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ABSTRACT

The use of eddy flux of thickness between density surfaces has become a familiar starting point in oceanographic
studies of adiabatic eddy effects on the mean density distribution. In this study, a dynamical analogy with the
density thickness flux approach is explored to reexamine the theory of nonzonal wave–mean flow interaction
in two-dimensional horizontal flows. By analogy with the density thickness flux, the flux of thickness between
potential vorticity (PV) surfaces is used as a starting point for a residual circulation formulation for nonzonal
mean flows. Mean equations for barotropic PV dynamics are derived in which a modified mean velocity with
an eddy-induced component advects a modified mean PV that also has an eddy-induced component. For small-
amplitude eddies, the results are analogous to recent results of McDougall and McIntosh derived for stratified
flow.

The dynamical implications of this approach are then examined. The modified mean PV equation provides a
decomposition of the eddy forcing of the mean flow into contributions from wave transience, wave dissipation,
and wave-induced mass redistribution between PV contours. If the mean flow is along the mean PV contours,
the contribution from wave-induced mass redistribution is ‘‘workless’’ in Plumb’s sense that it is equivalent to
an eddy-induced stress that is perpendicular to the mean flow. This contribution is also associated with the
convergence along the mean streamlines of a modified PV flux that is equal to the difference between the PV
flux and the rotational PV flux term identified by Illari and Marshall. The cross-stream component of the modified
PV flux is related to wave transience and dissipation.

1. Introduction

Much of what we understand about the role of large-
scale extratropical eddies in the atmospheric general cir-
culation is based on the theory of the interaction of these
eddies with zonally symmetric mean flows. The various
parts of the zonal wave–mean flow interaction theory—
for example, the ‘‘nonacceleration’’ theorem, the trans-
formed Eulerian mean (TEM) ‘‘residual’’ circulation
framework, and the Eliassen–Palm (E–P) flux diagnos-
tics—have provided us with a useful and coherent
framework for thinking about eddy-driven processes
from a variety of perspectives [see Andrews et al. (1987)
for a review of the theory, applications, and references].

Extending the zonal theory to a theory of the inter-
action of eddies with nonzonal mean flows has proven
to be complicated. For example, Plumb’s (1990) non-
acceleration theorem for nonzonal time mean flows (see
also Andrews 1990) states that eddy-driven changes to
the mean flow can be brought about by wave transience
and dissipation, as in the zonal theory. But in addition,
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alongstream variations in certain eddy statistics also
bring about mean flow changes, even if the eddies are
steady in time and conservative. Other examples of ap-
proaches to a nonzonal theory are the generalizations
of the E–P flux diagnostics to the so-called E-vector
flux (Hoskins et al. 1983) and to Plumb’s (1986) gen-
eralized wave activity. These flux diagnostics highlight
important effects, such as the relevance of meridional–
longitudinal eddy anisotropy in driving mean flow
changes, but have not been satisfactorily connected to
a nonacceleration theorem or to a ‘‘wave activity’’ con-
servation law, as in the zonal theory.

To make progress toward a more coherent wave–mean
flow interaction theory for zonally asymmetric flows,
we propose to explore an analogy to a common approach
in studies of oceanic mesoscale eddies and in subgrid-
scale eddy flux parameterizations for oceanic general
circulation models. These studies (e.g., Rhines and Hol-
land 1979; Gent and McWilliams 1990; Gent et al. 1995;
Treguier et al. 1997) take the flux of mass between
isopycnal surfaces as a starting point for understanding
the eddy driving of mean flows. If we define the thick-
ness h 5 ]z/]b, with h positive and finite, where b is
the buoyancy of a Boussinesq fluid and z(x, y, b, t) is
the height of a buoyancy surface, then the continuity
equation and the thermodynamic equation imply that
the mean thickness equation in an adiabatic region is
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b
]h b

∗b1 = · (V h ) 5 0. (1.1)b)]t b

Here represents an average of A along instantaneous
b

A
buoyancy surfaces, the subscript b indicates a derivative
at fixed buoyancy, and

b
b bb (V9 h9 )

∗bV 5 V 1 (1.2)b
h

is an effective mean horizontal velocity that consists of
a mean part, , and an eddy part, ( )/ . In (1.2),

b b bb bV V9 h9 h
the notation ‘‘9b’’ refers to a disturbance quantity that
is evaluated at fixed b. The quantity is the mean

b∗bV h
thickness flux, and eddy flux parameterization schemes
consist, in part at least, of a theory for the eddy con-
tribution to this thickness flux.

In the mean thickness equation (1.1) the eddies, apart
from diabatic effects, redistribute mass between buoy-
ancy surfaces. Diabatic effects would appear as mass
sources and sinks. The mean thickness equation cleanly
sorts out adiabatic from diabatic eddy processes. This
contrasts with the mean buoyancy equation derived in
geometric z coordinates, which includes the averaged
eddy buoyancy flux as an apparent diapycnal term, and
in which the mean flow can have a component across
isopycnal surfaces, even for adiabatic conditions.

Given the advantages of using the buoyancy–thick-
ness flux approach for understanding eddy-induced cir-
culations in stratified flows, we propose here to turn the
approach on its side and use the flux of mass or thickness
between potential vorticity (PV) surfaces in a two-di-
mensional horizontal (barotropic) model as a starting
point for understanding eddy-induced circulations in
zonally asymmetric flows. We define the PV thickness
h 5 ]y/]q, with h positive and finite, where q is the PV
and y(x, q, t) is the meridional position of the PV con-
tour. Then, for conservative nondivergent barotropic
flow we find, analogously to the mean buoyancy thick-
ness equation (1.1) (see section 2),

q
]h ] q

∗q1 (u h ) 5 0, (1.3)) )]t ]xq q

where
q

q q(u9 h9 )q∗qu 5 u 1 . (1.4)q
h

Similarly to the case for density thickness, the in-
duced eddy velocity in (1.3) has the effect of conser-
vatively redistributing mass between PV surfaces, and
nonconservative processes act as mass sources or sinks.
For reversible PV dynamics, there is no evident con-
straint that prevents the simplest linear waves from re-
distributing the mass between PV contours through a
correlation between h9q and u9q. This is the key to the
extra complexity in wave–mean flow interaction theory
on zonally asymmetric flows. For example, we could

imagine an eddy-induced circulation that advects mean
thickness anomalies in the alongstream direction, or an
eddy-induced thickness anomaly that is advected by the
mean circulation.

In section 2 of this paper, we explore the overall
similarity between the mean PV thickness equation (1.3)
and the mean buoyancy thickness equation (1.1) to de-
rive a residual circulation formulation of mean baro-
tropic PV dynamics that is essentially a special case of
the three-dimensional temporal-residual mean (TRM)
circulation derived by McDougall and McIntosh (1996)
and McDougall and McIntosh (1999, manuscript sub-
mitted to J. Phys. Oceanogr.). Hereafter, these two pa-
pers will be referred to as MM. We discuss the PV
coordinate mean PV thickness equation (1.3) and point
out how this equation can be written in geometric co-
ordinates as an equation in which a ‘‘modified mean
PV’’ is advected by the effective transport velocity. De-
tails of the derivations in section 2 are presented in
appendixes A and B. In appendix C, a similar modified
mean PV equation is derived by manipulation of the
mean PV and eddy enstrophy equations. This derivation
is similar to MM.

In section 3, we examine the dynamical implications
of the PV thickness flux approach and the modified
mean PV equation. We decompose the modified mean
PV equation, for small-amplitude eddies, into terms as-
sociated with wave dissipation, wave transience, and
wave-induced mass-redistribution effects of the kind de-
scribed above. This decomposition leads to interesting
points of contact between these results and the work of
Plumb (1990) and Illari and Marshall (1983).

The results are summarized in section 4, and appli-
cations, limitations, and generalizations of the work are
discussed in section 5.

2. PV thickness and modified mean PV equations

The dynamical equation for the barotropic PV, q, is

Dq ]q ]q
5 1 u · = q 5 1 ] (c, q) 5 S, (2.1)y xy) )Dt ]t ]ty y

where D/Dt is the material derivative, u 5 (u, y) 5
(2]yc, ]xc |y) is the nondivergent horizontal velocity
with streamfunction c, and ]xy( f, g) 5 ]x f |y]yg 2
]y f]xg |y is the Jacobian. The right-hand side of the PV
equation (2.1), S, represents PV sources or sinks. We
note that throughout this section q can also represent
any materially conserved tracer. The subscript y on the
derivatives serves to distinguish the derivative at a fixed
point in space from the derivative at fixed PV in the
following.

In Eq. (2.1), the coordinates x and y can represent the
Cartesian zonal and meridional coordinates, but, except
as noted below, all of the derivations that follow are
valid if x and y are generalized to any orthogonal cur-
vilinear time-independent coordinate system (j, h) with
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]xy(j, h) [ 1 everywhere. In this case, ] t f |x,y 5 ] t f |j,h

and ]xy( f, g) 5 ]jh( f, g). In particular, one can choose
j to be tangential and h to be normal to mean streamlines
or to mean PV contours.

We begin by presenting a mean thickness equation
for the PV. We will assume that the PV thickness,

21
]q ]y

h 5 5 , (2.2)1 2]y ]q

is nonzero and finite in some region of interest. It is
usually understood that the meridional PV gradient and
thus h are positive. On the one hand, this assumption
is not as restrictive as it seems since we are free to
choose the x coordinate to be along the mean PV con-
tours. On the other hand, we have excluded situations
in which the contours roll up or shed filaments. For the
narrow purpose of this paper, this is desirable since we
would like to isolate and understand the wave–mean
flow interaction that persists even in the absence of wave
breaking and the associated PV mixing. We return to
this point in section 5.

The thickness h is the Jacobian of the transformation
from y to q coordinates. The requirement that h is locally
nonzero and finite allows us to locally transform the
dynamics to q coordinates. Starting with the barotropic
PV equation (2.1), we show in appendix A how to ob-
tain, using manipulations analogous to those used to
obtain the buoyancy thickness equation, a prognostic
equation for the PV thickness:

]h ](uh) ](Sh)
1 5 2 . (2.3)) )]t ]x ]qq q

Equation (2.3) recasts the dynamics in terms of a thick-
ness or mass flux between PV contours.

The fixed q mean of the thickness equation (2.3) is,
without approximation,

q
]h ] q qq q q1 3u h 1 (u9 h9 ) 4) )]t ]xq q

] q q q
q q5 2 3S h 1 (S9 h9 ) 4. (2.4)

]q

As in section 1, denotes the average and A9q the
q

A
perturbation A at fixed q. (The particular averaging op-
eration will be left unspecified; the ‘‘eddies’’ are then
departures from whatever average is chosen.) The mean
thickness in (2.4), 5 /]q, is the q derivative of

q qh ]y
the mean contour position .qy

The combined mean and eddy terms in the x flux of
mass in (2.4) may be expressed in terms of an effective
transport velocity, u∗q, defined previously by (1.4). (We
use the convention that the superscript ‘‘∗q’’ denotes a
mean quantity defined in q coordinates that includes
mean and eddy contributions.) Similarly, the eddy and
mean terms in the thickness-weighted nonconservative
term may be combined into an effective nonconserva-
tive term, S∗q, defined by

q
q qq (S9 h9 )

∗qS 5 S 1 . (2.5)q
h

Then the mean PV thickness equation (2.4) may be writ-
ten

q
]h ] q ] q

∗q ∗q1 (u h ) 5 2 (S h ). (2.6)) )]t ]x ]qq q

Equation (2.6) reduces to (1.3) when S 5 0.
The mean PV thickness equation (2.6) provides an

intuitively clear separation between conservative and
nonconservative eddy-induced effects. If the thickness
perturbations h9q and the velocity perturbations u9q are
correlated, then the eddies simply redistribute mass be-
tween PV contours. If, on the other hand, the thickness
perturbations are correlated with the source-term per-
turbations, S9q, then the eddies induce effective mass
sources or sinks between the contours.

It is often desirable to express the PV coordinate mean
equation (2.6) in geometric coordinates. To derive the
geometric-coordinate mean equation, we transform the
mean thickness equation (2.6) from q coordinates to

coordinates, where we recall that is the mean me-q qy y
ridional coordinate of the PV contour with value q.
DeSzoeke and Bennett (1993) consider the analogous
transformation from density to mean height coordinates.
The mean thickness 5 is the Jacobian of

q qh ] [y (q)]q

the transformation and is assumed to be sign definite,
which is approximately equivalent to assuming that the
mean PV gradient is sign definite. [Note that functions
such as are in general x and t dependent, but hereqy (q)
and below, any such dependence is only made explicit
as necessary.]

We may define a mean streamfunction,
–qy (q)

q∗q ∗qc [y (q)] 5 2 u ( ŷ) dŷ, (2.7)E
so that

∗q ∗q]c ]c
∗q ∗q(u , y ) 5 2 , , (2.8)q1 ) 2]y ]x q–y

where we have defined the meridional component of the
effective transport velocity, y ∗q, in terms of the stream-
function c∗q. With (2.7), we obtain, by a coordinate
transformation of the mean thickness equation (2.6), the
following mean equation for q:

]q
∗q ∗qq–1 ] (c , q) 5 S . (2.9)xy)]t q–y

[The derivation uses similar manipulations to those used
in appendix A to derive the thickness equation (2.3)
from the PV equation (2.1).] This is a mean equation
in the sense that q is now independent of any ‘‘fast’’
coordinate (for example, a fast timescale or the wave
phase), just as is in the mean thickness equationqy (q)
(2.6).
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We now modify the notation of Eq. (2.9) to write the
equation in y coordinates rather than in coordinates.qy
We define a particular value of PV, denoted q∗q, whose
mean contour position is the meridional coordinate y.
That is, we define

. (2.10)q∗q ∗qq such that y 5 y when q 5 q

We will call q∗q the modified mean PV and note that it
should be distinguished from the geometric-coordinate
mean PV, . An analogous quantity for density in strat-yq
ified flow has been defined by deSzoeke and Bennett
(1993) and MM. Using (2.10), (2.9) becomes

∗q]q
∗q ∗q ∗q1 ] (c , q ) 5 S . (2.11)xy)]t y

The modified mean PV equation (2.11) expresses the
advection of the modified mean PV by the effective
transport velocity, which has streamfunction c ∗q. Equa-
tion (2.11) has been derived without approximation
from the mean thickness equation and so essentially
follows from mass conservation.

In appendix B, we use Taylor series expansions to
derive expressions for q∗q, c ∗q, and S∗q for small-am-
plitude perturbations to the mean. To second order in
the eddy amplitude, the modified mean PV is

2] 1 (q9)y∗qq 5 q 1 q , where q 5 2 ,eddy eddy [ ]]y 2 ] qy

(2.12)

the effective transport streamfunction is
y

∗qc 5 c 1 c , whereeddy

y 2u9 q9 1 ]u (q9)
c 5 2 , (2.13)eddy 2] q 2 ]y (] q )y y

and the effective nonconservative term is
y

∗qS 5 S 1 S , whereeddy

y 2] (S9 q9) 1 ]S (q9)
S 5 2 1 . (2.14)eddy 2[ ]]y ] q 2 ]y (] q )y y

In Eqs. (2.12)–(2.14), the subscript ‘‘eddy’’ indicates a
second-order eddy contribution, and the superscript y
and q notation is used only as necessary to retain ac-
curacy to second order. [In particular, the difference be-
tween averages in q and y coordinates is second order
in eddy amplitude (see appendix B), so it is not nec-
essary to use the notation for eddy terms or for mean
terms multiplying eddy terms.] These expressions show
explicitly how the modified mean PV, the effective
transport streamfunction, and the effective nonconser-
vative term all differ from their geometric-coordinate
mean counterparts by second-order quantities.

For small-amplitude eddies, it is possible to derive
equation (2.11) with (2.12)–(2.14) directly from the
mean PV equation

y
]q y yy y y1 u · =q 1 = · (u9 q9) 5 S (2.15))]t

y

and the eddy enstrophy equation

y
y

D 1 y y 1y2 y y 2(q9) 1 (u9 q9) · =q 1 u9 · = (q9)1 2[ ] [ ]Dt 2 2
y

y5 (S9 q9) , (2.16)

where /Dt 5 ] tA |y 1 · =yA. The derivation,
y yD A u

shown in appendix C, is similar to that of MM’s TRM
equations. It is more algebraically difficult than the de-
velopment above and apparently does not generalize to
finite-amplitude eddies; for finite-amplitude eddies, we
obtain an expression similar to (2.11) with additional
order-amplitude-cubed terms on the right-hand side.
[See Eq. (C10).]

3. Dynamics of the modified mean PV equation

So far, the development has been kinematic and we
have made little direct contact with a specific dynamical
model. In fact, as was mentioned in section 2, the der-
ivation of the modified mean PV equation (2.11) would
be equally valid for any tracer q advected by a horizontal
nondivergent velocity in the presence of some noncon-
servative term S, provided the tracer thickness ]qy was
sufficiently well behaved that q would be a reasonable
meridional coordinate. We will now explore some of
the dynamical implications of this thickness flux frame-
work, with a particular focus on wave–mean flow in-
teraction theory. The results in this section are restricted
to small-amplitude eddies.

a. The modified mean PV equation provides a
decomposition of wave driving into parts
due to wave transience, wave dissipation,
and wave-induced mass redistribution

The mean PV equation (2.15) can be rewritten

y]q yy y y1 u · =q 2 S 5 2= · (u9 q9). (3.1)
]t

(We assume small-amplitude eddies, and all x and t
derivatives are understood to be taken at fixed y unless
otherwise noted.) In (3.1), the mean dynamics can be
thought of as being forced by the PV flux divergence
= · . This interpretation of the eddy forcing ofy(u9 q9)
the mean dynamics is a common starting point for di-
agnostic studies of the role of eddy forcing of zonally
asymmetric flows (e.g., Hoskins et al. 1983).

On the other hand, from the modified mean PV equa-
tion (2.11) with the small-amplitude expressions (2.12)–
(2.14), we see that, to second order in eddy amplitude,
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y]q y ]qy y eddy1 u · =q 2 S 5 2 2 = · P 1 S ,eddy]t ]t
(3.2)

where

= · P [ ] (c , q ) 1 ] (c , q )xy eddy xy eddy

5 u · =q 1 u · =q , (3.3)eddy eddy

and where we can choose

P 5 u eddyq 1 u q eddy. (3.4)

In (3.3)–(3.4), u eddy 5 k̂ 3 =c eddy. In (3.2), the mean
dynamics can be thought of as being forced by a com-
bination of wave transience (]q eddy/]t), wave dissipation
(S eddy), and a term that remains even when the eddies
are steady and conservative (= · P). This alternative in-
tepretation is reminiscent of zonal wave–mean flow in-
teraction theory.

An important difference from the zonal theory is the
presence of the term = · P in (3.2). The term = · P con-
sists of a contribution [u eddy · =q in (3.3)] that represents
advection by a wave-induced velocity of the mean PV
and a contribution [u · =q eddy in (3.3)] that represents
advection by the mean velocity of a wave-induced PV
contribution. We have, from (3.1) and (3.2),

]q eddyy= · (u9 q9) 5 1 = · P 2 S ,eddy]t

for small-amplitude eddies, (3.5)

and
y= · (u9 q9) 5 = · P, for steady and conservative

small-amplitude eddies. (3.6)

By definition of the transformation to mean-height
coordinates discussed in section 2, we have

q ] q
∗q ∗q ∗q] (u h )z 5 2 3h ] (c , q )4. (3.7)∗qx q5q xy∗q]q

This shows that the thickness flux in the mean thickness
equation (2.6) and the advection term in the modified
mean PV equation (2.11) are directly related. Using the
notation of this section, (3.7) becomes

qq ∗q ∗q q q] 3u (q )h (q ) 1 (u9 h9 ) 4) ∗qx q5q

] q y y∗q5 2 h (q ) 3] (c , q ) 1 = · P4 . (3.8)5 6xy∗q]q

Equation (3.8) shows that the total (i.e., mean plus eddy)
thickness flux is directly related to the total modified
mean PV advection. However, there is no evident direct
relation between the eddy terms on each side of (3.8);
part of the difficulty in determining such a relation re-
sults from the fact that q and y coordinate means them-
selves differ by second-order eddy quantities. It is nev-
ertheless clear from the equation that, as seen from a
y-coordinate perspective, = · P is the eddy contribution

to the thickness advection. We therefore intepret = · P
as a wave-induced mass redistribution term and, using
(3.5)–(3.6), intrepret the flux P as the part of the PV
flux associated with wave-induced mass redistri-yu9 q9
bution.

b. The P flux can be associated with a ‘‘workless’’
eddy stress

The mass-redistributing part of the eddy PV flux, P,
is related to a mechanical stress on the mean flow. The
vector 2k̂ 3 u9yq9 is often thought of as a force on the

component of the mean momentum equations (Plumbyu
1990; Hoskins 1983). So the mechanical stress 2k̂ 3
P that is associated with the term u q eddy in (3.4) is
always perpendicular to the mean flow, and therefore
‘‘workless,’’ as Plumb (1990) puts it. In the special case
that the mean flow is along the mean PV contours, the
mean streamfunction is a function of q . In this case, it
is straightforward to show that

dq
= · P 5 (k̂ 3 =B) · =q 5 = · 2u B , (3.9)1 2dc

where B is an averaged eddy quantity defined by

yu9 q9 1 ] 1 dc
2B 5 1 (q9) . (3.10)[ ]] q ] q ]y 2 dqy y

From (3.9) we can choose

dq
P 5 2u B, (3.11)

dc

and the corresponding force 2k̂ 3 P is workless.

c. The P flux is related to Illari and Marshall’s
(1983) modified PV flux

Illari and Marshall’s (1983) [see also Marshall and
Shutts (1981)] analysis of the mean and mean variance
equations for the PV and the buoyancy provides another
interesting perspective on the role of P in the mean
dynamics. Given a c–q relation, they identify a rota-
tional contribution to the PV flux,

dc 1
y 23(u9 q9) 4 5 k̂ 3 = (q9) . (3.12)

R [ ]dq 2

This contribution, whose dot product with =q cancels
the advection of eddy enstrophy in the eddy enstrophy
equation (2.16), can have a substantial up-PV-gradient
component, and, as seen in an example Illari and Mar-
shall describe, can dominate the total PV flux obtained
from meteorological data. Illari and Marshall point out
that it is the remaining flux (u9yq9) 2 [(u9yq9)]R that is
dynamically important. We will call (u9yq9) 2 [(u9yq9)]R

the ‘‘modified PV flux.’’
With (3.12), the definition of B in (3.10) can be writ-

ten
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y y(u9 q9) 2 3(u9 q9) 4
R

B 5 , (3.13)
] qy

giving, from (3.11),
y y(u9 q9) 2 3(u9 q9) 4

R
P 5 u . (3.14)[ ]u

This expression for P can be simplified further if the
x direction is interpreted as running along mean stream-
lines and the y direction is interpreted as running per-
pendicular to mean streamlines. This choice of coor-
dinates has been discussed in section 2. We will now
use the following notation:

x is the mean alongstream coordinate,
y is the mean cross-stream coordinate,
u 5 u · x̂ is the velocity component in the x direction,

and
y 5 u · ŷ is the velocity component in the y direction.

(3.15)

In (3.15), (x̂, ŷ) are the unit vectors in the x and y
directions. In this coordinate system, the mean velocity
is u 5 u x̂, and therefore, using the coordinates (3.15),

y yP 5 (u9 q9) 2 3(u9 q9) 4 x̂ and5 6R

]
y y= · P 5 (u9 q9) 2 3(u9 q9) 4 . (3.16)5 6R]x

We have shown that given a c–q relation and small-
amplitude eddies, the mass-redistributing part of the PV
flux reduces to the alongstream component of the mod-
ified flux.

d. The modified cross-stream PV flux can be directly
related to wave transience and wave dissipation

The reduction (3.16) of P to an alongstream vector
leads to a decoupling of the along- and cross-stream
components of the PV flux. By definition of the rota-
tional component of the PV flux (3.12),

y y y= · (u9 q9) 5 = · (u9 q9) 2 3(u9 q9) 4 . (3.17)5 6R

Combining the equation for the mean dynamics (3.2)
with (3.16), we find that

]q eddyy= · (u9 q9) 5 2 S eddy]t

]
y y1 (u9 q9) 2 3(u9 q9) 4 . (3.18)5 6)yR]x

Then (3.17) and (3.18) together imply that

] ]q eddyy y(y9 q9) 2 3(y9 q9) 4 5 2 S . (3.19)5 6) eddyxR]y ]t

Equation (3.19) shows that the cross-stream component
of the modified PV flux is associated with wave tran-
sience and dissipation. [This result, which is implicit in

Marshall and Shutts (1981) and Illari and Marshall
(1983), can be directly obtained from the eddy enstrophy
equation (2.16) in the alongstream coordinates (3.15),
in which 5 0.] The alongstream component, how-y] qx

ever, is unconstrained by (3.17) and (3.18). For steady
conservative eddies, (3.19) indicates that (y9yq9) 5
[(y9yq9)]R and from (3.17) we have

] ]
y y y= · (u9 q9) 5 3(u9 q9) 4 1 3(y9 q9) 4 ,

R]x ]y

]
y y5 (u9 q9) 2 3(u9 q9) 4 , and5 6R]x

5 = · P (for steady conserative eddies).

(3.20)

From the definition of q eddy, (2.12), and the definition
of S eddy, (2.14), Eq. (3.19) may be integrated in y, lead-
ing to

2 y] 1 (q9) (S9 q9)
y y(y9 q9) 2 (y9 q9) 5 2 1 . (3.21)R [ ]]t 2 ] q ] qy y

[Here, we have used that fact that S is a second-order
quantity for a slowly varying mean flow with a c–q
relation from (3.1) or (3.2).] Using the definition of the
rotational component of the PV flux (3.12), this may be
rewritten

y]A ] dc 1 (S9 q9)
y 21 (y9 q9) 2 (q9) 5 , (3.22)[ ]]t ]x dq 2 ] qy

where
21 (q9)

A 5 . (3.23)
2 ] qy

For a zonal mean flow, if the averaging operation is
taken to be a zonal average, then A is the classic Elias-
sen–Palm wave activity, and (y9yq9) can be rewritten as
the divergence of the Eliassen–Palm flux. In this case,
(3.22) reduces to the zonal wave-activity conservation
law that can be derived directly from the PV equation
(2.1) [see Andrews et al. (1987) for such a derivation].
In particular, A can be shown to be globally conserved
in the absence of wave dissipation. One is tempted to
generalize this zonal wave-activity conservation law to
nonzonal mean flows by writing (y9yq9) as the diver-
gence of a flux, but this cannot be done straightfor-
wardly in the curvilinear coordinates given by (3.15).
Therefore, despite appearances, (3.22) is not a wave-
activity conservation law.

4. Summary

We have introduced the idea that the PV thickness
flux framework, following an analogy with the buoy-
ancy thickness flux framework, provides a natural way
to consider eddy-driven effects in zonally asymmetric
mean flows. In this framework, steady and conservative
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eddies redistribute mass between PV contours, and non-
conservative effects are naturally associated with a loss
or gain of mass between PV contours.

We have derived mean thickness and modified mean
PV equations that are valid for finite-amplitude eddies.
The modified mean PV equation is essentially a special
case of MM’s modified mean buoyancy, or TRM, equa-
tion. Our direct coordinate transformation approach is
somewhat simpler than theirs and is valid for finite-
amplitude eddies. One also has the choice of working
in a Cartesian x–y coordinate system or in curvilinear
coordinates following the mean flow.

We have then explored some dynamical implications
of this framework. The modified mean PV equation de-
composes the wave driving of the mean flow into effects
of wave transience, wave dissipation, and wave-induced
mass redistribution between PV contours. The wave-
induced mass-redistribution can be shown to be locally
workless in Plumb’s sense and involves downstream
convergence of the modified part of the PV flux that
has been identified by Illari and Marshall (1983). The
cross-stream component of the modified PV flux is di-
rectly related to wave transience and dissipation. The
relationship between the PV flux and the eddy terms in
the modified mean PV equation reduces to the zonal
wave-activity conservation law for a zonal mean flow.

5. Discussion

An important question is whether it is valid to assume,
as we have from the start, that the PV thickness is sign
definite (usually positive definite) for realistic geo-
physical flows. In the presence of irreversible PV mixing
and homogenization associated, for example, with Ross-
by wave breaking and the enstrophy cascade of geo-
strophic turbulence, the meridional PV gradient can be-
come small or switch sign and hence the PV thickness
can become locally ill-defined.

One way to address this question would be to ‘‘coarse
grain’’ the PV distribution by passing it through a low-
pass filter in space and time. The coarse graining could
remove irreversibly deformed PV contours and leave
behind a relatively well-behaved smoothed PV distri-
bution with a well-defined thickness. This procedure
would help separate reversible from irreversible eddy
processes, which are both potentially important in non-
zonal wave–mean flow interaction. The fluctuations of
the coarse-grained PV contours could still produce con-
servative redistributions of mass as outlined in this pa-
per, while the mass fluxes associated with the filtered-
out features could play the role of the source term S in
the PV equation (2.1).

Unfortunately, we know of few good model exam-
ples, besides Plumb’s (1990) analysis of mean flow in-
teraction effects for a wave train propagating through a
stationary Rossby wave, to illustrate these ideas. A
promising set of model problems involves waves prop-
agating through a nonzonal PV distribution consisting

of a few PV contours separating regions of uniform PV,
as analyzed by Swanson et al. (1997).

Another approach is to apply these ideas to analyze
eddy-induced mean flow effects in an appropriate linear
model. Recent work has shown that linear stochastic
models (e.g., Delsole and Farrell 1995; Whitaker and
Sardeshmukh 1998; Zhang and Held 1999) are able to
reproduce important features of atmospheric eddy sta-
tistics in models and in GCMs, including the sensitivity
of these statistics to changes in the mean flow. It should
be fruitful to analyze the mean-flow tendencies pre-
dicted by linear stochastic models from this thickness
flux perspective.

More ambitiously, one could try to analyze atmo-
spheric observations from this perspective. This would
amount to diagnoses of the mass budget of tubes bound-
ed above and below by coarse-grained isentropic sur-
faces and to the north and south by coarse-grained iso-
vortical surfaces. In this context, we note that the gen-
eralization of these barotropic results to three-dimen-
sional quasigeostrophic (QG) dynamics is straightforward.
If, instead of representing the barotropic PV, q is taken
to represent the three-dimensional QG PV, then the pre-
sent results carry through for QG dynamics by simply
taking the streamfunction and the PV to be functions of
x, y, and z, the QG dynamical equation being of the
same form as the barotropic vorticity equation (2.1).
One can apply the same analysis to the surface-tem-
perature equation as well. Such an observational anal-
ysis would be of interest to the extent that the coarse
graining resulted in a meaningful separation between
reversible PV thickness redistribution and irreversible
mixing.
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APPENDIX A

Details of Derivation of Eq. (2.3)

Assuming that h in (2.2) is positive definite, we may
transform the PV equation (2.1) into q coordinates as
follows:

]y ]y ]y ]c
1 u 2 y 5 2 5 2Sh, (A1)) ) ) )]t ]x ]t ]xq q q q

which is an equation for the contour position y(x, q, t).
To derive the contour equation (A1), we have used the
following:
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]q 1 ]y ]q 1 ]y
5 2 , 5 2 (A2)) ) ) )]t h ]t ]x h ]xy q y q

and

]y ]c ]y ]c ]c
u 2 y 5 2 2 5 2 . (A3)) ) ) )]x ]y ]x ]x ]xq q y q

Alternatively, we may obtain (A1) directly by using Dy/
Dt 5 y , with the material derivative expressed in q
coordinates. Taking the q derivative of the contour equa-
tion (A1) gives

]h ] ]c ](Sh)
2 5 2 , (A4)) 1 2)]t ]x ]q ]qq q

and Eq. (2.3) follows using

]c ]c ]y
5 5 2uh. (A5)

]q ]y ]q

APPENDIX B

Some Results for Small-Amplitude Eddies

Consider a PV distribution, q 5 q(y, t), that is a
function of the independent coordinates y and t . Here
y is the meridional coordinate and t is a fast coordinate
in the sense that q’s dependence on t may be averaged
out with a suitable averaging operation. For example,
t could represent time, a spatial coordinate associated
with short-scale variations, the phase of a wave, or an
index indicating a particular member of an ensemble of
realizations. We denote averaging over the t coordinate
by an overbar, and we have in the notation of section 2,

y y yq(y, t) 5 q 5 q ( y). (B1)

We may then define the disturbance PV q9y 5 q9( y, t) by
yyq(y, t) 5 q (y) 1 q9(y, t), with q9(y, t) 5 0.

(B2)

(Henceforth we will use the superscript y or q notation
only where necessary to avoid ambiguity.) Even if the
averaging operation, such as time filtering over a finite
time interval, does not entirely eliminate the t depen-
dence, it is understood that K |]t [log(q9)]|.y|] [log(q )]|t

For illustration we consider a simple model PV dis-
tribution,

q(y, t) 5 by(1 1 e sint)1/2, e K 1, (B3)

where t 5 t is time and b is a constant. This PV dis-
tribution represents an oscillation with order e amplitude
about a b-plane distribution of PV. From (B3), we have

yy 1/2 1/2q (y) 5 by(1 1 e sint) 5 by(1 1 e sint)
2ø by(1 2 e /16), (B4)

where in this case the overbar represents a time average
over a time interval much greater than unity, and in the

approximation we have neglected terms of O(e3). Equa-
tion (B4) indicates that in this example the presence of
waves of order e amplitude gives rise to an order e2

northward shift in the mean PV distribution.
A similar expansion for y yields

qqy(q, t) 5 y (q) 1 y9(q, t), with y9(q, t) 5 0.
(B5)

In our model example,
21 21/2y 5 b q(1 1 e sint) , so that

q 21 2y 5 b q(1 1 3e /16). (B6)

We assume that the disturbances are small in the usual
sense that, for example, |q9|/ K 1. (In our modely|q |
example, |q9|/ ; e K 1.) Then a Taylor series ex-y|q |
pansion yields, for q,

y q qq 5 q [y (q) 1 y9(q, t)] 1 q9[y (q) 1 y9(q, t), t]
y q]q [y (q)]y q qø q [y (q)] 1 q9[y (q), t] 1 y9(q, t)q]y

q]q9(y , t)
1 y9(q, t)q]y

y q21 ] q [y (q)]
21 [y9(q, t)] , (B7)q22 ]y

where in the approximation terms of up to second order
in disturbance amplitude are retained.

Any function can be obtained explicitly fromqg[y (q)]
function g(y) by substituting the function for theqy (q)
y dependence in g(y). In our model example,

y q 21/2 1/2q [y (q)] 5 q(1 1 e sint) (1 1 e sint)
2 35 q[1 1 e /8 1 O(e )]. (B8)

We now show, by taking the fixed q mean of (B7),
that 2 q is, in general, a second-order quantityy qq [y (q)]
as it is in (B8). The fixed q mean of the left-hand side
of (B7) is simply q. The quantity , a mean (i.e.,y qq [y (q)]
t independent) function, is also unchanged by the fixed
q mean: 5 . [For example, (B8)

qy q y q{q [y (q)]} q [y (q)]
is unchanged by a fixed q mean.] In general, the fixed
q mean of a function of is the same as its fixedqy (q)

mean. Then the quantity , which is theq qy (q) q9[y (q), t]
perturbation to , vanishes under a fixed q mean,y qq [y (q)]
because 5 5 0, where

qq ȳq q{q9[y (q), t]} {q9[y (q), t]}
the last step follows from (B2). [For example, for our
model distribution (B3),

q 21/2q9[y (q), t] 5 q(1 1 e sint)
1/2 1/23 [(1 1 e sint) 2 (1 1 e sint) ],

whose fixed q mean clearly vanishes.] However, it
should be noted that in general 5

q
(q9)

± 0. [For example, for our model dis-
q

{q9[y(q, t), t]}
tribution, it can be shown that 5 2qe2/8 to second

q
(q9)

order.] Since 5 0 by definition, we have to
q

y9(q, t)
second order that
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2]q9 1 ] qy q 2q 5 q (y ) 1 y9 1 (y9) , (B9)
2]y 2 ]y

which shows that q 2 is indeed a second-y qq [y (q)]
order quantity.

Using (B7)–(B9) we find the familiar result that to
first order in eddy amplitude

]q
q9 5 2 y9, (B10)

]y

which can be used to show that

2] 1 (q9)y qq 5 q (y ) 2 . (B11)[ ]]y 2 ] qy

[For our model distribution,

2] 1 (q9)y q 2 2q [y (q)] 5 q(1 1 e /8) and 2 5 2qe /8[ ]]y 2 ] qy

to second order, and the sum of these two terms is q,
which is consistent with (B11).]

Now recall the definition of q∗q in (2.10). Taking q
5 q∗q in (B11), we obtain (2.12).

Generalizing to any function u(y, t) or u(q, t), we
find to second order that

y q qyu ø u [y (q)] 1 u9 [y (q), t]
y q qy]u [y (q)] ]u9 [y (q), t]

1 y9(q, t) 1 y9(q, t)q q]y ]y
y q21 ] u [y (q)]

21 [y9(q, t)] , (B12)q22 ]y

where we have used the superscript ‘‘9y’’ notation to
specify that the u perturbation is evaluated in y coor-
dinates, but we note that is really a functionqyu9 [y (q), t]
of q and t . Similarly to (B9), we find

y 2]u9 1 ] uq y q 2u (q) 5 u (y ) 1 y9 1 (y9) . (B13)
2]y 2 ]y

Equations (B12)–(B13) imply the standard result that
to first order

]u
q yu9 5 u9 1 y9, (B14)

]y

which, when substituted into (B13), gives

qu9 ] (y9)q qu (q) 1
] yq

] 1 ]uy q y 25 u (y ) 1 u9 y9 1 (y9) ,[ ]]y 2 ]y

y 2] u9 q9 1 ]u (q9)y q5 u (y ) 1 2 1 . (B15)
2[ ]]y ] q 2 ]y (] q )y y

To derive (B15), we have used (B10) and the fact that
]q y 5 to first order. For q∗q defined in (2.10) weq] yq

then have
qu9 ] (y9)q q∗qu (q ) 1
] yq

y 2] u9 q9 1 ]u (q9)y5 u (y) 1 2 1 , (B16)
2[ ]]y ] q 2 ]y (] q )y y

or in the notation of section 2
q qu9 h9q ∗qu (q ) 1
h

y 2] u9 q9 1 ]u (q9)y5 u (y) 1 2 1 . (B17)
2[ ]]y ] q 2 ]y (] q )y y

Taking u in (B17) to be the zonal component of the
velocity, we see that the left-hand side of (B17) is u∗q

in (1.4) evaluated at q∗q, and is, by (2.7), equal to 2] yc∗q

evaluated at q∗q. Equation (2.13) follows, since the right-
hand side of (B17) is 2] y of the right-hand side of the
first equality in (2.13). Substituting the nonconservative
term S for u in (B17), we obtain (2.14).

Analogous results for density as a function of height
are derived by MM.

APPENDIX C

Derivation of the Modified Mean PV Equation
Based on the Mean PV and Eddy Enstrophy

Equations

We follow MM, who have constructed a similar mean
equation for the buoyancy starting with the mean z-
coordinate buoyancy and buoyancy variance equations.
The mean equation of MM is itself a generalization of
the transformed Eulerian mean formulation of Andrews
and McIntyre (1976) (see Andrews et al. 1987). For
quasigeostrophic scaling and zonally averaged dynam-
ics, Andrews and McIntyre (1976) point out that the
eddy buoyancy flux term can be removed by combining
the zonally averaged velocity (y z, w z) with appropriate
eddy terms. Here, y and w are the meridional and ver-
tical components of the velocity, and ‘‘ ’’ indicates a

z
A

fixed z zonal mean of A. In particular, Andrews and
McIntyre (1976) define a residual velocity (y ∗z, w∗z) that
is the sum of and a nondivergent velocityz z(y , w )
whose streamfunction is proportional to the meridional
buoyancy flux:
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z
z z(y9 b9 )z z∗z ∗z(y , w ) 5 (y , w ) 1 x̂ 3 = . (C1)zz [ ]] (b )z

As a starting point for their TRM velocity, MM use Eq.
(C1).

The fact that the residual circulation definition (C1)
leads to a partial cancellation of the apparent diabatic
term in the zonal mean buoyancy equation suggests a
similar approach for the mean PV equation (2.15). We
begin by defining a horizontal velocity,

y
y(u9 q9)y∗yu 5 u 1 k̂ 3 = , (C2)guess y[ ]] (q )y

where the subscript ‘‘guess’’ indicates that this trans-
formed velocity is defined heuristically by analogy with
the zonal theory, and the gradient is understood to be
taken in y coordinates. We here parallel MM’s approach
for the three-dimensional mean buoyancy equation,
starting with their Eq. (5). After extensive manipulations
that use the eddy enstrophy equation (2.16), we find
without approximation that

y]q y∗y1 u · =qguess]t

y y
2D ] 1 (q9) y ∗y5 1 A · =q 1 S 1 R 1 R ,y 3 45 6[ ]Dt ]y 2 ] (q )y

(C3)

where
yy 21 ]u (q9)

A 5 k̂ 3 = , (C4)y 25 62 ]y [] (q )]y

y y y
y 2y ] (S9 q9) 1 ]S (q9)

∗yS 5 S 1 2 1 , (C5)y y 25 6]y ] (q ) 2 ]y [] (q )]y y

and R3 and R4 involve higher-order products of the per-
turbation terms

y
y 2] u9 · =(q9)

R 5 (C6)3 y[ ]]y 2] (q )q

and

y
2] (q9) y

yR 5 2 ] 3= · (u9 q9) 4 . (C7)4 y y25 6]y 2[] (q )]y

(In this appendix, x and t derivatives are taken at fixed
y.)

The first two terms on the right-hand side of Eq. (C3)
are quadratic in the eddy amplitude and could therefore
contribute significantly to the mean flow forcing even
in the absence of eddy transience and dissipation. The
situation improves with some redefinitions, again fol-

lowing MM. First, we redefine the mean velocity to
include the A term; that is, we set

∗y ∗yu 5 u 2 Aguess

y yyy 2(u9 q9) 1 ]u (q9)y5 u 1 k̂ 3 = 2 . (C8)y y 25 6[ ]] (q ) 2 ]y [] (q )]y y

Next, we define a modified mean PV q∗y by
y

2] 1 (q9)y∗yq 5 q 2 . (C9)y[ ]]y 2 ] (q )y

Then (C3) may be rewritten, without approximation,
∗y]q

∗y ∗y1 u · =q
]t

y y∗y ∗y ∗y5 S 1 R 1 R 1 (u 2 u ) · =(q 2 q ).3 4

(C10)

Here MM derive analogous equations, although they
only include terms of up to second order in disturbance
amplitude.

Comparing (C9) with (2.12), (C8) with (2.13), and
(C5) with (2.14), it is evident that to second order in
eddy amplitude, q∗y 5 q∗q, u∗y 5 k̂ 3 =c∗q and S∗q 5
S∗y. Thus, Eqs. (2.11) and (C10) are equivalent in a
term-by-term sense to this degree of approximation.
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