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ABSTRACT

An analytic model is formulated to study the characteristics of shear instabilities in meridionally and vertically
sheared flows. The model is based on the quasigeostrophic equations in two layers. The layers are divided into
sections of piecewise uniform potential vorticity. An algebraic dispersion relation is obtained for the complex
phase speed ¢. The magnitude and the sign of the potential vorticity jumps, their meridional separation, the
barotropic shear, and the wavenumber of the modes determine the stability of the system. Solutions describe
not only pure baroclinic and barotropic instabilities, but also mixtures of these instabilities. The influences of
linearly sheared barotropic flows on baroclinic instability are studied in detail, with an emphasis on the direction
of vertically integrated momentum flux. The model’s implications for the nonlinear life cycle of baroclinic

waves are also discussed.

1. Introduction

Our understanding of linear barotropic and baro-
clinic instabilities is based largely on models in which
the basic state varies in only one dimension. That the
atmospheric flow has meridional, vertical, and, to a
lesser extent, zonal variations complicates the stability
analysis. Eigenvalue problems linearized about the
zonally averaged, climatological mean state are non-
separable in height and latitude and involve singular-
ities at critical levels. To simplify the analysis, it is often
assumed that the flow variation along the second di-
mension is small (Pedlosky 1964; McIntyre 1970; Held
and Andrews 1983) or slow compared with the scale
of the disturbance (i.e., the WKB approximation;
Ioannou and Lindzen 1986). Unfortunately, these as-
sumptions are hard to justify from observation. For
example, the meridional scale of baroclinic eddies is
often comparable to that of the westerly jet in which
they are embedded (Stone 1969). Numerical tech-
niques for two-dimensional eigenvalue problems
(Moore and Peltier 1987; Lin and Pierrechumbert
1988), on the other hand, are often expensive and im-
practical for covering a wide range of parameter space.
Consequently, few useful models have been available
to date for elucidating the general stability of two-di-
mensional flows.

In this paper, we present a linear analysis of a highly
simplified mathematical model of meridionally and
vertically varying flows to illustrate the behavior of in-
stabilities in such environments. For this purpose, the
flow is divided into sections of uniform but distinct
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quasigeostrophic pseudo-potential vorticity (PV) and
the solutions are matched across the PV discontinuities.
The model, formulated in the next section, not only
allows analytic solutions for pure baroclinic and baro-
tropic instabilities (section 3), but also applies to more
general cases where the instabilities grow under merid-
ional and vertical shears. To demonstrate the model’s
versatility, the stability of baroclinic waves is analyzed
for the case where a constant barotropic shear (section
4) and a linearly sheared jet (section 5) are added to
the basic state. The changes in the growth rates and
modal structure due to the barotropic shear are ex-
amined, with special emphasis on the direction of the
vertically integrated momentum flux. The model’s im-
plications for the nonlinear life cycle of baroclinic
waves are also discussed by comparing the analysis with
independent nonlinear life-cycle simulations of baro-
clinic waves.

2. The model

The remarkable success of Eady’s model (1949 ) and
Phillips’ two-layer model (1954) of baroclinic insta-
bility suggests that a limited number of discrete modes
(two in these models) are enough to describe the ru-
dimentary nature of shear instability. While two dis-
crete vertical modes (edge waves) lead to baroclinic
instability, two meridional modes resonate to produce
barotropic instability under certain conditions.! When

! The “resonance” of modes as an instability mechanism is not
restricted to the rotational (Rossby) modes, but also applies to di-
vergent (gravity) modes, which gives rise to, for example, Kelvin-
Helmbholtz instability. For a recent development in the theory, see
Hayashi and Young ( 1987) and Sakai ( 1989).
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the zonal-mean flow varies in two dimensions, insta-
bilities are likely to arise from meridional and vertical
interactions among modes. Hence in the model de-
scribed below, we retain two vertically discrete modes
as well as two meridionally discrete modes, for a total
of four, to allow such nonseparable interaction. (In
section 5, the number of meridional modes will be in-
creased to three.) We shall see that in addition to the
pure baroclinic and barotropic instabilities, the model
is capable of describing more general classes of insta-
bility.

A horizontally infinite, quasigeostrophic two-layer
model with equal layer depths H/2 is divided into three
regions in the meridional direction (Fig. 1). The
quasigeostrophic pseudo-potential vorticity of the basic
state is assumed to be uniform within each section,
defined by a layer and a region, but can be discontin-
uous across the two vertical interfaces at y = +L/2
(and across the layer interface, which does not affect
the quasigeostrophic dynamics since the vertical ad-
vection of the PV is neglected ). Such discontinuity can
be formed by discontinuous gradients in the zonal
wind, as shall be illustrated later. The dynamics of the
system is governed by the four PV discontinuities that
generate four independent modes. When the PV jumps
or delta-function meridional “gradients” include both
signs, the flow can be unstable according to the Ray-
leigh-Kuo theorem (Fig. la), the Charney-Stern
theorem (Fig. 1b), or both (Fig. 1c).

The basic-state PV, Q, has no meridional gradient
within each section due to uniformity. Hence, assuming
the f-plane approximation,

dQ, d*Uu, 1

=l — - = 2.1
& 5 +M(Ul U,)=0 (2.1a)
dQ, _ _d'Up 1 .. .

& = a2 I3 (U —U,)=0, (2.1b)

where subscripts 1 and 2 denote quantities in the upper
and lower layers, respectively; U,(y) is the zonal ve-
locity, and Ly is the internal Rossby radius of defor-
mation. The notation is standard (e.g., Pedlosky 1987)
unless otherwise stated.
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If we introduce barotropic and baroclinic compo-
nents of U as

u=22 L g =B g
then, from (2.1a) and (2.1b),
Us(y) = ay + b;
Uc(y) = aexp(y/Lc) + Bexp(—y/Lc), (2.3)

where a, b, a, 8 are constants and Lo = Lg/V2. Thus,
the uniform PV in the two-layer model requires that
the barotropic component of the flow be linear and
the baroclinic component (thermal wind) be exponen-
tial in y. Restrictive as it may seem, (2.3) turns out to
be quite adequate for the illustrative purpose of the
present study. The shape of the mean flow will be given
in the subsequent sections.

Superposed on the mean flow is a normal-mode per-
turbation of the form

Yn(x, v, 1) = Yn(y) exp{ik(x — ct)}; n

1, 2.
(2.4)

The uniform basic-state PV allows a perturbation
whose PV is exactly zero in each section:

S A R
o2 2 W —¢)=0 (2.5a)
0%, oW, 1 B
92 ay? + E W —¢r) =0, (2.5b)

where ¢ is the perturbation streamfunction. Substitut-
ing (2.4) in (2.5), and defining the barotropic and
baroclinic components as

fﬁBEb;—%; ics‘p‘—;ﬁ, (2.6)

one can rearrange (2.5) as
¥a(y) = Aexp(—ky) + Cexp(ky)  (2.7a)
Yc(y) = Bexp(—Ky) + D exp(Ky), (2.7b)

m u 1 m n I m o I
S v+ v . m2
2 ;¢ . .+ H2
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FiG. 1. Design of piecewise uniform PV model in two layers. The meridional PV discontinuities

are indicated by their signs. (a) QI > QV < 0}, 0¥ > Q¥ < 0}, (b) OV < @ < 0},
I~ 0¥ < O3, where Q is the basic-state PV.
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where

K*=k*>+ LZ, (2.8)
and A, B, C, and D are the complex constants that are
to be determined simultaneously with the complex
phase speed c.

We require that the amplitude of the modes vanish
at y = +o0. Hence,

A=B=0 y<-L/2 (2.9a)

C=D=0 y=L/2 (2.9v)

To be consistent with (2.9), the baroclinic wind Uc
must also vanish at y = to0:

lim Uc(y) =

Yyt

(2.10)
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and ageostrophic parts). For this to be satisfied, it is
required that

¥n() '
d an ( dU, ) be continuous across

(U=

y=+xL/2 (n=1,2). (2.11)

The second condition in (2.11), which enforces the
continuity in the ageostrophic meridional wind and
brings about the time independence to the problem, is
obtained by collecting terms in the momentum equa-
tion to the first order in the Rossby number. Alterna-
tively, it can be obtained by integrating the quasigeo-
strophic PV equation across the discontinuity. Both
(U, — ¢) and ¢, are continuous across y = £L/2 but
f — dU,/dy and dy,/dy are not. It is convenient to
rewrite (2.11) in terms of barotropic and baroclinic
components defined in (2.6):

The matching conditions at the interfaces require the ¥(¥), ¥c(y) continuous across y = £L/2,
continuity in the meridional winds (both geostrophic (2.12a)
d du, e dUc -
-t - B
continuous across y = *xL/2. (2.12b)
dysg dU, d: au
Ucd—;—_c‘\bs*'(UB—c)%‘*'(f B)\//c

The equations (2.7a, b) and the boundary conditions
(2.9) (2.12) constitute an eigenvalue problem. The 13
unknowns, that is, four coefficients in (2.7) for three
regions plus the complex phase speed ¢, shall be de-
termined by the 12 independent boundary conditions
(2.9) and (2.12), except for the arbitrariness in the
amplitude of the mode. Due to the four time-dependent
matching conditions (2.12b), the resultant dispersion
relation will be generally quartic in c.

Once the eigenvalues and the meridional structure
of the streamfunctions are obtained, the profiles of me-
ridional heat and momentum fluxes can be computed.
The heat flux is

2 - a) - [‘”" ‘/’c}

= (C.D; — CiDk exp{(k + K)y}
+ (A,D; — A;D,)k exp {(K ~ k)y}
+ (C,B; — CiB)k exp{—(K — k)y}
+ (A,B; — A;B,)k X exp{—(k + K)y},

(2.13)

where the overbar denotes zonal averaging, and the
subscripts r and i denote the real and imaginary parts
of the complex coefficients, respectively. To give the
dimension of heat flux, multiply (2.13) by (fofo)/(gH),
where 6, is the mean potential temperature. If the mode
consists of either barotropic or baroclinic component
alone, sothat 4 = C = 0 or B = D = 0, no vertical tilt
appears in the modal structure and the heat flux van-
ishes identically. The vertically integrated momentum
flux is

_Widh Ko, (s N | e Hc
dx dy dx dy ox ady dx ady

= 2k{k(C,A; — CiA,) + K(D,B; — D;B,)}. (2.14)

If the meridional structure of the mode is symmetric
or antisymmetric within a region, or (4, B) = +(C,
D), the momentum flux vanishes identically. (There
is no coherent meridional tilt.) Note also that the mo-
mentum flux does not depend on y within a region,
and is identically zero in the two semi-infinite regions
by virtue of (2.9). Both heat and momentum fluxes
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vanish when the mode is neutral, so 4, B, C, and D
are all real.

The discontinuities in the momentum flux and in
the PV across an interface (y = y,) are related by

(T — (@) = d"”" (Ol — 0u)
2 |yo
Izl'jc’"’"', (O™ = Qul™), n=1,2, (215)

where 7 is the meridional displacement of the interface
and d,/dt = 9/0t + U,3/dx. The jump in the vertically
integrated momentum flux is simply the sum of (2.15)
over the two layers. It follows that if the PV disconti-
nuity at an interface does not change sign between the
two layers, the net momentum flux jump has the same
sign as the PV discontinuity as long as the mode is
growing. If, on the other hand, the PV discontinuity
has opposite sign in the two layers, the discontinuity
in the vertically integrated momentum flux can take
either sign depending on the vertical structure of the
mode (Held 1975).

3. Barotropic and baroclinic instabilities

Now consider a basic flow given by

Up(y)=b(y —L/2)+ aL/2
Uc(y) = Uy cosh(L/2L¢) L/i2<y
Xexp{—(y—L/2)/Lc}
Usly) = ay } —L/2<y<Lj2 (3.1)
Uc(y) = Up cosh(y/Lc)
Us(y) =b(y+L/2)—aL/2

Uc(y) = Up cosh(L/2L¢)

Xexp{(y+L/2)/Lc}

which satisfies (2.3) and (2.10). The geometry of this
flow is sketched in Fig. 2. The sign and magnitude of
the PV discontinuities at y = +1./2 are determined by
the discontinuities in the vorticity associated with the
barotropic and baroclinic components of the flow,
namely

d=a—b and e=(Uy/Lc)exp(L/2Le). (3.2)

The PV discontinuities associated with the barotropic
component at y = £L/2 have equal strength but op-
posite sign, £4, satisfying the usual necessary condition
for barotropic instability. The PV discontinuities in
the baroclinic component are equal at y = +£L/2 in
each layer, but have opposite sign in the two layers,
satisfying the necessary condition for baroclinic insta-
bility. The polarity of the four PV discontinuities cor-
responds to Fig. la when 6 > ¢ > 0, and to Fig. 1b

y<-—-L/2,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 3

when ¢ > 6 > 0.2 The flow is uniquely determined
when a, §, ¢, and L are given.

A perturbation streamfunction is sought in the form
of (2.7) in each region. Using (2.9) and (2.12), one
obtains four simultaneous equations for the four coef-
ficients for the inner region (—L/2 <y < L/2)

pc+q ) R T
—s pc—gq T R
r t Pc+ Q S
t r ) Pc—Q
Cexp(kL/2)
Aexp(kL/2) | _
X\ Dexp(krs2y | =% B3
B exp(KL/2)
and a dispersion relation
A= (wtwm+ WIW T+ Y Z + 27 Z7)c?
+zZZ - wW Wz ZT—w W) =0, (34)

where c is the complex phase speed. For the expression
of parameters appearing in (3.3) and (3.4), refer to
appendix A. Notice (3.4) is the result of vanishing de-
terminant of the coefficient matrix in (3.3). Since (3.4)
is quadratic in c?, it can be solved analytically. The
problem can be uniquely solved given the four flow
parameters, 6, a, L, ¢, and the wavenumber k. We start
our analysis with some special cases characterized by
a subset of these parameters to elucidate the basic dy-
namics included in the system.

a. No baroclinic flow

In the absence of baroclinic component of the flow
or Uy = 0, it follows from appendix A that ¢ = z*
=z =Z"=Z7Z"=0,and thus (3.4) simplifies to

(=ww )= WW™)=0 (3.5)

Vanishing of the first factor in the lhs yields a pair of
barotropic modes (whose structure in the upper layer
1s identical with that in the lower layer), and the second
factor corresponds to the internal or equivalent baro-
tropic modes (the upper- and lower-layer structures are
antiphase). The barotropic modes are identical with
those found in the single-layer system (e.g., Garner et
al. 1992), while the stratification is crucial to the in-
ternal modes. Since the two types of modes are decou-
pled, there is no vertical tilt in the modal structure;
therefore, instability, if any, must be sustained baro-
tropically. The barotropic modes yield a growing/
damping pair when w*w™ < 0, while the internal

2 This flow does not support the PV configuration like Fig. 1c. For
flows corresponding to Flg Ic, jumps in 3U/dy must have opposite
signaty = +L/2.
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P = e -G 7 '
K I
L,E 7\

FIG. 2. Typical unstable flow profile of the model. (a) Barotropic component of the flow. (b)
Baroclinic component of the flow. (¢) Upper- and lower-layer flows. The associated PV jumps
at the kinks are labeled. Note U, = U + U, U, = Up — Ug.

modes become unstable when W*W ™ < 0. It is easy
to show that these inequalities are realized only when
da = (a — b)a > 0, which is a paraphrase of Fjertoft’s
(1950) theorem.

Figure 3 shows the growth rates of barotropic and
internal modes as a function of nondimensional wave-
number kL and the meridional separation of the PV
discontinuities L/Lg, for the case of zero barotropic
shear outside y = +L/2 (b = 0 or § = a). The growth
rates are normalized by 4. This isolated shear layer ap-
pears widely in the literature (Rayleigh 1880; Eady
1949; Gill 1982, §13.6). For cases with nonzero b, see
Garner et al. (1992). The barotropic modes are unsta-
ble over a wide range of wavenumber spectrum when

E BAROTROPIC/BAROTROPIC

the meridional separation is small, but unstable only
at large scales when the meridional separation is large.
The internal modes, on the other hand, are stable at
all wavenumbers beyond certain meridional separation.
The normalized growth rates of the barotropic modes
are a function of kL only. The shortwave cutoff and
maximum growth occur at

(kL),= 12784 and (kL),,=0.7968, (3.6)
respectively. Similarly, the cutoff wavelengths for the
internal modes are given by

(KL), = 1.2784, (3.7)

GROWTH RATE BAROTROPIC/REVERSED

T 1 T T T T T T T 1

WAVE NUMBER kLr

T T H T T T T T T T T T T

WAVE NUMBER kLr

FIG. 3 . Growth rate of barotropic instability with zero vorticity in the outer regions, as a function of zonal wavenumber
and meridional separation. Both scales are normalized by the internal Rossby radius Lg, and the growth rate is normalized
by the inner barotropic shear a. (a) Barotropic mode. (b) Internal (or equivalent barotropic) mode.
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but their growth rates depend also on k/K. Since the
minimum possible value for Kis L' at k= 0[(2.8)],
the internal modes are stable for all wavenumbers when

L > 1.2784 L. = 0.9040 Lg. (3.8)

The meridional penetration scale for the internal
modes (which consists only of the baroclinic compo-
nent y¥¢) is X' [(2.7)], thus limited to an internal
Rossby radius from the PV discontinuity. Since the
penetration radius of the unstable modes must be
comparable to the distance between the PV disconti-
nuities, the internal modes cannot be unstable if the
separation of the discontinuities exceeds the Rossby
radius. The penetration scale for the barotropic modes,
on the other hand, is k™!, which allows the modes to
adjust the wavelength to maintain instability for all
values of L. The growth rates of the internal modes
are generally smaller than those of the barotropic modes
for the same wavenumber and flow parameters, but
they converge in the shortwave limit.

b. No barotropic flow

When there is no barotropic flow (a = b = 0), it
followsa=6=w*=w"= W* = W~ =(, simplifying
(3.4) to

(2—z*Z*Wc?—z"Z7)=0. (3.9)

Vanishing of the first factor in the lhs represents a pair
of modes with symmetric meridional structure about

GROWTH RATE BAROCLINIC/SYMMETRIC
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y = 0 (in streamfunction ), whereas the second factor
corresponds to the modes with antisymmetric structure.
Antisymmetric modes disappear as L vanishes. This
“single-interface” limit is analogous to the Heton cloud
model studied by Pedlosky (1985). The symmetric
modes develop a growing/damping pair when z*Z*
< 0, while the antisymmetric modes become unstable
when z~Z~ < 0. The shortwave cutoff of the symmetric
modes can be easily derived as

ke =L¢'. (3.10)

This cutoff wavenumber is identical with that for the
baroclinic waves in the conventional two-layer model
on an fplane (Phillips 1954; Pedlosky 1987).

Figure 4 displays the growth rates of the symmetric
and antisymmetric baroclinic modes as a function of
nondimensional wavenumber and meridional sepa-
ration. The symmetric modes are unstable over the
entire longwave range k < L¢'. The growth rates slowly
decrease with increasing meridional separation, though
the zonal scale of the most unstablé wave is unchanged.
The antisymmetric modes, in contrast, are unstable
only at large meridional $eparation. By requiring that
the shortwave cutoff wavenumber be positive, the range
of meridional separation in which antisymmetric
modes are unstable is obtained as

L > 1.2784Lc = 0.9040 L. (3.11)

This threshold value coincides with the critical merid-
ional separation for the internal modes of barotropic

GROWTH RATE BAROCLINIC/ANTISYMMETRIC

T T T T T T 1 T T T T T

T T T T T T ¥ T T | T T T

(b)]

1

0 1 2
WAVE NUMBER kLr

WAVE NUMBER kLr

FIG. 4. Same as Fig. 3 but for baroclinic instability. The growth rate is normalized by the
meridional PV jump e. (a) Symmetric mode. (b) Antisymmetric mode.
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instability [(3.8)]. The growth rates of antisymmetric
modes are smaller than those of the symmetric modes
for the same flow parameters, except at very small
wavenumbers where the antisymmetric modes grow
marginally faster. The growth rates of the two modes
converge as L becomes large. Due to the meridional
symmetry, neither mode sustains a net momentum
flux.

4. Baroclinic instability with constant barotropic
shear

In the preceding section we have seen that the model
solutions include pure barotropic and baroclinic insta-
bilities as special cases. If all the flow parameters in
(3.4) are retained, however, one can solve more general
cases where the flows vary meridionally and vertically.
In such instances, the separation of modes illustrated
before no longer holds and instability, if any, is likely
to bear mixed characteristics of barotropic and baro-
clinic instabilities. To solve the most general case is
beyond the scope of this paper. Instead, we focus our
attention to a more specific question to which the
model is conveniently applied: How is baroclinic in-
stability modified under a barotropically sheared flow?
The most recent and comprehensive study on this sub-
ject is that by James (1987), who numerically deter-
mines the stability of baroclinic waves that grow in
meridionally sheared flows. He finds that horizontal
shear in the flow suppresses the growth of baroclinic
waves by limiting their meridional scale. In the follow-
ing, we demonstrate that our analytic model reproduces
the essence of James’s numerical solution..

Assume that the barotropic flow in (3.1) is a Couette
flow

Up(y) = ay (4.1)

so that § = a — b = 0, while the baroclinic flow Uc(y)
in (3.1) remains the same. In this case, the barotropic
flow by itself does not contribute to the PV disconti-
nuities at the interfaces and hence, does not lead to
instability. It does, however, modify the nature of
baroclinic instability through the meridional shear a.
The dispersion relation (3.4) becomes

-0 <y< o,

2L2
ct - (a2 +ztZt + z‘Z‘)c2

a’L? v a’L?
4 4

Notice that the barotropic shear is coupled with L;
thus, the meridional separation is crucial in the effec-
tiveness of the barotropic shear. In the absence of baro-
tropic shear, (4.2) reduces to (3.9), recovering the
symmetric and antisymmetric modes of baroclinic
waves.

+(z+z-— )=0. (4.2)
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Figure 5 shows the growth rates of the baroclinic
instability, derived from (4.2) and normalized by the
baroclinic PV discontinuity ¢, as a function of nondi-
mensional wavenumber kL and barotropic shear
a/e for various meridional separations. The largest

GRONTH RATE

ale

m
T WS YOS WO R T N T SN S S B 1

0 1 2

LIS L L LA R S BN S M B |

WAVE NUMBER (kLr)

FIG. 5. Growth rate of baroclinic instability with constant baro-
tropic shear as a function of wavenumber and barotropic shear. The
wavenumber is normalized by the Rossby radius Lg, and the shear
and growth rate are normalized by the meridional PV jump e. (a)
L/Lg =0.707. (b) L/Lg = 1.697.
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growth rate is shown where more than one unstable
mode coexist. There appear two distinct branches in
the growth-rate spectra: one that dominates at weak
barotropic shear (branch A) and the other that fills the
longwave range when shear is large (branch B). As
shear increases, the range of wavenumbers over which
the branch A is unstable tapers off toward shorter scales
and its growth rates decrease substantially. This occurs
at much weaker barotropic shear when the meridional
separation is larger (Fig. 5b): the branch A exists only
for small values of barotropic shear. The growth rates
of branch B, on the other hand, become less sensitive
to the change in the barotropic shear as it increases,
particularly with large L.

To examine more closely the merging of the two
branches in the longwave range, especially when the
meridional separation is large, a cut along KLz = 1 in
Fig. 5bis plotted in Fig. 6, along with the corresponding
phase speeds of the modes. The branch A is stationary
and has two subbranches. They correspond to the sym-
metric and antisymmetric modes in the limit of van-
ishing barotropic shear. It is now clear that the growth
rates of the antisymmetric subbranch are masked in
Fig. 5 by those of the symmetric subbranch. The branch
B emerges when the two subbranches of A coalesce.
The two subbranches of B have an identical growth
rate and propagate at the same speed but in opposite
directions. Similarity to James’s ( 1987 ) numerical so-
lution (his Fig. 3) is remarkable.

Typical three-dimensional structures of the unstable

kCife

Crilo

) .05 .10 A5 20
ale

FIG. 6. Growth rate and phase speed of baroclinic waves as a func-
tion of basic-state constant barotropic shear. kLg = 1, L/ Lg = 1.697
(a vertical slice of Fig. 5b). (a) Growth rate (normalized by baroclinic
PV jump ¢) and (b) phase speed (normalized by the thermal wind
speed at y = 0). Distinct branches and subbranches are labeled.
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FIG. 7. Three-dimensional structure of streamfunction of the un-
stable modes. (a) Branch A at a/e¢ = 0.02. (b) Branch B at a/e¢
= 0.2. For both cases kLr = | and L/Lz = 1.697. Upper panels:
horizontal structure of upper-layer streamfunction. Lower panels:
horizontal structure of lower-layer streamfunction. Abscissa is x and
ordinate is y. The peaks in the amplitudes mark the locations of PV

jumps.

modes are displayed in Fig. 7 for the two branches.
The branch A saddles over the two PV discontinuities
{marked by conspicuous peaks in the wave amplitude);
that is, it is a meridionally elongated mode. The branch
B, in contrast, is highly trapped to near one or the
other of the discontinuities. (The upper-layer structure
of a subbranch is a mirror image of the lower-layer
structure of the other subbranch with opposite phase
speed.) That each subbranch of B is influenced by vir-
tually one PV discontinuity implies that it should be
approximated by vanishing L (equivalent of a single
interface) in (4.2). This roughly explains why the
growth rates of the branch B are insensitive to the
barotropic shear. In a continuous model such as
James’s, however, the modal structure undergoes fur-
ther meridional confinement (his Fig. 4) and reduction
in the growth rate (his Fig. 3) as shear increases, a
feature that the model with only two PV discontinuities
fails to reproduce. ( A slight increase in growth rates in
the BB' segment of Fig. 5b levels off as shear increases
and should not be taken too seriously.) For both
branches, the vertical tilt shown by the upper-layer
streamfunction lagging behind the lower-layer phase
implies a northward heat flux and is characteristic of
baroclinic instability. In addition, a vertically coherent
meridional tilt appears in the inner region —L/2 < y
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< L /2, particularly with the branch A. The meridional
tilt is aligned with the linearly sheared flow, implying
that momentum is transported countergradient.
Figure 8 is a plot of the vertically integrated mo-
mentum flux in the inner region normalized by the
kinetic energy of the mode for the corresponding panels

ale

ale
0

0 1 2

WAVE NUMBER (kLr)

FIG. 8. Same as Fig. 5 but for the vertically integrated momentum
flux in the inner region —L/2 < y < L/2. Values are normalized by
the eddy kinetic energy. Positive values indicate the countergradient
transport of momentum.
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of Fig. 5. It is evident that most of the momentum flux
is associated with the meridionally elongated mode A,
and its direction is predominantly countergradient
(indicated by positive values). An explicit parameter
dependence of momentum flux is derived for weak
shear (¢;> |al}) in appendix C, where its countergra-
dient nature is verified for a wide range of k and L.

Since the momentum fluxes in the outer regions are
zero, discontinuities (or delta-function convergence)
are formed at y = +L /2 in the sense to further increase
the barotropic shear. This suggests that the normal-
mode baroclinic instability developing in a weak baro-
tropic shear would enhance the shear through a positive
feedback during its nonlinear life cycle. The spunup
shear, in turn, would alter the nature of instability sig-
nificantly. To see the effects of this self-induced shear,
an idealized numerical life-cycle simulation is per-
formed using a multilevel quasigeostrophic model. The
model is based on the fplane and Boussinesq approx-
imations. The geostrophically balanced basic flow, il-
lustrated in Fig. 9, is a meridionally symmetric and
vertically antisymmetric jet to the lowest order, but is
perturbed by a weak, meridionally antisymmetric
barotropic flow. Although ideally the simulation should
be initialized with the same basic state as in the linear
analysis, it is difficult to retain the stepwise disconti-
nuity in the PV against the numerical diffusion in our
model. Nevertheless, the smooth profile in Fig. 9 con-
tains essentially the same dynamical ingredients as the
discontinuous flow. The most unstable mode is gen-
erated using a linearized model and is used to initialize
the full model. Throughout the life cycle, a counter-
gradient vertically integrated momentum flux is ob-
served, as well as a downgradient heat flux. As baro-
tropic shear increases due to the momentum transport,
the initially coherent meridional structure of the mode
breaks up into two trains of eddies at the flanks of the
jet, each propagating in the opposite directions, as seen
in the evolution of the surface potential temperature
(Fig. 9). Transition from a meridionally elongated sta-
tionary mode to a pair of counter-propagating modes
like the ones found earlier in this section appears to be
captured in this more complex numerical model.

It should be added that the vertically integrated mo-
mentum flux of a mode is countergradient regardless
of the sign of barotropic shear. Thus, whether cyclonic
or anticylonic shear emerges during the baroclinic life
cycle depends critically on the sign of the barotropic
shear initially given. The sensitivity of the finite-am-
plitude evolution of baroclinic waves to a weak back-
ground barotropic shear, demonstrated by Davies et
al. (1991) using the semigeostrophic equations, clearly
exemplifies this point.

5. Baroclinic instability with linearly sheared jet

While the model introduced in the preceding sections
offers a simple tool to examine the coupled barotropic—
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FiG. 9. Time evolution of the surface potential temperature (in x and y) during a life cycle of
baroclinic wave with a multilevel QG modet (left). The contour interval is 1 K. The meridional
profile of the vertically and zonally averaged heat and momentum fluxes (normalized by the
maximum values) is shown in the middle. Also shown are the basic-state flow (solid and dashed
curves, every | m s™!) and potential temperature (thin dashed curves, every 4 K) in y and z, and
the modified mean flow at the corresponding time (right). The reentrant channel is 4000 km
long (two lengths shown), 10 000 km wide (9000 km shown), and 10 km high. Upper panels:
after 400 hours of integration. Lower panels: after 500 hours of integration. The e-folding time

for the linear mode is about 100 hours.

baroclinic processes analytically, the analysis is limited
to simple flow profiles. A constant, vertically integrated
momentum flux can be supported only in the inner
region —L/2 < y < L/2. One cannot simulate, for
example, change in the sign of momentum flux within
a jet. To allow such variation, one needs more than
three meridional regions (thus more than two merid-
ional modes). In principle, one can arbitrarily increase
the number of regions to “smooth” the meridional flow
profile. This operation also arbitrarily enhances the
number of the modes included in the system (as many
as the number of PV discontinuities ) and thus increases
the order of the algebraic equation describing the dis-
persion relation, quickly invalidating the analytic
treatment of the problem. The situation is exactly
analogous to increasing the number of layers for better
approximation of continuous stratification.

In this section, we add one more region in the me-
ridional direction to examine the stability of a baro-
clinic flow superposed on a symmetric, linearly sheared

barotropic jet. The flow profile we examine is merid-
ionally symmetric about y = 0 and given by

[—a(y—L/Z), y=0
= (5.1a)
a(y+ L/2), y<0
(((a+B)exp{~(y— L/2)/Lc}, L/2<y
aexp{—(y—L/2)/Lc}
+Bexp{(y —L/2)/Lc}, O0<y<L/2
Us={ aexp{(y+L/2)/Lc}
+ Bexp{—(y + L/2)/Lc},
~L/2<y=<0
(a+B)exp{(y +L/2)/Lc}, y<-—-L/2

L (5.1b)
a=eLc{exp(—L/2Lc) + 2} {exp(—L/2Lc)},
B=c¢elLc/2, (5.1¢c)
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where ¢ is the PV jump associated with Ucat y = =L/
2. A typical flow profile is depicted in Fig. 10. We have
now a PV discontinuity at y = 0 in addition to at y
= +I./2 in each layer. The shape of U is such that
the associated PV jump at y = 0 is twice that at y
= +I./2. The barotropic flow Up is a symmetric jet
with constant shear on both sides of the axis y = 0 and
thus by itself does not support instability. Unlike the
Couette flow, however, this jet contributes to a PV
jump (=2a) at y = 0, so that the polarity of the PV
jumps at the six locations can change depending on
the relative magnitude of barotropic and baroclinic
components of the flow. As illustrated in Fig. 10, if €
> a the PV jumps change signs vertically at all three
interfaces, whereas if ¢ < g they do not change sign
vertically at y = 0 but they do meridionally in the lower
layer. In terms of the PV dynamics, the latter situation
is analogous to a reversed surface potential temperature
gradient near the jet axis. The basic flow (5.1) is
uniquely determined when ¢, a, and L are given.

The perturbation streamfunction is sought in the
form of (2.7) in each region, subject to the boundary
and matching conditions as in section 2 except that we
now have an additional interface to match at y = 0. A
straightforward but tedious algebra leads to six simul-
taneous linear equations for six independent coeffi-
cients

r' S p Q v W
s R ¢ P w V
0 0 «x Y 0 O
qg 0 vy X 0 0
0 0 —x -Z x Z
0 0 —z X z X

Ay

By

X C]] exp(kL/2) - O, (52)

Dy exp(KL/2)
Am exp(kL/2)
By exp(KL/2)

where the subscripts II and III denote the two regions
O<ys<VL/2and —L/2 < y <0, respectively, and a
dispersion relation

(6‘4 + ]‘43(,‘3 + ]‘42(,'2 + Mc + Mo)(C2 - No) = 0.
(5.3)

The expressions for the coefficients in (5.2) and (5.3)
are listed in appendix B.

Since we have kept the y symmetry in the basic flow,
the symmetric and antisymmetric modes are decoupled
in the dispersion relation (5.3). If the symmetry in the
basic flow was broken, the sixth-order algebraic equa-
tion (5.3) would not be factorized. In the following,
we analyze only the symmetric modes represented by
the first factor in the lhs of (5.3). Even with this for-
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tuitous factorization, the quartic dispersion relation of
the meridionally symmetric modes does not provide
much useful information until it is numerically solved,
due to the unwieldy forms of the coeflicients (appendix
B). Figure 11 shows the growth rates normalized by e
as a function of nondimensional wavenumber and
barotropic shear, plotted for various meridional sepa-
rations. When the separation is small, unstable modes
are found in the longwave range for weak barotropic
shear but short waves are also destabilized for strong
barotropic shear (Fig. 12a). Large barotropic shear (a
> ¢) makes the configuration of PV jumps like Fig.
10c, and the instability in this range is largely due to
the meridional sign change in the PV jumps in the
lower layer; that is, it is a close relative of barotropic
instability. Yet, this shortwave instability completely
disappears at medium to large separation (Fig. 11b,c).
In general, the growth rates increase toward zero baro-
tropic shear (baroclinic limit) and toward very large
shear (barotropic limit) with a local minimum at an
intermediate value. This intermediate value of shear
appears to decrease as L increases. The zonal scale of
the longwave instability is insensitive to barotropic
shear when the meridional separation is large, except
that a “tongue” of instability, similar to the one with
constant-shear barotropic flow, branches off toward the
shorter scales (Fig. 11c).

A cut along kLg = 1 in Fig. 11c is plotted in Fig. 12
with the corresponding phase speeds as a function of
barotropic shear. It is clear that what appears connected
in the growth rate in Fig. 1 1c is actually two overlapping
but distinct unstable modes. The mode A, with max-
imum growth rate occurring at zero barotropic shear,
is baroclinic instability whose amplitude is maximal at
¥y = 0, as shown in Fig. 13a in terms of meridional
profile of heat flux. As barotropic shear increases, the
growth rate of mode A diminishes while its structure
becomes more centralized or decoupled from the PV
discontinuities at y = +L/2 (Fig. 13b). This meridional
confinement of the mode is due to the shear effect
analogous to the example in the previous section. When
the shear a exceeds ¢, the PV discontinuity at y = 0
does not change sign vertically any longer (Fig. 10b,c)
and mode A becomes baroclinically stable. The mode
B, whose growth rate increases monotonically with
barotropic shear (Fig. 12), emerges when the mode A
is decoupled from the PV discontinuities at y = +L/
2. The structure of mode B, shown in Fig. 13c, is char-
acterized by maximum heat flux at y = +L./2, in con-
trast to the centralized structure of mode A. The mode
B is largely sustained by the vertical sign change in PV
jumps at y = +L/2 when the barotropic shear is small,
but the meridional sign change in the lower layer be-
comes equally or more important as barotropic shear
increases beyond a@ = e. The growth rate of mode B
exceeds that of A around a = 0.8¢. Since the mode A
is concentrated near the jet axis, its phase speed exceeds
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that of the quasi-stationary mode B. It should be noted
that such separation of modes does not occur when
the meridional separation is small. For example, a cut
at the same wavenumber in Fig. 11b is characterized
- by a single unstable mode whose growth rate has a
minimum near ¢ = 0.7¢ but is smoothly connected
(not shown). In this case the three PV discontinuities
are always bridged by the mode regardless of the mag-
nitude of shear.

Figure 14 is the plot of vertically integrated mo-
mentum flux normalized by kinetic energy of the cor-
responding unstable modes in Fig. 11, measured in the
southern half of jet — L/2 < y < 0. Due to the symmetry
about the jet axis, the momentum flux in the northern
half 0 < y < L/2 is of the same magnitude but the
sign is opposite. Therefore, the positive values in Fig.
14 mean a countergradient convergence of momentum
(which sharpens the jet), while the negative values in-
dicate a downgradient divergence ( which broadens the
jet). When the jet is narrow, the momentum flux as-
sociated with unstable modes is divergent everywhere,
with maximum occurring at short scales with large
barotropic shear (Fig. 14a). This is consistent with our
previous argument that the shortwave signal is mainly
that of barotropic instability. As the meridional sepa-
ration is increased, the longwave baroclinic instability
begins to form a momentum flux convergence at weak
barotropic shear, while the momentum flux remains
divergent at large barotropic shear (Fig. 14b,c). Similar
results have been obtained numerically by Held and
Andrews (1983). Notice that there are cuts (discon-
tinuities) in Fig. 14c where the two surfaces, repre-
senting the two distinct modes, intersect.

OSPHERIC SCIENCES VoL. 50, No. 3

Figure 15 shows the maximum growth rate of the
modes, found by scanning across wavenumbers, plotted
as a function of separation and meridional shear. The
maximum growth rate peaks at vanishing meridional
shear and separation, and at large shear and interme-
diate separation L ~ Lg, divided by a “trough” in
between. The shaded region is where the most unstable
mode produces the momentum flux convergence into
the jet. This region exists for a sufficiently large merid-
ional separation (L > 1.6Lg) and small shear. The
edge of the region, where the vertically integrated mo-
mentum flux changes sign, roughly coincides with the
trough in the growth rates. It is notable that there is a
local minimum in the growth rate around L = 2.8 Lg
and a = 0.4e.

To see the effects of converging eddy momentum
flux in the finite-amplitude evolution of baroclinic in-
stability, we repeat an idealized life-cycle experiment
with the same multilevel quasigeostrophic model as
used in section 4. This time the basic flow is a merid-
ionally symmetric westerly jet with zero wind at the
surface, presumably representing a smoothed version
of Fig. 13a. The most unstable mode, generated by the
linearized version of the model and used to initialize
the simulation, is characterized by a meridionally sym-
metric structure and by a robust momentum flux con-
vergence into the jet at all levels. As a result, the mean-
flow evolution, displayed in Fig. 16, clearly exhibits
the acceleration of the jet near the axis and deceleration
at the flanks, which strengthens the barotropic shear.
As the wave attains finite amplitude, the faster zonal
advection near the jet axis than at the flanks distorts
its structure, until the meridional coherence is com-

Us g Ue U= Y
2 — e \\L
0 28— 2 —de
L2 € /
/
Y ?’ VZ
t..
Iv 11 1 I Iv I 1 I IV 1l II I
1 o+ o+ 4+ + o+ + + + H2
—t—i ——t ——t
22 o - - : : Lt . ome
T_,y L2 0 L2 L2 0 L2 L2 0 L2
(a) a<e (b) a=¢ (c) a>e

FIG. 10. Geometry of the four-region model with linearly sheared jet. Upper panels illustrate
the meridional profiles of barotropic component (left), baroclinic component (center), and upper-
and lower-layer flows (right), with the corresponding PV jumps at the kinks labeled. The lower
panels: polarity of PV jumps for various magnitude of the point jet. (a) a <, (b) a = ¢, and (c)

a> e
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FIG. 12. Growth rate and phase speed of baroclinic waves with
linearly sheared jet as a function of barotropic shear. kLg = 1, L/Lg
= 3.111 (a vertical slice in Fig. 11c). (a) Growth rate (normalized
by the PV jump at y = +L/2). (b) Phase speed (normalized by the
thermal wind speed at y = 0). Dashed curves in the phase speed
represent neutral modes.

pletely destroyed. By this time, the meridional tem-
perature gradient is well mixed (or even reversed ) near
the jet axis and the strong gradients shift toward the
flanks where the flow becomes destabilized again. Ac-
cordingly, the maximum in the vertically averaged heat
flux moves from the center toward the flanks of the
jet. This shift, along with the enhancement of barotro-
pic shear, qualitatively agrees with the sequence in Figs.
13a—c. The effective width of baroclinic zone (equiv-
alent of L) also expands, as indicated by elongated heat
flux profile in Fig. 16b, which further favors the me-
ridional separation of modes.

6. Conclusions

We have developed and analyzed a linear model of
quasigeostrophic shear instabilities in meridionally, as
well as vertically, sheared flows. The model, based on
the piecewise constant PV design in the spirit of Eady
(1949), requires no slow variation, unlike asymptotic
methods, and is analytically tractable for flows with
O(1) variation in both dimensions. Although the dis-
continuous PV makes it difficult to directly relate the
results to more realistic flow profiles, the model suc-

FI1G. 11. Growth rate of baroclinic instability with linearly sheared
jet as a function of wavenumber and barotropic shear. The wave-
number is normalized by the Rossby radius Lz, whereas the shear
and growth rate are normalized by the meridional PV jump e. (a)
L/Lg =0.846, (b) L/Lg = 1.980, and (¢) L/Lg = 3.111.
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y/Lr

y/Lr

FIG. 13. Meridional profiles of basic flow with linearly sheared jet and heat flux associated with the unstable baroclinic
modes. (a) Mode A at a/e = 0.1. (b) Mode A at a/e = 0.6. (c) Mode B at a/e = 0.8. For all cases kLg = 1 and L/

Ly = 3.111. Solid curve: upper-layer profile. Dashed curve: lower-layer profile. The unit of Uis ms~

! assuming ¢

=2 X 1073 s and Lg = 1000 km. Notice U, — U, is identical in the three plots.

cessfully reproduces qualitative features of more so-
phisticated numerical calculations. It also enables us
to characterize the mode structure and growth rates as
functions of a small number of parameters. As a result,
exploration of wide parameter range can be achieved
inexpensively.

A key aspect in this model is an explicit relationship
between the meridional scale of the baroclinic jet and
that of modes. The lack of geometrical boundaries or
meridional periodicity allows the amplitudes of unsta-
ble modes to attenuate away from the meridionally
isolated PV discontinuities rather than to have a wavy
structure with an arbitrary meridional wavenumber,
which is in a sense a more realistic representation of
the earth’s midlatitude jet. (On the other hand, the
model completely lacks the meridional and vertical
propagation of Rossby waves.) In the longwave limit,
the meridional penetration scale of the mode, Lp, is
the zonal wavelength of the mode itself for the baro-
tropic motion (¥z) and the internal Rossby radius for

the baroclinic motion (¥ ¢). The magnitude of Lp rel-
ative to the width of the shear zone L (i.e., meridional
separation of the PV discontinuities) is an important
factor to determine the meridional structure of the
mode. The other factors are the magnitude of merid-
ional shear and the PV jumps. Note that the vertical
shear is controlled by the PV jumps in the two-layer
formulation; thus, it is not an independent parameter
like the meridional shear.

The model is capable of predicting simultaneously
the heat and momentum fluxes associated with the un-
stable modes, let alone the growth rates and scales,
which is beyond the capability of one-dimensional
models. We have demonstrated how the characteristics
of baroclinic instability are modified by the background
barotropic shear, with an emphasis on the direction of
vertically integrated momentum flux. It has been
shown that a weak barotropic shear tends to shape
baroclinic instability in such a way as to produce a
countergradient momentum flux, thereby reinforcing
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MAXIMUM GROWTH RATE

i

4 F1G. 15. The maximum growth rates of baroclinic instability with
4 linearly sheared jet, plotted as a function of the meridional separation
- and the magnitude of the shear. The growth rate is normalized by
e the baroclinic PV jump . The stippled region is where the vertically
. integrated momentum flux associated with the instability is convergent
g into the jet; elsewhere it is divergent.

_ the shear. When the shear is too strong, baroclinic in-
. stability cannot maintain the meridional coherence and
§ disintegrates into a family of meridionally more con-
fined modes, although the barotropic shear by itself
i does not eliminate instability. Such transition in the
b . mode structure cannot be captured by any asymptotic
] methods in which the shear effect is assumed to be
L4 small. Our findings are in agreement with previous nu-
2 merical studies (Stone 1969; Held and Andrews 1983;
James 1987).
i i ' ] Finally, this structural change of baroclinic instability
L i i : due to barotropic shear has been witnessed as a spon-
- ; I 1 taneous process in our idealized numerical life-cycle
i simulation based on a multilevel model. Because of
I ; i o i the positive feedback with the eddy momentum flux,
- Do ; . the barotropic shear develops very rapidly and affects
- I ] the nonlinear life cycle of baroclinic waves. Destruction
: i of potential temperature gradient at the surface still
; seems necessary to bring the growth of the modes to a
halt, but the structure of the equilibrated eddy appears
to be very different from what would be predicted by
a model excluding the effects of large barotropic shear.

als

FIG. 14. Same as Fig. 1 | but for the vertically integrated momentum
flux in the southern half of the jet ~L/2 < y < 0. Values are nor-
malized by the eddy kinetic energy. Positive values (solid) indicate
convergence of momentum flux into the jet, whereas negative values
(dashed) indicate divergence. Thick solid curves in {c) represent the
WAVE NUMBER kLr intersection of two distinct modes.
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F1G. 16, Same as Fig. 9 but for a vertically asymmetric westerly basic state, shown on the top right. Upper panels: 250 hours after
integration, center panels: 500 hours, lower panels: 875 hours. Other parameters are identical with Fig. 10, except that the contour interval
for the x-y plot is 0.5 K.

In order to fill the gap between this fully nonlinear, regime. The weakly nonlinear theory based on this
multilevel model and the discontinuous linear model, model, however, does not provide a useful information
it is desirable to extend the linear model to a nonlinear on the wave-mean flow interaction because of the dis-
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continuous nature of the PV profile. It has been shown
that the leading nonlinear effect in a model like this is
the generation of subharmonics rather than the mean-
flow modification (Pedlosky 1985). It is perhaps much
simpler to interpret the nonlinear behavior in terms of
the displacement of interfaces based on the contour
dynamics (Dritschel 1989; Pullin 1992). The rollup of
the interfaces at different meridional locations would
depend sensitively on their separation and the initial
-shear.
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APPENDIX A

Definitions of Coeflicients in (3.3) and (3.4)

p=2k
qg=206— kaL
r= el — kLo{1 + exp(—=L/ L)}
s= 6 exp(—kL)
t=ceexp(—kL)
wt =2 ; S _ 81" (k) — aL )2,
W = Q; S _ 1K) — aL)2,
ot = ’; Loty - rLahy,
z+=RE T v - ),
P=2K
Q=6— KalL

R=¢l — KLc{l +exp(—L/Lc)}]

S =6exp(—KL)

T = eexp(—KL)
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)
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w =o6l"(k) —aL/2

Ww-

Ml

=6/(K)—alL/2
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7= %’ = {I"(k) = I"(LEY)
z-=22L - iy - ray,
where
1 + exp(—xL)
+ = —
l (x) - zx B
I (x) = 1 —exp(—xL) .
2x
APPENDIX B

Definitions of Coefficients in (5.2) and (5.3)

p=aexp(—kL/2),
r=k(c—bL/2)+ b,
v=—k(c— bL/2)exp(—kL/2),
x=2kc, y=¢—2k(a+p),
q = eexp(—kL/2),
s=¢e—k{aexp(L/2Lc)+ Bexp(—L/2Lc)},
w=k{aexp(L/2Lc) + B exp(—L/2Lc)},
z=¢e{l —exp(—kL)} — 2k(a + B)
The corresponding parameters in capital letters are ob-

tained by replacing k with K in the above; « and § are
defined in (5.1c¢).

1 1
M3=a(z+E—L)

L 1\/L 1 € €
= (5 3)(5 %)~ (@) (w3
UL — d- (0} { U — d(K)} — 2eX()X(K)
M, = a(L - % - %){ Up — d (k) }{ Us — el ~(K))
—ea{U, — el (k) } x*(K)
— ea{ UL — el (K)}x*(k)

— 2ea( Uy — eL/2)X(k)X(K)

€ € 2 L I\/L |
mo={(vo-p)(vo-%) (5 -1)(5 %)
X {UL - 61_(k)}{UL - el_(K)}
a’l ¢ —-a?

‘G(UM—T‘ K

){UL — " (K)}X2(k)
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(e ¥L_&-a
€ o€ b k

){UL — (k) }X2(K)

+ €2(e2 — a?)x*(k)x*(K)
No = {UL - él_(k)}{ UL - El_(K)},

where
X(x) = exp(—xL/Z)’
X
I(x) = I —exp(—xL)
2x
and

Up= Uc(0) = a exp(L/2Lc) + Bexp(—L/2Lc),
UL = Uc(iL/z) =a+ ﬁ

APPENDIX C

Effects of Barotropic Shear on the Direction of
Vertically Integrated Momentum Flux

The parameter dependence of vertically integrated
momentum flux (VIMF) is complex. Here we seek an
asymptotic expression of VIMF for sufficiently weak
barotropic shear, based on the three-region model of
section 4. Parameters used in this section are listed in
appendix A. When there is no barotropic flow (a = 0),
the dispersion relation of baroclinic waves reduces to
(3.9), where the meridionally symmetric and antisym-
metric modes are decoupled. The fastest-growing mode
is usually the symmetric mode for which (3.3) can be
rewritten

2k¢ O R T Ao
0 2kc T R Ao
r { 2Kc 0 B()
{ r 0 2Kc¢ Bo

=Po-2,=0, (C1)

where c is a complex root of det(Py) = 0, exponentials
are absorbed in Ay and By, and

*Z*, z>0, Z*<0. (C2)

If we add weak barotropic shear a to the basic flow,
(C.1) is modified to

¢t =—c} =

(Po + AP + AQ)-(ap + Aa) = 0, (C.3)
where
2kAc 0 0
_ 0 2kAc 0 0
AP=1 0o 0 2kAc 0 |°
0 0 0 2KAc
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—kal 0 0 0
[ 0 kL o0 0
Q=1 o 0 —ka o | €4
0 0 0 KaL

and ¢ + Acis aroot of det(Pg + AP 4+ AQ) = 0. If the
shear is sufficiently small so that

laL|/ci=¢€ €<1, (C.5)

then AQ and Aa are merely O(¢) perturbations to P,
and ay, respectively. [ As it will turn out, AP is O(?).]
Collect through first-order perturbation terms in
{(C.3)-(C.1)},

AP-ap + AQ-ay + Py- Aa = 0. (C.6)

Noting the symmetry in the matrices and in the vector
ag, Aa can be split into the symmetric and antisym-
metric components:

Aa = Aa; + Aa,; Aa;=

S 2 R

(C.7)

thereby, (C.6) is separated to two independent equa-
tions for the symmetric and antisymmetric vectors

Po'Aas+ AP-a0=0,

Po- Aa, + AQ-ag = 0, (C.8a,b)
or
2k R+T\[(y\ (—2kicd,
(r+t 2Ke )(5)=<—2KAcBO)’
( 2ke¢ R- T)(a) _ (—kaLAo)_ (Coab)
r—t 2Kc 8 —Kal B,

However, since

2kc
r+t

R+ T
2Kc

‘ — 4kK(E - 2Z*) =0 [(C2)],

(C.9a) is indefinite unless ¥ = 6 = 0. Thus, in order
for the asymptotic expansion to be consistent, it is re-
quired that Aa; = Ac = 0, which means the correction
in the symmetric component of the mode and in the

complex phase speed is at most O(e?). Hence
Aa = Aa,. (C.10)

From (C.9b),

I K
a 4 (cAo——Z‘Bo),

T2z Z —-z'Zh k

alL k
= — — 2z Ay + cB
B 2(z—z——z+z+)( KZ5Te °)
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if z7Z-—z*Z*#0, and
a=8=0 if z7Z"—-2z*Z*=0. (C.11)
Substituting
Cexp(kL/2) Ay — «
Aexp(kL/2) | _ | Agt a
Dexp(KL/2) | —2otAa=| p g
Bexp(KL/2) B, + 8

in the expression of VIMF (2.14), then using (C.2),
(C.11), and

KzZ*
Ay = — B,
0 e Do (C.12)
which is a direct consequence of (C.1), one obtains
4al kc; “Zt—z*Z"-
= —Kleolzz_Z_ z7Z
AR z7Z —-ztZ"v

VIMF =
zZ - —zYZ*#0
0, z7Z~—z*Z*+=0.
(C.13)

Since z* > 0 [(C.2)], ¢; > 0, and € > 0, the vertically
integrated momentum flux associated with the growing
baroclinic wave is positively correlated with the weak
barotropic shear (thus countergradient ), if the last fac-
tor in (C.13) is positive. Numerical evaluation of z=Z*
— z*Z ~ indicates its positiveness for all positive k and
L (analytical proof would be possible, but messy except
for limiting cases). On the other hand, z7Z~ — z*Z*
is positive as long as the growth rates of symmetric
modes are greater than those of antisymmetric modes,
which is true except at very small wavenumbers with
large separation (Fig. 4). Hence, the last factor in
(C.13) is predominantly positive, confirming the
countergradient nature of the momentum flux.
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