
crease in absorption of about 1% at pressures of 10-100 mbar
and increases of lesser amounts at other pressures. This result
is consistent with random model calculations discussed by FS.

2.2. Changes in the Transmissivity Tables

For each standard temperature sounding, two tables of
transmissivities were employed by FS. The upper table was
used to interpolate between any two user-defined pressures
whenever both such pressures were less than or equal to 10
mbar; the lower table was used in all other cases. This ap-
proach introduces inaccuracies in the computation of trans-
missivities between two pressures when the larger pressure is
greater than 10 mbar and the smaller is less, since the lower
transmission function table, on a coarse pressure grid, must be
employed. As an indication of the error, the difference in
transmissivities between 10 mbar and the top of the atmo-
sphere using the upper and lower tables is 0.000004. Although
this number is rather small, one should note that the effect on
heating rates near 10 mbar is larger; the fractional error in
heating rates will equal this error divided by the change in the
transmission function, a considerably larger quantity.

In this revision we have calculated all transmissivities on
one pressure grid, thus eliminating the error described above.
The smallest nonzero pressure for which transmissivities are
calculated is 0.001 mbar. Fifteen pressure levels are included
for each tenfold increase of pressure, spaced evenly in the
logarithm of pressure. For pressures between 100 and 1000
mbar, 30 pressure levels are included, similarly spaced. Two
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pressure levels greater than 1000 mbar are included. The tem-
perature profile used in these calculations is the U.S. Standard
Atmosphere (1976), as smoothed using the procedure de-
scribed by S. B. Fels (manuscript in preparation, 1985), with
the temperature taken to be the mass-averaged temperature
between two standard pressure levels. Above the mesopause
an isothermal profile is used. Table 1 is a complete list of the
standard temperatures, pressures and geometric heights em-
ployed. Unlike those of FS, the temperature profiles for all
standard CO, concentrations are identical.

The choice of this pressure scale is prompted by several
considerations. First, the pressures are spaced an equal frac-
tion of a scale height apart at all altitudes. Above 100 mbar,
each level is ~0.15 scale height or ~ 1 km apart. Disturbances
with wavelengths greater than ~ 6 km will be directly resolved
by this grid. This resolution is sufficient for the most impor-
tant waves in the middle atmosphere. (The interpolation
scheme to be described will produce transmissivities for
smaller intervals between pressure levels.) By contrast, the
pressure grid of FS is unevenly spaced in scale height. Second,
the accuracy of interpolation is improved. For large paths,
CO, absorption is observed to be proportional to the loga-
rithm of absorber amount [Howard et al., 1956]; hence trans-
missivities between a reference pressure level and other pres-
sure levels spaced logarithmically will vary approximately lin-
early.

In addition, the lower limit of pressures has been raised to
0.001 mbar, corresponding to a geometric height of ~93 km.
The number of levels above the mesopause has been increased
from 2 to 15, permitting more accurate calculations in those
regions. At the lowest pressures the transmissivities obtained
approach those calculated in the weak line limit (see Figure 1).

2.3.

The transmissivity tables defined by FS contain precompu-
ted “Planck-weighted” transmission functions defined as

Unweighted Transmissivities

up, p'; 250) = ffv@, P)B,(250) dv / f B,(250)dv (1)

The integration has been performed (in finite difference form)
over the entire 15-um band (taken to be from 500 to 850
cm™!) using 10-cm~! frequency intervals. B,(250) is the
Planck function evaluated at 250 K. For comparison with
experimental or other computational procedures it is useful to
have available the unweighted transmission function

1
=% Jn(m p) dv @

The integral is computed in the same manner as in (1). In this
revision we have provided the user with tables of both the
Planck-weighted and the unweighted transmissivities. The in-
terpolation method discussed in section 3 applies equally to
both types of transmissivities.

24. Cooling Rates

Planck-weighted transmissivities have been employed to
obtain cooling rates for the standard temperature and pres-
sure profile. The CO, mixing ratio is taken as 330 ppmv, and
the atmosphere is assumed to be in local thermodynamic equi-
librium (LTE). The right-hand column of Table 1 gives cool-
ing rates for the 108 levels of the pressure grid. These values
differ somewhat from those given by FS (Table 12) at 49.5,
53.0, and 56.5 km, primarily owing to thé different standard

temperature profile adopted for this revision. Above ~70 km,

these cooling rates became inaccurate owing to the LTE as-
sumption.
3. THE INTERPOLATION ALGORITHM

3.1. The General Scheme

A completely new interpolation algorithm for obtaining t(p,
p’) at user-defined levels has been constructed for use with the
revised tables. The new scheme is better than that used by FS
in two important respects: (1) it produces more accurate re-
sults in the case that Ap=|p — p’| is small in comparison
with the average pressure p, and (2) it yields a smoother inter-
polation and insures that 1(p, p') decreases with increasing Ap.

In this method we construct an analytic function A(p, p), an
approximation to the actual absorptivity a(p, p') = 1 — o(p, p').
When evaluated on the standard pressure grid, this gives a set
of values A(p;, pj). We denote by E(p, p) the difference a(p;,
pj) — A(p;, p)). This difference function should be both small
and smooth, since A(p, p') has been constructed to include as
nearly as possible the nonlinearities of a(p, p’). It is therefore
possible to compute E(p, p’) from the relevant values of E(p,,
p;) by means of a quadratic interpolation. The interpolated
absorptivity may then be evaluated as

alp, p) = E(p, p') + A(p, p)) (&)

The most important aspect of this scheme is the specifi-
cation of A(p, p). In the appendix we obtain the following
expression for A(p, p):

A(p, P) = {C(p) log [1 + X(p)U(p, p')*-*°1}"® @)

where

Ap'™p +p' +5)
np +p' +5) + Apth=D

In (4) and (5), U(p, p') is a path function which, roughly speak-
ing, corresponds to the pressure-weighted absorber amount
between p and p'. C(p), X(p), y(p), and n(p) are empirical coef-
ficients which are not functions of the path; consequently they
may be precomputed for the standard pressures given in Table
1, then evaluated at p by linear interpolation. We also assume
p>p’ and have defined the numerical constants and coef-
ficients so that all pressures are expressed in mbar. The
choices of these constants and of the empirical coefficients in
(4) and (5) are designed to correspond to various experimental
constraints, as is discussed in the appendix.

Two important observations should be made at this point.
First, we emphasize that the user wishing to apply our method
need not be concerned with the detailed derivations of (4) and
(5) given in the appendix. Second, the approximation formulas
are derived to be most accurate in the special circumstances of
small Ap with widely varying p and should not be used gener-
ally as a method for estimation of transmissivities. In fact,
fractional errors of up to 30% have been obtained by the
direct application of (4) and (5) to compute absorptivities on
the 41-level pressure grid discussed in section 5.

Ulp, p) = ®)

3.2. Application to Closely Spaced Pressures

In certain situations the user may desire transmissivities
between two pressures more closely spaced than the standard
pressure grid. More precisely, if we let p, p’ be the user-
specified pressures and p(i), p(j) be the corresponding standard
pressures for which

M)<p  pi+D)>p
<y pi+D)>p
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TABLE 1. Standard Pressures (in Millibars) and Temperatures TABLE 1. (continued)
Used to Compute the CO, Transmissivity Tables - g
Cooling
Cooling Index Pressure, Temperature, Height, Rate,
Index Pressure, Temperature, Height, Rate, i mbar K : km degd!
' b K k d-! : : v
P we s el 2173 2 0w
. g .1 -0.52
1 0 » 216.8
186.9 —2847 74 63.1 5167 192 046
: 000117 b e  C12¥ 75 736 3667 1822 —041
" 0.00136 186.9 91'2 —10.39 76 85.8 216.7 172 —034
5 0.00158 1862 90.8 —8.57 77 100.0 216.7 162 Z030
6 0.00185 186.9 0.0 —6.90 78 108.0 216.7 15.7 —027
7 0.00215 1869 89.1 —i 79 1166 216.7 152 —024
8 0.00251 187.0 88.2 =391 80 1259 216.7 14.8 -021
- 187.0 - —2.53 81 1359 143 E
9 0.00293 187.1 87.4 _132 216.7 : 0.18
10 0.00341 1876 86.5 “ost 82 146.8 216.7 138 -0.15
11 000398 jgs7 85.6 Z059 8 158.5 2167 133 —o012
12 0.00464 190'3 84.8 —0.98 84 171.1 216.7 . 12.8 —0.08
13 0.00541 ' 839 : 85 184.8 216.7 123 —004
14 0.00631 19200 g0 Sy 86 199.5 2167 118 0.02
15 0.00736 193.1 82.1 wi 87 2154 2171 113 0.10
17 00100 }ggg 80'§ —i-;‘; 89 2512 226 103 —~002
y : ) -1 90 ' 2712 ! 9.8 —0.06
b o0 208 B T e ;o 295 93 o
20 0.0158 202.6 775 — 187 2 3162 2326 8.8 -0.11
21 00185 2044 766  _ios 3 1.5 236.0 8.3 -0.12
5 prest 206.3 Iy —1.94 94 368.7 239.6 7.8 —-0.13
3 0.0251 2081 7‘51'7 —19% 95 398.1 243.0 72 -0.14
24 0.0293 210.0 7. —-1.96 96 4299 246.6 6.7 ~0.15
25 0.0341 s Ly ~194 7 4042 25022 6.1 -0.16
% 00398 2139 g i %8 s012 2539 6 016
27 0.0464 216.3 208 —2.08 99 541.2 257.6 50 —0.17
28 0.0541 2189 69.8 —234 100 5843 261.4 44 -0.18
29 0'0631 2217 g -2.60 101 631.0 265.3 3.8 —0.18
30 00736 12245 gg'; ‘ —284 102 681.3 © 2692 32 —0.18
y 2273 ‘ -3.06 103 7356 26 — 0.1
31 0.0858 66.7 273.1 . 0:19
3 0.100 2302 656 —-327 104 794.3 2772 20 —0.19
33 0117 233.1 645 —-348 105 857.7 2812 14 —020
34 0‘136 236.1 63. —3.68 106 926.1 285.4 0.7 —021
35 0.158 239.1 62‘2 —390 107 1000.0 289.6 0.1 —023
36 o1ss . 24! 61.3 Y 108 1079.8 2938 -05 -0.33
245.2 ’ —4.37 109 1165.9 295.9 —-1.2 .
37 0215 248.3 60.1 —4.65 . :
38 0.251 2514 59.0 —497 The geometric height of the pressure levels is given in kilometers.
39 0.293 254.6 57.8 —5.35 Cooling rates for this sounding with a CO, concentration of 330
40 0.341 2578 56.7 —5.79 ppmv are given in the right-hand column.
41 0.398 2611 55.5 —631
42 D464 264.4 543 ~6.96
43 0.541 267.6 53.1 —172 we now have p(i) = p(j). The relevant values of E, E[p(i), p(i)]
4 0.631 269.9 51.9 —824  and E[p(i + 1), p(i + 1)] both equal zero; thus E(p, p') = 0.
:2 8;22 270.6 2(9)2 —8.09 According to (3), a(p, p’) = A(p, p’) in this case.
47 1.000 gzgg 432 —;28 The absorptivity calculation for these closely spaced layers
48 117 267.6 46.9 :6'93 is thus performed entirely by the use of the approximation
49 1.36 264.4 45.7 —6.04 function of (4) and (5). Therefore the approximation function
2(1) }?5; 261.2 44.5 -5.30 needs to be highly accurate for these small values of absorber:
ps 215 2579 :3; —4.70 amount. In the appendix we show that the approximation
5 551 gg?; 410 :‘;;g function is accurate to within 8% for a large range of mean
54 293 2483 399 -337 pressures.
i- 55 341 245.2 38.7 —-3.03
56 3.22 2422 37.6 —272 4. CHANGES TO COMPUTATION OF COOLING RATES
57 4, 36.5 -
58 5.41 ggg; 354 _g‘;‘; 4.1. Layer Transmissivities
- 23 2gé 2332 ggg -191 The interpolated transmissivities derived in section 3, as
61 8.58 230.5 322 _}g; well as those of FS, are “point” transmissivities, i.e., the trans-
62 10.00 %ggg 31.2 o 1' 48 missivity between two specific pressures for a given inhomoge-
63 117 2 30.2 1, neous path. These transmissivities are most useful for com-
2262 ; 144 : : ; or cor
g‘; igg 225.1 gg} —1.38 parison with experimental data or with transmissivities
66 185 2241 271 —130  derived by other techniques, such as random models. On the
67 21.5 ggi 26.1 _ }3 other hand, the quantity required for computation of heating
68 25.1 211 25.1 —1.03 rates at pressure p is '
69 29.3 ’ 24.1 Y
70 41 220.1 21 093 P 6B(p)
: 219.2 . —082 - -[(p" p) dp’
n 3938 2182 221 —071 =0 Op
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TABLE 2. Exact and Computed (in Parentheses) Values for the Absorptivity a(0, p; T) for Various
Values of Pressure and Temperature

Temperature, K

Pressure,
mbar 175 200 225 250 275 300 325
0.001 0.000166 0.000171 0.000173 0.000174 0.000175 0.000175 0.000175
(0.000168)  (0.000172)  (0.000173)  (0.000174) (0.000174) (0.000174)  (0.000174)
0.01 0.000463 0.000474 0.000479 0.000481 0.000482 0.000482 0.000481
(0.000464)  (0.000474)  (0.000479)  (0.000481)  (0.000481) (0.000481)  (0.000481)
0.1 0.001589 0.001623 0.001640 0.001648 0.001650 0.001649 0.001646
(0.001589)  (0.001624) (0.001640) (0.001648) (0.001648) (0.001648) (0.001648)
1 0.007688 0.007854 0.007937 0.007975 0.007986 0.007983 0.007972
(0.007689)  (0.007858) (0.007936) (0.007975)  (0.007975)  (0.007975)  (0.007975)
10 0.042523 0.043425 0.043874 0.044070 0.044124 0.044098 0.044029
(0.042493)  (0.043427)  (0.043860) (0.044073)  (0.044073) (0.044073) (0.044073)
100 0.205366 0.209503 0.211530 0.212381 0.212576 0.212406 0.212039
(0.204780)  (0.209280) (0.211367) (0.212392) (0.212392) (0.212392)  (0.212392)
315 0.318477 0.324613 0.327661 0.328983 0.329337 0.329150 0.328668
(0.317209)  (0.324179)  (0.327411)  (0.329000)  (0.329000)  (0.329000)  (0.329000)
1000 0.486218 0.494840 0.499374 0.501588 0.502473 0.502593 0.502279
(0.483637)  (0.494264) (0.499192) (0.501615) (0.501615) (0.501615)  (0.501615)

By = —0.525 x 10™*, B, = —0.178 x-10~3, B, = —0.110 x 10", and B, = —0.679 x 10"

where B is the Planck function. In finite difference form this
requires the evaluation of 7., (¢, p), where this quantity
reépresents the transmissivity between pressure p and a layer
whose average pressure is p'. If the pressure layer around p’ is
at a very different pressure than p, this layer transmissivity
Tiayer (P’ p) differs little from the point transmissivity (p’, p).
On the other hand, if p’ = p, the point transmissivity is unity
and the layer mean transmissivity is always significantly
smaller than 1.
The quantity to be computed may be written as

1 p+A/2
Tlayer(plf P) == f

A p—A/2

op”, p) dp” (©)
where A is the difference between the pressures at the top and
bottom of the pressure layer. In the new scheme these layer
transmissivitiés may be obtained directly.

The computer program provided to the user allows him to
select the option of computing either point transmissivities or
layer transmissivities. The layer transmissivities are obtained
by a four-point quadrature using Simpson’s rule, each evalu-
ation of 7(p”, p) having been done by means of the interpola-
tion scheme of section 3. For a nearby layer case, where more
care is required, a 50-point trapezoidal rule integration is per-
formed.

4.2. Correction for the Width of the
15-um Band

A two-step method has been proposed by FS (section 2e) to
incorporate the effect of the broad width of the 15-um band
on computation of transmissivities for heating rates. This
method involves (1) a precomputation of Planck-weighted
transmissivities using equation (1) and (2) correction of these
transmissivities for the actual temperature at pressure p by
means of a correction function F(T) which is assumed to be
pressure independent.

In this revision we have retained this basic method. How-
ever, to determine the correction function, we have reevalua-
ted (p, p’; T) for a wider range of temperatures and pressures
than was done by FS. We have found that (1) the use of a
pressure-independent correction function is justifiable for pres-
sures ranging from 1073 to 10° mbar and (2) the correction
function used by FS gives erroneous transmissivities for tem-

peratures below 200 K. Consequently, a new formulation for
the correction function has been derived:

up, p'; T) = op, p'; 250) + F(T)[1 — (p, p'; 250)] (7a)

F(T) = By + By(T — 250) + B,(T — 250)
+ By(T — 250)°

F(T)=Bs T 250

T <25  (7b)

(7c)

The coefficients B,, B,, B,, and B, are obtained by means of
a least squares fit; B,, which should equal zero, is negligibly
small. Table 2 shows these coefficients as well as predicted and
actual transmissivities for 7(0, p; T) for various values of p and
T.

5. APPLICATION TO NONSTANDARD CO, MIXING RATIOS

The interpolation algorithm described in the previous sec-
tions requires the use of a table of CO, transmissivities at a
standard CO, mixing ratio. As a result, interpolated transmis-
sivities using our methods may only be obtained at these fixed
CO, concentrations.

To remedy this shortcoming, we have devised a method
enabling the computation of the transmissivity t(p, p’; r) be-
tween any two specified pressures at CO, mixing ratio r by
using the transmission function tables at the neighboring stan-
dard mixing ratios r;, and r,. If the specified pressures are
included in the standard pressure grid of Table 1, the interpo-
lation algorithms of sections 3 and 4 may then be applied as
before to compute transmissivities at user-defined pressures.

We first observe that for a given temperature path, the
transmissivity ©(p,, p,; r,) depends primarily on the average
pressure p and on the CO, absorber amount rAp/g between p,
and p,. Consequently, the transmissivity at a different con-
centration (p, p’; r) will approximately equal z(p,, p,; ),
provided that p and (rAp/g) remain unchanged. These con-
straints lead to the following relations:

Pi+p=p+p (8a)
/) (pr—P))=pP—P (8b)

(In the above relations we assume that p > p’ and r, > r. The
latter inequality insures that p, and p, are never outside the
range of the largest and smallest values of p and p’.)
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In practice, p and p’ are specified, either by the user or as
the standard pressures of Table 1. Consequently we use (8a)
and (8b) to obtain the pressures p, and p, for which ©(p,, p,;
r,) is approximately equal to t(p, p’; r). We therefore obtain a
first estimate for t(p, p’; r) by employing the interpolation
algorithm to obtain (p,, p,; ;) and setting t“°™(p, p’; r) =
©(p1, p2; 1y). The error due to this first approximation is re-
markably small; as an illustration, transmissivities on the
standard pressure grid have been computed for the CO, con-
centration of 495 ppmv using both the above method and the
“exact” line-by-line technique. The fractional errors in absorp-
tivity are always less than 2% and for most pressures are less
than 1%.

A refinement of this procedure that allows use of the trans-
mission functions at r/, where r/ < r < r,, may be employed
to improve accuracy, especially when r ~ r,. To do so, we
compute the error (p, p’; r,) — 1 (p, p’; r,) obtained
through use of the basic procedure. We now assume that this
error varies linearly with (r —r,), and add this error to the
previously computed value of 7(p, p’; r) to obtain our final
answer. We may therefore write the approximation for non-
standard CO, concentrations as

(r s r)
(rs - rs’)

[, P 1) — ™, )] (9)

wp, p's r) = 1" p, p'; ) +

wherer/ <r<r,

This method may therefore be applied for any CO, con-
centration for which tabulated CO, transmissivities exist at
concentrations greater and less than the given concentration.
With this refinement the fractional errors in absorptivity for
the 495-ppmv CO, mixing ratio case decrease to less than 1%
for all pressures, with the typical error being less than 0.5%.

6. VALIDATION OF THE ALGORITHM

We have computed by two approaches transmissivities for
CO, concentrations of 330 ppmv on the 41-level pressure grid
described in Table 2 of FS. This grid has pressures from 1000
to 10~ 2 mbar, fairly evenly spaced in geopotential height. The
methods are (1) direct calculation and (2) the interpolation
method of sections 3 and 4. Table 3 is the difference, in parts
per thousand, in the absorptivity computed by each method.
Point transmissivities have been used in this calculation. It is
seen that the differences are never greater than 0.2%. A more
stringent test is the comparison of Curtis matrix elements de-
fined through the relation, H; = ) B;C;;, where H, is the cool-
ing rate due to the 15-um band at pressure p; and the sum is
over all pressure levels. Table 4 is the difference in parts per
thousand in the Curtis matrix elements computed on the
above pressure grid. Again, the differences are small; errors
are generally under 1%.

7. SUMMARY OF AVAILABLE TABLES

The authors will send a magnetic tape containing tables of
line-by-line transmissivities and a program for computing in-
terpolated transmissivities to any user upon request. The
tables include 15-um CO, transmissivities at concentrations of
330, 660, and 1320 ppmv. These are given with and .without
Planck weighting, enabling the user to select the transmissivi-
ties appropriate to his purpose. The interpolation program
contains detailed documentation; at the user’s option, either
point or layer transmissivities may be compnted.

The authors hope to update the line-by-line transmissivities
periodically as better values for line strengths and widths
become available. Also, the methods described in this paper
will be applied to other bands, especially the CO, 10-um com-
plex.

APPENDIX: CONSTRUCTION OF THE ANALYTIC
FuNcTIiON

Al. Constraints on the Function

The analytic function A(p, p’) defined in (4) and (5) has been
constructed to represent, as closely as possible, the behavior of
the actual CO, absorptivity a(p, p’) over a wide range of ab-
sorber amounts and pressures. (By actual CO, absorptivity we
mean the 15-um band CO, absorptivity computed by means
of the line-by-line method discussed in section 2.) The choice
of the functional form was motivated by the differing require-
ments for accuracy in various ranges of absorber amounts and
pressures and by the need for simplicity, to permit rapid com-
putation of transmissivities by this method.

As was indicated in section 3, the analytic function actually
serves two rather different roles, depending on whether or not
the pressure levels p and p’ specified by the user are more
closely spaced than the standard pressure levels. If they are,
the analytic absorptivities A(p, p’) are used directly to compute
a(p, p); consequently the analytic function must be highly
accurate. Yet it is precisely when Ap=|p — p’| is much
smaller -than the mean pressure p between p and p’ that the
needed accuracy is most difficult to attain. The problem in this
case is that the transmissivity t(p, p) varies nonlinearly with p
and p’ whenever Ap/p is small. In addition, the variation of (p,
p’) with Ap depends strongly on p: as p increases from very
small values, the CO, absorption lines pass from the Doppler
regime to the nonoverlapped Lorentz regime and finally into
the strongly overlapped limit. The need for accuracy is under-
scored by the fact that the largest contribution to the heating
rate at pressure level p normally comes from the nearby pres-
sure layers whose transmissivities have been evaluated
through -use of the analytic function. An additional compli-
cation in the case of small-absorber-path situations is that as
Ap— 0, the absorptivity as computed by the analytic function
should tend to the weak line limit and be linear in absorber
amount for all pressures p. If the analytic function does not
incorporate this weak line limit, fractional errors in absorp-
tivity computed by this approach will rise uncontrollably as
Ap— 0.

If the pressure layers p and p’ are more widely spaced than
the standard pressure levels, A(p, p’) becomes an interpolator
between appropriate values of a(p;, p; which have been pre-
computed using the LBL approach. In this situation the chief
burden for accuracy is on the precomputed absorptivities, not
the analytic function. Specifically, the analytic function is not
required to possess the dependence on the logarithm of ab-
sorber amount given by experiment [Howard et al., 1956]. It is
important, however, that A(p, p) vary smoothly for large Ap/p
and that the analytically computed absorptivity increase
monotonically as Ap increases.

In light of the above considerations, it is important to know
the actual absorptivities for the small-path cases. To obtain
these, we have computed LBL absorptivities for small paths
over a wide range of p. Details of the results are found in
subsection A2. Using these' results, we have constructed a
function which (1) gives a close match to the LBL absorp-
tivities for small paths, (2) approaches the correct weak line
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limit as Ap— 0, and (3) becomes a smooth function for inter-
polation in the case of large Ap. Details of this procedure are
in subsection A3.

A2. Line-by-Line Absorptivities in the
Small-Path Case

Line-by-line absorptivities have been computed for seven
cases using the method described in section 2 and, in more
detail, in the work of FS. In each case, one layer of the stan-
dard pressure grid was divided into 100 layers, each having
the same mass and temperature. Transmissivities were com-
puted between these narrowly spaced levels. The lowest pres-
sure p,, i, the lower of the two pressures on the standard
pressure grid, was set at 0.01, 0.1, 1, 10, 100, ~ 315, and 1000
mbar for the successive experiments These calculations have
the effect of extending to ~0.0015 scale height the transmis-
sivity calculations of section 2 at the specified pressures.

The results of these runs provide seven curves relating ab-
sorptivity to absorber amount. In Figure 1 we plot the loga-
rithm of absorptance between the lowest pressure level and
the other pressure levels (log a(p’, p,) versus the logarithm of
the corresponding absorber mass, normalized by the absorber
mass between successive levels of the standard pressure grid
(log [m(p’, p)/m(p,+ 1, p)]). For convenience, Figure 2 displays
the relation between absorptivity (a(p’, p) versus the same
normalized absorber amount.

Inspection of Figures 1 and 2 reveals a number of distinct
regimes. When p, is ~315 or 1000 mbar, the absorption is
nearly proportional to the logarithm of absorber mass, partic-
ularly for the largest values of Ap. This result is consistent
with experimental results [Howard et al., 1956; Gryvnak et al.,
1976] on larger paths. For smaller pressures it appears that
log a(p', p) is, to a good approximation, proportional to log
(Ap), and thus a(p’, p;) oc (Ap)*. The exponent k appears to be
very nearly 0.55 for the cases where p, is between 1 and 100
mbar. If p, is 0.01 mbar, to a good approximation, a(p’, p;) oc

ABSORPTION:VS PRESSURE: FOR: NEARBY LAYER CASES
—— 1.4 7 ™
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Fig. 1. Line-by-line absorptivities as a function of absorber
masses for the seven small-path cases described in the appendix. The
ordinate is log,, a(p,, p, + Ap), with p, = 0.01, 0.1, 1, 10, 100, 315, and
1000 mbar. The abscissa is log,, (Ap/Ap,) where Ap, = p,,, — p, for
each case; the values of all pressures are given in Table 1. The respec-
tive cases are designated as 1, 2, 3,4, 5,6, and 7.
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Fig. 2. The same as Figure 1, but with the ordinate being a(p, p,
: + Ap).

(Ap)°-°*® for very small Ap, and a oc (Ap)®*” for the larger
values of Ap. ”

It is worthwhile to examine whether or not these complex
relationships could be anticipated from simple theoretical con-
siderations. First, we note that the very low mass and pressure
absorption curves, for which the absorption is almost pro-
portional to Ap, represent the onset of the weak line limit. The
deviations from linearity are presumably caused by the influ-
ence of a few CO, lines not totally in this limit. On the other
hand, the absorption curves at 315 and 1000 mbar represent
the strongly overlapped Lorentz regime. In this situation it
may be shown [see Tiwari, 1978] that absorptivity does tend
to be proportional to the logarithm of absorber amount.

The remaining cases lie in the transitional region between
weak line and logarithmic behavior. For mean pressures of
%30 mbar, individual CO, lines may be taken to be nonover-
lapped Lorentzian lines. In this situation we are in the large-
path limit, so that we expect a oc (pAp)°->. For smaller pres-
sures, the individual lines enter the Doppler regime. In this
case, as is shown by Fels [1984, p. 1759], the relation between
absorptivity and absorber amount depends crucially on the
actual distribution of CO, line strengths; as is discussed in
that paper, a realistic choice of the distribution, for those
strengths contributing most to the absorption at the particular
mass, leads to a dependence of the absorption on approxi-
mately the square root of absorber mass, or a oc (Ap)°-*. These
estimates are close to the measured dependence. In a future
note we intend to discuss in greater detail the significance of
the deviations from these theoretical expectations.

A3. Determination of the Analytic Function

The above results indicate that our analytic function A(p, p')
for absorptivity should be constrained to approach the follow-
ing limits: -

1. In the Doppler regime, A(p, p’) oc Ap for very small Ap,
and A(p, p) o< (Ap)’ for large Ap, with j being slightly less than
0.5,

2. In the nonoverlapped Lorentz regime, A(p, p’) oc (PAp)*,
with k somewhat greater than 0.5,

3. In the overlapped Lorentz regime, A(p, p’) oc [log
(pAp)]', with [ near 1.0.
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We may simplify the above relations by defining a single
path function U(p, p’) whose value is proportional to Ap in the
Doppler limit and to pAp in the Lorentz limit. This path
function, roughly speaking, corresponds to the pressure-
weighted absorber amount between p and p'.

As was mentioned earlier, the analytic function must not
only be accurate for small Ap/p, conforming to the constraints
of the preceding discussion, but also serve as an interpolation
for large Ap/p. A functional form encompassing both purposes
is given by

A(p, p) = {C(p) log [1 + X(P)U(p, P)’T}" (A1)

In (A1), C and X are empirical coefficients which are not
functions of the path and are taken to be functions of the
pressure at p. Their function is to permit use of the analytic
function as an interpolator.

Equation (A1) has the following desirable limits: when
X(P)U(p, p)>» 1,

A(p, p) c [log U(p, p)]""
when X(p)U(p, p') « 1,

A(p, p') o< U(p, p') (A2b)

The experimental constraints given at the beginning of this
section may then be satisfied if (1) U(p, p') oc (pAp) in the
Lorentz regime, for both large and small Ap; (2) U(p, p') oc Ap
in the Doppler regime, with relatively large Ap; and (3) U(p,
p’) oc (Ap)'”" in the Doppler regime, with small Ap.

In this third case, moreover, we may determine the constant
of proportionality by requiring that the absorptivity for very
small Ap be equal to that obtained in the theoretical weak line
limit:

(A2a)

rdAp S
g Av

, S
Alp, p‘) =my-= (A3)
(In the above equation, r is the CO, mixing ratio, d is the
diffusivity factor, g is the gravitational constant, and S is the
summed CO, line intensities over the frequency range Av.)
Equating (A3) and (A1), under the constraint of (A2b), we
obtain the path function in the weak line limit

Ulp, ) = ™ (ap)” (a0
with
1= (%) tewxen (Adt)
gAv ‘

The remaining task is the determination of the actual form
of U(p, p'), subject to the above limits. After some experimen-
tation, the following expression has been obtained:

(Ap)""(p + p’ + core)
n(p + p’ + core) + Apt/?= b

U, p) = (A5)
In (AS), “core” is a parameter determining the limit of the
Doppler and Lorentz regimes; i.e., the Doppler regime is that
for which core >(p + p’). The above relation reduces to the
weak line expression of (Ada) if Ap!“/?~ U« y(p + p’ + core).
On the other hand, if n(p + p’ + core) « Ap!*/?~11 then U(p,
p) =~ Ap(p + p’ + core), and therefore U(p, p') = Ap(p + p') in
the Lorentz regime, and U(p, p’) ~ Ap(core) in the Doppler
regime. The three constraints on U(p, p') are thus satisfied by
the definition of U(p, p’) in (A5).

The remaining task is the specification of the experimental
parameters core, 7, and 6 and the evaluation of C, X, and 7.
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After considerable experimentation, the following values of
core, y, and & have been adopted:

core =5 (A6a)
6 =090 (A6b)
5 p? —0.25
y(p) = 0.505 + (2 x 10™°)p + 0.035 —W (A6c)

with p expressed in millibars. According to (A6c), y(p) varies
between 0.56 at p = 1000 mbar and 047 at p = 10~3 mbar.
The change is approximately linear in p but is more rapid near
1 mbar, where the transition from Lorentz to Doppler profile
takes place.

The values of 6 and y(p) chosen above lead to a long-path
limit of A(p, p') oc log (pAp)' with [ of ~0.6 rather than unity.
We have chosen these values because they result in the most
accurate computations of transmissivities in the case of large
pressures and small absorber amounts. When absorber
amounts become comparable to m(p,, p, . ,), the accuracy using
the present values of & and y is almost identical to that ob-
tained with | of ~1.0. There are two reasons for this. First, as
m(p', p)— m(p,+,, p), the approximation function is con-
strained to become exact, and therefore any choice of y and
will not introduce error. Second, when m(p’, p,) is much less
than m(p,, ,, p), an absorption formula of the form a oc log
(PAp)' is, in practice, rather insensitive to the value of /, provid-
ed that / lies between 0.5 and 1.0.

An iterative procedure is used to determine C, X, and # on
the standard pressure grid. A first guess is taken for #(p;), and
C(p) and X(p;) are computed by using (A1) with the following
conditions:

A(pi» pi-1) = alp;, pi-1)
A(ps, pi-2) = alpy, pi-2)

A new value for 7(p;) is obtained using (A4b), and the pro-
cedure is repeated until C(p,), X(p;), and 5(p;) converge.
The use of (A4b) to compute 5 involves a number of con-

ERROR, INTERP METHOD VS PRESSURE , 1XCO2 NEARBY LAYER CASES
20
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Fig. 3. Fractional error (a(interp) — a(LBL/a(LBL)) using the new
interpolation algorithm for the seven small-path cases described in
the appendix. A CO, mixing ratio of 330 ppmv is used. The cases are
numbered as in Figure 1.
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Fig. 4. Same as Figure 3; with a CO, mixing ratio of 660 ppmv
emplayed.

siderations. First, n is a function of the CO, mixing ratio. In
addition, the summed CO, line strength is assumed constant
at all temperatures, a valid assumption for the 15-um band in
the 500-850 cm™! frequency band. The diffusivity factor d,
which may vary between 1.66 and 2.00, has been fixed at 2.00
to provide good agreement between line-by-line and com-
puted absorptivities in the weak line limit.

Equation (A1) has been employed to compute absorptivities
for each of the seven small-path cases described earlier in
section A2. Figure 3 displays the fractional error obtained in
each case with the CO, mixing ratio of 330 ppmv; Figure 4

gives corresponding results for a 660-ppmv CO, mixing ratio.
In every case the fractional errors are under 8%. These errors
are sufficiently small to justify use of this formulation for small
paths over a wide range of mean pressures.
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