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[1] Inversion methods are often used to estimate surface CO2 fluxes from atmospheric
CO2 concentration measurements, given an atmospheric transport model to relate the two.
The published estimates disagree strongly on the location of the main sources and sinks,
however. Are these differences due to the different time spans considered, or are they
artifacts of the method and data used? Here we assess the uncertainty in such estimates due
to the choice of time discretization of the measurements and fluxes, the spatial resolution of
the fluxes, and the transport model. A suite of 27 Bayesian least squares inversions has
been run, given by varying the number of flux regions solved for (7, 12, and 17), the time
discretization (annual/annual, annual/monthly, and monthly/monthly for the fluxes/data),
and the transport model (TM2, TM3, and GCTM), while holding all other inversion
details constant. The estimated fluxes from this ensemble of inversions for the land +
ocean sum are stable over large zonal bands, but the spread in the results increases when
considering the longitudinal flux distribution inside these bands. On average for 1990–
1994 the inversions place a large CO2 uptake north of 30�N (3.2 ± 0.3 GtC yr�1), mostly
over the land regions, with more in Eurasia than North America. The ocean fluxes are
generally smaller than given by Takahashi et al. [1999], especially south of 15�S and in
the global total, where they are less than half as large. A small uptake is found for the
tropical land regions, suggesting that growth more than compensates for deforestation
there. The results for the different transport models are consistent with their known
mixing properties; the longitudinal pattern of their land biosphere rectifier, in particular,
strongly influences the regional partitioning of the flux in the north. While differences
between the transport models contribute significantly to the spread of the results, an
equivalent or even larger spread is due to the time discretization method used: Solving for
annual mean fluxes with monthly mean measurements tended to give spurious land/ocean
flux partition in the north. We suggest then that this time discretization method be avoided.
Overall, the uncertainty quoted for the estimated fluxes should include not only the random
error calculated by the inversion equations but also all the systematic errors in the problem,
such as those addressed in this study. INDEX TERMS: 0322Atmospheric Composition and Structure:

Constituent sources and sinks; 1615 Global Change: Biogeochemical processes (4805); 1610 Global Change:

Atmosphere (0315, 0325); KEYWORDS: atmospheric inversions, carbon cycle, tracer transport model
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1. Introduction

[2] Understanding the global carbon cycle is a key prior-
ity in current environmental research because of the central

role it plays in regulating global warming. Our best esti-
mates of the amount of anthropogenic CO2 being taken up
by the oceans or remaining in the atmosphere are not large
enough to account for all of the emissions [Tans et al.,
1990]. The land biosphere is presumably taking up the
remainder, but the partitioning of this so-called ‘‘missing
sink’’ between the different ecosystems is rather uncertain.
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Given large differences in CO2 residence time between
different ecosystems (much longer for boreal forests than
tropical forests) [Kicklighter et al., 1999], predicting future
CO2 levels requires a better characterization of the spatial
distribution of the carbon sources and sinks. So far, a large
part of our knowledge comes from the use of measured
atmospheric CO2 concentrations at different locations. Spa-
tial and temporal concentration differences relate to the
surface sources and sinks through the atmospheric mixing.
Retrieving the surface fluxes from atmospheric measure-
ments is a typical inverse problem [Enting, 1999].
[3] Recent inverse studies have given rather conflicting

results for the mean carbon balance of the past 2 decades.
Table 1 details these estimates for the land biosphere.
Except for broad general feature like global totals for large
latitudinal bands, there is no general agreement when
considering large continental areas, even for inversions that
cover similar time periods (e.g., Bousquet et al. [1999a]
found a sink of 1.8 GtC yr�1 for Eurasia plus Siberia, while
Rayner et al. [1999] and Fan et al. [1998] obtained only a
0.3 and a 0.1 GtC yr�1 sink there). Why are the estimates so
different? Clearly, we must try to understand the capabilities
and limits of current inverse approaches. Whether the
current inversions are able to estimate carbon fluxes at the
continental and ocean basin scale or not is a crucial issue.
[4] In this study, we have investigated the main sources

of differences between commonly used inverse approaches
(like the studies in Table 1) and have tried to identify the
most sensitive components. How do transport uncertainties
affect the estimated fluxes? What is the influence of the
temporal resolution (data and fluxes) and the spatial reso-
lution (fluxes) in the inverse procedure? How should we
include independent information on the global ocean
uptake, obtained from other trace gases, in the inversion?
To achieve these goals, we conducted a series of inversions,
based on the Bayesian synthesis approach [Enting et al.,
1995], in which we successively changed particular com-
ponents in the setup of the inverse procedure (transport
model, time discretization method, and spatial resolution).
[5] The remainder of the paper is divided into three parts.

We first describe the different components of the ensemble
of inversions that was conducted. We then present the
estimated fluxes, starting from the most robust features to
the more highly uncertain ones. Finally, we discuss the
contribution of all investigated parameters to the overall
spread of the results.

2. Methodology

[6] One of the major goals of this study is to investigate
which differences in method between several recently pub-
lished inversion approaches contribute significantly to the

differences in their estimated fluxes (Table 1). To investigate
this, we performed a suite of inversions in which we
successively modified one parameter or component of the
inversion, while keeping the others fixed. After a brief
presentation of the inverse technique we review in this
section the different characteristics of the inversions, focus-
ing especially on the parameters that we varied. The list of
parameters or inversion settings that we explored includes
the atmospheric transport model, the spatial discretization of
the fluxes solved for (here the number of source regions), the
temporal resolution of the fluxes (annual or seasonal), and
the influence of constraints on the global ocean uptake.

2.1. Bayesian Synthesis Inversion

[7] We use the ‘‘Bayesian synthesis technique’’ [Enting et
al., 1995; Rayner et al., 1999; Bousquet et al., 1999a;
Baker, 1999; Peylin et al., 1999; Kaminski et al., 1999] to
perform our inversions. This technique seeks the linear
combination of fluxes that yields modeled concentration
fields that best match the observational data. It estimates the
errors of the inferred fluxes and allows one to include a
priori estimates of the flux magnitudes. Seasonally varying
fluxes are subdivided into individual sources, each corre-
sponding to a region or to a specific type of emission; these
sources are run through an atmospheric transport model to
compute their effect on atmospheric CO2 concentrations at
the monitoring stations. The annual or monthly magnitudes
of all sources (x) are then optimized by minimizing the cost
function,

J xð Þ ¼ 1

2
Hx� yoð ÞT Roð Þ�1

Hx� yoð Þ
h

þ x� xb
� �T

Pb
� ��1

x� xb
� �i

; ð1Þ

where Hx and yo are the vectors of the modeled and
observed CO2 concentrations and xb is a vector of the a
priori fluxes. Ro and Pb denote the covariance matrices for
the errors assumed in of yo and xb, respectively (they are
taken to be diagonal here). The second term in equation (1)
penalizes deviations of the estimate from the a priori flux
values: This term (which characterizes the Bayesian
approach) regularizes the problem; that is, it ensures the
existence of a unique, well-defined minimum of J(x). An
overview of this technique can be found in Enting et al.
[1993].

2.2. Temporal Discretization of the Data and Fluxes

[8] In the synthesis inversion technique the degree of
temporal discretization of the concentration yo and the
sources x is at the discretion of the modeler: The modeler
might specify the time-dependence of the fluxes completely

Table 1. Recent Inverse Results for the Net CO2 Uptake by the Land Biosphere

Reference Sites Period Total Europe Siberia N. Amer. Trop.

Bousquet et al. [1999a, 1999b] 77 85–95 �1.3 ± 1.6 �0.3 ± 0.8 �1.5 ± 0.7 �0.3 ± 0.5 0.8 ± 1.0
Peylin et al. [1999] 53 90–95 �1.2 ± 2.8 �0.6 ± 1.5 �0.8 ± 1.2 �1.0 ± 1.2 1.2 ± 1.2
Rayner et al. [1999] 13 80–95 �0.7 ± ? �0.2 ± ? �0.1 ± ? �0.5 ± ? 0.1 ± ?
Kaminski et al. [1999] 25 81–87a �1.0 ± 0.5 �0.1 ± 0.2 �0.6 ± 0.3 �0.2 ± 0.3 �0.1 ± ?
Fan et al. [1998] 63 88–92a �1.6 ± 1.7 �0.1 ± 0.7 �1.7 ± 0.5 0.2 ± 0.9

aEl Niño removed.

ACH 5 - 2 PEYLIN ET AL.: ATMOSPHERIC CO2 CONVERSIONS



or, at the other extreme, might choose to solve for the fluxes
on a daily (or even shorter) basis. Among recent inverse
studies, two discretizations have been used most frequently
for x and yo: annual and monthly. Figure 1 summarizes four
different inversion setups that can be derived from these
resolutions and that have been examined in this study. The
terminology used was introduced by Peylin et al. [1999].
1. The first inversion setup is the annual adjustment with

annual data, denoted TIa (time-independent adjustment). In
such an inversion, only the annual magnitude of each source
is optimized. The temporal pattern of the fluxes (the
seasonality) is specified a priori, and a single multiple of
this pattern is solved for. The modeled concentrations are
averaged into one annual value that is then compared with
the observed annual mean concentration at each site. The
studies of Fan et al. [1998] and Gloor et al. [2000] follow
this approach.
2. The second setup is the annual adjustment with

monthly data, denoted TIm. In such an inversion, as in the
TIa case, the fluxes for each region are solved for as a
multiple of a prespecified temporal pattern. However, in this
case the modeled concentrations are optimized against 12
monthly data averages at each station, instead of a single
annual value. The strong seasonality of the atmospheric
CO2 concentration in the Northern Hemisphere thus
becomes an additional constraint to the inverse problem,
compared with the TIa case. It is important to note that the
inferred fluxes in this case should differ from those of the
TIa case because of the use of the least squares minimiza-
tion (i.e., a quadratic J(x)). If we were minimizing simple
differences (absolute values) between the modeled and
observed concentrations, the results would be identical
between the TIa and TIm methods. The TIa case averages
both data and response functions of the TIm case so that the
inversion behavior could be quite different in the least
squares framework. Note that in the TIm method, there are
12 times more constraints than in the TIa method. The
studies of Hein et al. [1997], Bousquet et al. [1999a,
1999b], Taguchi [1999], and Ciais et al. [1998] follow this
approach, while Enting et al. [1995] used a similar method,
solving for several frequencies rather than 12 monthly
fluxes.
3. The third setup is the monthly adjustment with

monthly data, denoted TDm (TD for time-dependent
adjustment). Note that this terminology has also been used
to describe interannual variability, whereas we only
consider intra-annual variability here. In such an inversion,
monthly source magnitudes are solved for, as opposed to in
the two preceding TI cases, for which the relative temporal
patterns were specified. Because 12 times more flux
parameters are solved for, this inversion gives modeled
concentrations that fit the observed ones better than in the
TIm method. The studies of Peylin et al. [1999], Rayner et
al. [1999], Baker [1999], Kaminski et al. [1999]Bousquet et
al. [2000], and Baker [2001] follow this approach.
4. The fourth setup is the monthly adjustment with

annual data, denoted TDa. In such an inversion the number
of sources to be optimized tends to be larger than the
number of observational constraints. Given the 46 observa-
tional sites used in this study for a case in which fluxes from
7 regions are solved for, the TDa inversion would have only
46 observations to constrain 84 sources (7 regions � 12

months). If an a priori constraint were not used, this
problem would be underconstrained; even with a priori, the
annual measurements provide little insight into the seasonal
pattern of the fluxes. For these reasons this case has not
been used so far in published studies and will not be
addressed in this study either.
[9] There has been a debate in the scientific community

about which of the three inverse approaches used so far
(TIa, TIm, and TDm) is the most reliable for predicting
long-term flux averages, given the actual CO2 measurement
database and the strengths and weaknesses of our current
three-dimensional (3-D) transport models. One view is that
errors in the transport models are likely to have a greater
negative impact when comparing to observations at shorter
time scales, at which synoptic scale variability and the
details of the large seasonal cycles of the fluxes are more
pronounced. One could thus argue that the annual data
method (TIa) would tend to reduce the uncertainty due to
transport errors compared with the monthly data methods
(TIm and TDm), since annual diagnostics will average over
the monthly varying transport. On the other hand, the flux
estimates in the TIa method rely strongly on the time
distribution assumed for the a priori fluxes, as noted by
Bousquet et al. [1999b], and one can question the validity of
an inversion that would match only the annual observations
without being required to match the seasonal cycle as well.
How the annual mean biospheric CO2 flux should be
distributed seasonally, whether during the growing season
or during the winter, is largely uncertain. From this point of
view the monthly adjustment method (TDm) has the
advantage of being rather independent of the seasonal
pattern assumed for the a priori sources. The TIm method
is an intermediate case. It generally has the advantage of
having more data values constraining the inversion than
parameters being solved for. On the other hand, this
inversion fits the seasonal data using fixed a priori temporal
flux patterns that might well be erroneous. Given these
considerations, the choice of the most robust time resolution
remains unclear and tightly related to the transport model
and the a priori fluxes that are used. In this study, we will

Figure 1. Temporal discretization for the data and sources
used for these inversions (either annual or monthly) and the
corresponding numbers of atmospheric constraints and
sources to solve for. The labels TIa, TIm, and TDm will
refer to annual adjustment with annual data, annual
adjustment with monthly data, and monthly adjustment
with monthly data, respectively. Note that the TDa case is
not generally used since it is largely underconstrained.
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compare the differences in the estimated fluxes obtained
using the TIa, TIm, and TDm time resolution to the differ-
ences caused by the transport models and spatial discretiza-
tion assumed. This study extends the work of Peylin et al.
[1999] and Law and Rayner [1999] and establishes a
framework for comparing inversions using different time
resolutions and transport models. The TransCom 3 inter-
comparison (available at http://transcom.colostate.edu/) will
extend this work with more models.
[10] The choice of a priori uncertainties for the measure-

ments and the a priori fluxes (Ro and Pb in equation (1))
requires particular attention. For a relevant statistical com-
parison of the three time resolution (TIa, TIm, and TDm) we
need to ensure that the relative weight between the measure-
ments and priors as a whole is the same in the cost function
for the three cases. In order to fulfill this constraint, we use
the hypothesis of random and independent errors to set the
values in Ro and Pb. We define monthly errors for both
quantities and then sum them in a root-mean-square (RMS)
sense to compute the annual errors (see section 2.3).

2.3. Components of the Inversions

2.3.1. Atmospheric Transport
[11] We use three different transport models, TM2, TM3,

and GCTM, to calculate the CO2 concentrations at each
station that result from each source scenario (we call these
maps the response functions). Table 2 summarizes the main
characteristics of these models. All three models are off-line
3-D atmospheric tracer transport models driven by mete-
orological fields derived from the European Center for
Medium Range Weather Forecast (ECMWF) for TM2 and
TM3 and from a parent General Circulation Model for
GCTM. The horizontal and vertical resolutions are different
between the three models, GCTM having a much finer grid
in the horizontal than TM2 and TM3, and TM3 having the
greatest vertical resolution (19 levels). Vertical convective
and diffusive transport are computed at all levels in each
model.
[12] These models have participated in phases I and II of

TransCom, a model intercomparison experiment based on
fossil fuel CO2 emissions and annually balanced biospheric
CO2 fluxes [Law et al., 1996], and SF6 fluxes [Denning et
al., 1999]. (Note that the phase I results for TM3 were run
afterwards and reported by Bousquet [1997].) The interhe-
mispheric exchange time (t) computed with a fossil fuel
source quantifies the global north to south mixing across the
three models (Table 2) for this tracer. The value of t defined
using surface concentrations shows that of the three models
TM2 has the shortest interhemispheric mixing for the lower
atmosphere, and TM3 has the longest. When computed
using the full 3-D concentration field, the t values indicate

that GCTM has the fastest exchange time. For the inversion
problem addressed here the first measure is more relevant,
since most of the CO2 measurement sites are at the surface.
The comparison with the neutral, seasonal biospheric source
used in TransCom 1 indicates that TM3 and GCTM produce
a large positive south to north latitudinal CO2 gradient (the
so-called ‘‘rectifier effect’’ [Keeling et al., 1989; Denning et
al., 1995]), while TM2 produces nearly no gradient. Over-
all, the TM2, TM3, and GCTM models represent a rela-
tively wide range of transport characteristics (especially in
terms of the magnitude of the rectifier) by comparison with
the range of models that participated in TransCom. One can
thus expect that the inverse fluxes from these three models
will account for much of the range of uncertainty that would
be contributed by the transport of the models that partici-
pated in the TransCom simulations.
2.3.2. Atmospheric CO2 Data
[13] We use measurements of atmospheric CO2 made at

many locations by different networks, smoothed in time,
and compiled into a global database [GLOBALVIEW-CO2,
1999]. From this database we choose only the stations that
took data over most of the 1990–1994 period. Note that this
was a period with an abnormally low CO2 accumulation rate
in the atmosphere (�1.2 ppm yr�1 versus 1.63 ppm yr�1 for
the last 20 years). We excluded some of the Pacific and
South China Sea shipboard cruise data, since many of these
sites are located very close together (within the same model
grid box) and since their time series are defined with a
rather small number of flask measurements. Including all of
them would overemphasize the atmospheric constraint in
those zones. We also excluded two continental sites, Baltic
Sea (BAL) and Monte Cimone (CIM) in Italy, as they are
not well represented by the coarse resolution of two of the
transport models that we use. Those two sites are large
outliers from the marine zonal mean reference curve at
northern midlatitudes [Masarie and Tans, 1995]. The posi-
tions of the 46 sites that we did choose to use are given in
Figure 2.
[14] All the inversions performed in this study assume

that the seasonal cycles of the estimated fluxes repeat year
after year across the data span. We thus define a ‘‘climato-
logical’’ CO2 time series by fitting the data at each station to
a ‘‘smooth time series’’ consisting of an annual mean value,
a global trend identical at all sites, and a mean seasonal
cycle that repeats for each year [Thoning et al., 1994]. The
monthly data error (Rmon,i

o ) is defined at each station, i, as
the standard deviation of all residuals between the raw flask
data and the ‘‘smooth time series.’’ For the annual data
method (TIa) we derive the errors in the annual mean
concentration (Rann,i

o ) from the errors in the monthly fluxes
(Rmon,i

o ) by assuming they are all independent and by

Table 2. Spatial Resolution, Wind Fields, Convective Scheme, Interhemispheric Exchange Times and Reference for the Three Models

Used in the Inverse Comparisona

Model Resolution
(lon � lat � lev.)

Wind Convection Interhemis t References

Surface Global

TM2 7.5� � 7.5� � 9 ECMWF(90) Tiedke (89) 1.56 1.10 Heimann et al. [1989]
TM3 5� � 4� � 19 ECMWF(90) Tiedke (90) 1.83 1.18 Heimann et al. [1995]
GCTM 2.4� � 2.4� � 11 GCM on-line 1.76 0.82 Mahlman et al. [1978]

aThe exchange times are calculated from the fossil simulation of the TRANSCOM 1 experiment [Law et al., 1996] and are measured in years. Surface
values correspond to the use of only the 2-D surface field to compute t, while global values make use of the 3-D field.
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summing them in an RMS sense (using the formula
V [(

P12
i¼1Xi)/12] = 1/12 � V [X ], where V [�] is the variance

operator and X is a random variable) so that

Ro
ann;i ¼ Ro

mon;i=
ffiffiffiffiffi
12

p
: ð2Þ

The monthly errors for all sites are given at the bottom of
Figure 11.
2.3.3. A Priori Flux Scenarios and Spatial Resolution
[15] We specify the following CO2 sources and sinks

(Table 3):
1. The first source is Fossil fuel emissions (FOS). We use

the spatial distribution of the annual source compiled by
Andres et al. [1996] scaled to a global total of 6.1 GtC yr�1

for the period 1990–1994. We presubtract the resulting
concentration at each site from the CO2 measurements,
since this fossil fuel CO2 source is known much more
accurately than the other flux terms.
2. The second source is ocean net flux (OCE). We use

the spatial and temporal patterns of the air-sea exchange as

compiled by Takahashi et al. [1997]. Takahashi et al.
[1997] used extrapolated and interpolated �pCO2 data and
the gas exchange formulation of Wanninkhof [1992]. The
more recent Takahashi et al. [1999] ocean flux distribution
includes new measurements of �pCO2 in the southern
ocean and gives a global ocean sink of �2.2 GtC yr�1. We
have scaled the Takahashi et al. [1997] spatial flux patterns
by region to the regional magnitudes given by Takahashi et
al. [1999] but modified slightly to give a global ocean sink
of �2.0 GtC yr�1. We choose an annual a priori uncertainty
(Pann,i

b ) of 1.0 GtC yr�1, identical for all basins. We define
the monthly a priori errors (Pmon,i

b ) in GtC month�1, by
assuming that the errors in the monthly fluxes are all
random and independent, as

Pb
ann;i ¼ Pb

mon;i �
ffiffiffiffiffi
12

p
: ð3Þ

3. The third source is biotic gross fluxes. For the TM2
and TM3 transport model cases we use the biotic gross

Figure 2. Map of the different regions used in the inversions: three land regions in gray (North
America, Eurasia, tropics) and four oceanic regions separated by solid lines (North Pacific, North
Atlantic, tropics, southern extratropics) for the 7-regions case. The dotted lines figure the division for the
12-regions case (boreal and temperate North America, boreal and temperate Eurasia, tropical America
and Africa, Austral-Asia, arctic North Atlantic, temperate North Atlantic, tropical ocean, temperate
southern oceans and the southern ocean) and the 17-regions case (same as the 12-regions cases with
tropical America and Africa split into two parts, the tropical oceans split into three parts, and the
temperate southern oceans split into three parts). The location and acronyms of the stations used in this
study are also shown.
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fluxes of photosynthesis and respiration (GPP/RES) from
the simple biosphere (SiB2) land surface model [Denning et
al., 1996]. For the GCTM model cases we use the net
primary production and heterotrophic respiration (NPP/
RESh) given by the Carnegie Ames Stanford Approach
(CASA) model [Potter et al., 1993]. The response functions
for these fluxes are the same ones used by us in previous
studies (Bousquet et al. [1999a] and Peylin et al. [1999] for
TM2 and TM3 and Baker [2001] for GCTM). The use of
different biotic flux scenarios allows us to partially account
for uncertainties in the spatial distribution of the biospheric
sink. Both the SiB2 and CASA models are based on
vegetation indexes retrieved from satellite measurements,
but they use very different parameterizations to compute
photosynthesis and respiration, as well as different climatic
variables. CASA uses a ‘‘light use efficiency’’ formulation
to convert the solar energy flux absorbed by plants into net
primary productivity [Potter et al., 1993]. SiB2 uses
photosynthesis equations originally developed at the leaf
scale, scaled up to the canopy level. The SiB2 model
predicts gross carbon assimilation (�GPP) [Sellers et al.,
1996] as a function of the climate simulated in the Colorado
State University General Circulation Model (CSU–GCM)
[Denning et al., 1996]. The resulting Net Primary Produc-
tion fields have been compared with those from 15 other
land biosphere models in the ‘‘Potsdam NPP comparison’’
[Cramer et al., 1999]. The spatial distribution of the NPP
given by SiB2 and CASA are quite similar, compared with
the full range spanned by the 17 models. On the other hand,
they differ significantly in the temporal distribution of the
Northern Hemisphere NPP, with a more pronounced
seasonality in SiB2 than in CASA. In the inversions the
annual a priori errors are set fairly loosely to values that are
50% of the gross fluxes (GPP/RES for TM2 and TM3 and
NPP/RESh for GCTM). The annual uncertainty is split
evenly across the 12 months by dividing it by

ffiffiffiffiffi
12

p
(equation

(3)).
[16] In calculating the response functions, the a priori

fluxes of each source type are gridded on a global map at
the resolution of the transport model, with a time reso-
lution of one month, then used as a flux boundary
condition at the surface as the transport model is run
forward in time. This is done separately for a number of
large emission regions, depicted in Figure 2. The flux
estimate is given as a flux magnitude multiplying the
temporal and spatial pattern assumed inside the corre-
sponding emission region. There is currently a debate
about whether one should use a large number of regions

to recover more information from the data and be less
sensitive to the a priori spatial patterns or use a small
number of regions to avoid underdetermined sources given
the sparseness of the present atmospheric network. Note
that the computational cost of defining the response
function for a large number of regions can also be
prohibitive. One naturally incurs larger estimation errors
when solving for smaller regions, but when these regions
are grouped together, anticorrelating errors cancel out to
some extent, leaving smaller errors for the larger regions.
Kaminski et al. [2001] have shown that the degree of
aggregation can cause large differences in the estimated
fluxes and that significant biases might occur when solving
for large regions, given the high uncertainty in the shape
spatial patterns assumed inside them. Kaminski et al.
[2001] referred to this as ‘‘aggregation error.’’ On the
other hand, the ‘‘estimation uncertainty’’ obtained, given
some random measurement noise and a priori constraint,
might also increase with the number of regions solved for.
[17] The debate might also be summarized by the ques-

tion, How can we best include knowledge on biogeochem-
ical processes and driving factors, which control the mean
surface fluxes in an inversion of the atmospheric measure-
ments? Up to now, surface fluxes for large regions have
been distributed according to biogeochemical models (SiB2
and CASA for this study) that capture only few possible
mechanisms for the CO2 land uptake. A possible improve-
ment would be to increase the number of regions solved for
and set up correlations between errors on the fluxes of
those regions. These correlations should be defined on the
basis of our imperfect knowledge of the link between
regions of similar behavior in terms of CO2 uptake or
release (i.e., correlation lower than 1). Another issue to
consider is that the current measurement network permits
robust flux estimates (i.e., with low random estimation
error) at only the larger spatial scales. Thus there is
probably an optimal number of regions to solve for that
minimizes the sum of the ‘‘aggregation error’’ (lower at
high resolution) and ‘‘estimation uncertainty’’ (lower at low
resolution).
[18] In this study, as a first step, we investigate the

influence of the choice of only a few particular spatial
resolutions. We thus performed the inversions solving for
the following number of land/ocean regions: 3/4 (the
‘‘R7’’ case), 6/6 (‘‘R12’’), and 7/10 (‘‘R17’’). Figure 2
displays the boundaries of these different spatial aggrega-
tions. Note, however, that because we use the response
functions of previous studies, the regional boundaries of

Table 3. Sources Used in the Inversions of Atmospheric CO2 Observations: Photosynthetic and Respiratory

Exchanges (GPP/NPP and RES/RESh), Air-Sea Fluxes (OCE), and Fossil Fuel Emissions (FOS)a

Type of Source Number of Regions Annual
Flux (GtC)

Annual
Uncertainty

References

R17 R12 R7

GPP/NPP 7 6 3 �100/�49 50% Denning et al. [1996]/
Potter et al. [1993]

RES/RESh 7 6 3 100/49 50% Denning et al. [1996]/
Potter et al. [1993]

OCE 10 6 4 �2.0 1.0 GtC/reg. Takahashi et al. [1999]
FOS 1 1 1 6.1 presubtracted Andres et al. [1996]

a Inversions R7/R12/R17 refer to different regional segmentation of the sources (the number of regions is indicated). The global
annual flux is in GtC yr�1, the annual a priori uncertainty is expressed either as a percentage of the annual flux or as a mean value
per region, and references for the space-time flux patterns are indicated.

ACH 5 - 6 PEYLIN ET AL.: ATMOSPHERIC CO2 CONVERSIONS



the GCTM model are slightly different than those for
TM2 and TM3 (differing by <5� in latitude or longitude).
As part of this study, we also include results for the R12
and R17 runs summed to the 7 regions used in the R7
runs.
2.3.4. Additional Constraints
[19] Several additional constraints have been added to the

inverse calculations. First, for the annual data method (TIa)
we constrain the total land/ocean CO2 uptake to the average
value implied by the difference of the fossil fuel input rate
and the atmospheric increase rate for 1990–1994: 1.6 ±
0.01 GtC yr�1. This constraint on the sum of all sources is
needed not only for the TIa method that does not contain
information on the yearly atmospheric increase rate but also
for the monthly data methods (TIm and TDm), since part of
this increase is missing on the 12 monthly data (first half of
January and second half of December). Second, we require
that the GPP and RES fluxes roughly balance across the
year for the TM2 and TM3 cases (and similarly with NPP
and RESh for GCTM). Their annual sum is forced towards
0.0 ± 2.0 GtC yr�1 over each region, except for the tropical
regions, where the error is set at a tighter ±1.0 GtC yr�1 to
avoid some large dipoles between the poorly constraint
tropical regions, following the approach of Bousquet et al.
[1999a]. These uncertainties permit some imbalance
between the two gross fluxes, resulting in a net source
(GPP < RES) or sink (GPP > RES) of carbon. They are
identical between the different cases to allow direct com-
parison of the results.
[20] Third, independent studies using O2/N2 and d13C

atmospheric measurements have been able to partition the
global carbon uptake between land and ocean [Ciais et al.,
1995; Keeling et al., 1996; Battle et al., 1996; Langenfelds
et al., 1999]. Recently, Battle et al. [2000] summarized
these results and inferred an ocean sink of 2.0 ± 0.6 GtC
yr�1 for the 1991–1997 period using O2/N2 and d13C
measurements from a global network. (Note that the
recently released IPCC-2001 report has obtained slightly
different estimates.) In order to include such information in
the inversions, we have constrained the global annual ocean
flux to �2.0 ± n GtC yr�1. The uncertainty n is varied using
the values 0.1, 0.3, 0.5, 0.8, 2.0, 4.0, and 100.0 GtC yr�1 in
order to test the influence of such a global constraint on the
regional partition of the CO2 fluxes. The case n = 0.1 (the
tightest constraint) forces the optimized global ocean sink
close to the estimated value of 2.0 GtC yr�1, while the case
n = 100.0 (the loosest constraint) corresponds to almost no
constraint at all on the sum of all ocean fluxes. We have also
included a case where the air-sea flux of each ocean basin is
fixed separately to its a priori value given by the ‘‘1995’’
model of Takahashi et al. [1999]. Finally, in the monthly
adjustment method (TDm), specific constraints are applied
in order to avoid unrealistic monthly fluctuation of the
source magnitudes over poorly constrained regions. For
TM2 and TM3 we impose constraints on the monthly flux
differences between consecutive months for each source
type, as given by Peylin et al. [1999]. For GCTM we use the
frequency truncation method of Baker [1999] and solve for
only half of the resolvable frequencies (giving an effective
time resolution of 2 months). These different regularization
methods reflect those commonly used in the setups of the
TDm time resolution in the Laboratoire des Science du

Climat et de L’Environment (LSCE) group and by Baker
[2001] at Princeton.

2.4. Summary of the Setup for the Inversions

[21] This inverse study is a sensitivity study in which we
intend to investigate the influence of the key components of
the inversion on the estimated fluxes. Figure 3 summarizes
the number of parameters that we varied, along with their
assigned values. There are four main axes of variability,
including model transport, the form of temporal discretiza-
tion assumed for the fluxes and the data, the number of
aggregated flux emission regions, and the global ocean
constraint. Overall, we performed a total of 189 inversions
by systematically varying each parameter in Figure 3. Note
that we will mainly discuss the 27 inversions corresponding
to the global ocean uptake constraint of �2.0 ± 0.8 GtC
yr�1. The 27 inversions include the three different time
resolutions (TD/m, TI/m, and TI/a) at three spatial resolu-
tions (R7, R12, and R17) using three transport models
(TM2, TM3, and GCTM). For each of these inversions
we used the same set of CO2 measurements. For the a priori
fluxes the same temporal and spatial distribution was used
for air-sea exchanges, while different ones were used for the
land fluxes. Note also that for the TDm time resolution with
GCTM we only solve for the sum of NPP + RESh and not
for each flux separately (as in the other methods). The
concentrations given by the same fossil fuel emission
pattern were presubtracted. In terms of the inverse technique
there is only a slight difference between the TM2, TM3, and
GCTM models when using the TDm time resolution (owing
to the additional constraints noted in section 2.2). Note that
the estimated fluxes correspond to the 1990–1994 period,
which had an unusually large total CO2 sink; this should be
kept in mind when comparing our results with those of other
published studies, such as Fan et al. [1998] and Bousquet et

Figure 3. Diagram of the varying parameters tested in this
inverse experiment. Three models are tested, with three spa-
tial resolutions (7, 12, or 17 regions), three time-resolution
methods, and with a global constraint on the ocean flux of
varying tightness.
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al. [1999a]. The recent studies of Rayner et al. [1999],
Bousquet et al. [2000], and Baker [2001] indeed show large
interannual changes in the regional CO2 fluxes over the
1980–1998 period.

3. Results

[22] In this section, we summarize our results by present-
ing the annual mean regional fluxes averaged over our 27-
experiment sample, along with their standard deviation
across the sample. We will attempt to explain the differences
among the experiments in section 3. Unless noted otherwise,
the total ocean uptake was constrained to 2.0 ± 0.8 GtC yr�1.
For reference the detailed flux results for the 27 experiments
are presented in Table 4, in terms of annual mean flux values
in the 7-region breakdown. To get the results for all 27
experiments into this common format, the monthly fluxes for
the TDm cases were averaged into yearly values and the 12-

and 17-region results were grouped into the 7-region break-
down. We start by discussing the most robust features of the
inversion (the global total and the latitudinal breakdown of
the fluxes) then we address the least robust features (the
land/ocean partitioning of the fluxes and the regional flux
distribution in longitude).

3.1. Latitudinal Distribution of Total Flux

[23] Figure 4 gives the total annual land and ocean flux
results for three latitude bands and the global total; the total
uptake (land + ocean) is also given. The colored bars give
the ±1s range of the results in the 27-experiment sample,
with the mean value lying in the middle of the bar; the thin
lines on the outside give the extreme values from the
sample. The total global uptake is estimated with very good
precision (within 0.1 GtC yr�1) by all experiments, which
reflects the use of the additional constraint on the sum of all
fluxes, as described in section 2. For the 1990–1994 period

Table 4. Inversion Results for Transport Models GCTM, TM2, and TM3: Fluxes in GtC yr�1 in the 7-Region Breakdown

TM2 TM3 GCTM

7 12 17 s m 7 12 17 s m 7 12 17 s m

North America
TIa �1.4 �0.3 �0.2 0.7 �0.7 �1.1 0.0 �0.0 0.6 �0.4 �0.9 �0.1 �0.2 0.4 �0.4
TIm �0.3 �1.8 �1.8 0.9 �1.3 �0.6 �1.9 �2.1 0.8 �1.5 �1.4 �1.1 �1.0 0.2 �1.2
TDm �1.1 �0.0 0.1 0.7 �0.4 �1.0 �0.8 �0.7 0.2 �0.8 �0.8 �0.4 �0.4 0.2 �0.6
s 0.6 1.0 1.0 0.8 0.3 1.0 1.1 0.7 0.3 0.5 0.4 0.4
m �1.0 �0.7 �0.6 �0.8 �0.9 �0.9 �0.9 �0.9 �1.0 �0.5 �0.5 �0.7

Eurasia
TIa �0.2 �1.4 �1.3 0.7 �1.0 �1.7 �2.0 �1.9 0.2 �1.9 �0.7 �1.8 �1.7 0.6 �1.4
TIm �1.7 �1.5 �1.4 0.2 �1.5 �2.4 �2.3 �2.2 0.1 �2.3 �0.6 �1.5 �1.5 0.5 �1.2
TDm �1.1 �2.0 �2.0 0.5 �1.7 �2.4 �2.5 �2.3 0.1 �2.4 �1.1 �1.8 �1.8 0.4 �1.5
s 0.8 0.3 0.4 0.5 0.4 0.2 0.2 0.3 0.3 0.2 0.2 0.5
m �1.0 �1.7 �1.6 �1.4 �2.1 �2.3 �2.1 �2.2 �0.8 �1.7 �1.7 �1.4

North Pacific
TIa �0.7 �0.4 �0.3 0.2 �0.5 �0.1 �0.1 �0.2 0.1 �0.1 �0.3 �0.0 0.0 0.2 �0.1
TIm �0.2 �0.1 �0.1 0.1 �0.1 �0.0 �0.2 �0.3 0.1 �0.2 �0.0 0.1 0.0 0.1 0.0
TDm �0.3 �0.4 �0.4 0.1 �0.4 0.3 0.2 0.2 0.1 0.2 �0.1 �0.0 �0.1 0.0 �0.0
s 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.1 0.0 0.1 0.1
m �0.4 �0.3 �0.3 �0.3 0.1 �0.0 �0.1 �0.0 �0.1 0.0 0.0 �0.0

North Atlantic
TIa �0.5 �1.0 �1.2 0.4 �0.9 �0.6 �1.5 �1.3 0.4 �1.1 �1.0 �1.2 �1.2 0.1 �1.1
TIm �0.3 0.4 0.3 0.4 0.1 �0.3 0.6 0.7 0.5 0.3 �1.0 �0.8 �1.0 0.1 �0.9
TDm �0.6 �0.9 �0.8 0.2 �0.7 �0.4 �0.6 �0.7 0.2 �0.6 �1.0 �0.9 �1.1 0.1 �1.0
s 0.1 0.8 0.8 0.5 0.2 1.0 1.0 0.7 0.0 0.2 0.1 0.1
m �0.4 �0.5 �0.5 �0.5 �0.4 �0.5 �0.4 �0.5 �1.0 �1.0 �1.1 �1.0

Tropical Land
TIa �0.6 �0.1 �0.2 0.3 �0.3 �0.4 �0.4 �0.1 0.2 �0.3 �0.9 �0.7 �0.1 0.5 �0.6
TIm �1.2 �0.3 �0.4 0.5 �0.6 �0.8 �0.1 0.8 0.8 �0.0 �0.5 �0.3 0.2 0.4 �0.2
TDm �0.1 �0.3 �0.5 0.2 �0.3 �0.5 �0.3 �0.0 0.3 �0.3 �0.6 �0.9 �0.6 0.2 �0.7
s 0.5 0.1 0.2 0.3 0.2 0.2 0.5 0.4 0.3 0.3 0.4 0.4
m �0.6 �0.3 �0.3 �0.4 �0.6 �0.3 0.2 �0.2 �0.7 �0.6 �0.1 �0.5

Tropical Ocean
TIa 0.7 0.7 0.4 0.2 0.6 0.9 0.9 0.3 0.3 0.7 0.7 0.7 0.1 0.3 0.5
TIm 0.7 0.7 0.5 0.1 0.7 1.0 1.0 0.3 0.4 0.7 0.6 0.7 0.3 0.2 0.5
TDm 0.7 0.8 0.5 0.2 0.6 0.8 0.7 �0.0 0.5 0.5 0.4 0.7 0.2 0.3 0.4
s 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.4 0.1 0.0 0.1 0.2
m 0.7 0.7 0.5 0.6 0.9 0.9 0.2 0.7 0.6 0.7 0.2 0.5

Southern Ocean
TIa �0.9 �1.1 �0.9 0.1 �1.0 �0.6 �0.6 �0.4 0.1 �0.5 �0.6 �0.6 �0.6 0.0 �0.6
TIm �0.7 �1.0 �0.9 0.1 �0.8 �0.5 �0.7 �0.8 0.1 �0.7 �0.7 �0.7 �0.7 0.0 �0.7
TDm �1.0 �0.7 �0.6 0.2 �0.8 �0.5 �0.4 �0.2 0.1 �0.4 �0.5 �0.4 0.1 0.3 �0.3
s 0.2 0.2 0.2 0.2 0.1 0.2 0.3 0.2 0.1 0.2 0.4 0.3
m �0.9 �0.9 �0.8 �0.9 �0.6 �0.5 �0.5 �0.5 �0.6 �0.5 �0.4 �0.5
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chosen the accumulation rate of carbon in the atmosphere is
2.45 GtC yr�1 and the fossil fuel emission rate is �6.1 GtC
yr�1. These rates imply a total land/ocean carbon uptake of
3.65 GtC yr�1, which is much larger than the mean land and
ocean uptake for the 1980s of 1.9 GtC yr�1 [IPCC, 1995].
The increase of global carbon uptake during the early 1990s
has been attributed mainly to an enhanced land uptake by
Ciais et al. [1995], Keeling et al. [1996], Bousquet et al.
[2000], and Baker [2001].
[24] The total flux (land + ocean) for each latitude band

is also estimated with little scatter across the 27 experi-
ments. A large sink of �3.2 ± 0.3 GtC yr�1 is obtained in
the north (>20�N), a small source of +0.2 ± 0.35 GtC yr�1

in the tropics (20�N–20�S) (the southern land regions are
included in this value, as well) and an ocean uptake of
�0.6 ± 0.25 GtC yr�1 in the south (<20�S). The above
errors correspond to the ±1s range of the 27-experiment
sample. A larger uptake is required in the north than in the
south in order to match the observed north-south gradient
in CO2 observations. The sum of north + tropics + south
must match the observed global trend. As shown in Figure
4, there are also outlying cases that differ substantially
from the mean latitudinal values of the full set of inver-
sions. However, some of these outliers can be disregard

(see section 4), leading to a smaller overall scatter (see
Table 5).
[25] Though not shown in Figure 4, there are systematic

latitudinal differences between the results of the three
transport models. The differences in the total flux between
the northern and southern latitude bands are stable for a
given model across the time resolution and spatial resolu-
tion axes, averaging �2.2 GtC yr�1 for TM2, �2.7 for
GCTM, and �3.1 for TM3. Since the extratropical fluxes
are the primary ones that drive the interhemispheric gradient
in CO2 concentration (tropical fluxes spreading more evenly
across both hemispheres and causing less of a gradient at the
surface stations), these north-south flux differences should
be fairly well constrained by the observed north-south CO2

Figure 4. Annual land, ocean, and total fluxes from our 27 inversions (3 models � 3 time-resolution
methods � 3 spatial resolutions) reported for three latitude bands and the global total. The gray bars give
the ±1s range of the results, with the mean lying in the middle of the bar. The thin lines on the outside
give the extreme values of the 27-experiment sample, along with their acronym (see text for definition).
Dashed horizontal lines indicates the ocean uptake estimated by Takahashi et al. [1999].

Table 5. Global Normalized c2 Defined as Twice the Cost

Function at its Minimum (equation (4)) Divided by the Number of

Observations (Nobs)

TM2 TM3 GCTM Mean

TIa 2.0 2.0 2.8 2.3
TIm 1.0 1.6 0.6 1.1
TDm 0.5 0.5 0.4 0.5
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concentration gradients. The systematic differences in the
north-south flux gradient are thus likely to be due to the
transport properties of the individual models themselves, in
particular, to the meridional mixing of nonseasonal extra-
tropical sources such as fossil fuel CO2, and to the north-
south gradient in CO2 concentration caused by the land
biosphere rectification effect. This is discussed further in
section 4.

3.2. Latitudinal Distribution of Land/Ocean Fluxes

[26] While the latitudinal distribution of the land and ocean
flux is fairly robust, the same cannot be said of the apportion-
ment of these fluxes between land and ocean. Figure 4 shows
that the global land-ocean partitioning has an uncertainty as
large as ±0.7 GtC yr�1 (1s). The total ocean flux ranges
between �1.9 GtC yr�1 in the ‘‘TIa.tm2.r17’’ case and +0.7
GtC yr�1 in the ‘‘TIm.tm3.r12’’ case, even though this quan-
tity was constrained a priori to�2.0 ± 0.8 GtC yr�1. The land
uptake varies between �4.3 and �1.7 GtC yr�1 in the same
cases. None of the cases gives a total ocean uptake as large as
the current best guess estimates for the 1990s:�2.0 ± 0.6GtC
yr�1 from O2/N2 and CO2 trends [Battle et al., 2000] or�2.2
± 0.5 GtC yr�1 from a suite of ocean models [Orr et al.,
2001]. Even if these latter anthropogenic uptakes are adjusted
for a preindustrial ocean out-gassing of +0.6 GtC yr�1

[Sarmiento et al., 2000; Aumont et al., 1999; Sarmiento
and Sundquist, 1992], the resulting net ocean uptake of
��1.6 GtC yr�1 barely falls within the extreme range of
the inversion results.
[27] Figure 4 gives the latitudinal ocean flux totals. The

tropical ocean flux is estimated with little spread at +0.6 ±
0.3 GtC yr�1 (1s) and is quite close to the Takahashi et al.
[1999] ‘‘1995’’ model value of 0.9 GtC yr�1. The northern
ocean sink estimate of �0.8 ± 0.6 GtC yr�1 is within 1s of
the Takahashi et al. [1999] value of �1.3 GtC yr�1, and this
agreement improves when a few outlying runs are removed:
Table 5 shows that the scatter in the northern ocean sink
results drops when the spurious TIm cases are removed, and
the mean sink increases to �1.05 GtC yr�1 (see the
discussion in section 6). The southern ocean uptake of
�0.6 ± 0.25 GtC yr�1 (1s), however, is significantly
smaller than the �1.7 GtC yr�1 ‘‘1995’’ model estimate
of Takahashi et al. [1999] or even their former ‘‘1990’’
model estimate of �1.2 GtC yr�1. Note that the increase in
ocean uptake in the ‘‘1995’’ model of Takahashi et al.
[1999] is due primarily to their inclusion of new data,
particularly in the Southern Indian Ocean. In the recent
Carbon Model Inter-comparison Project (OCMIP), Sar-
miento et al. [2000] and Orr et al. [2001] have compared
the estimates of air-sea CO2 fluxes from different ocean
carbon models for preindustrial times and for the anthro-
pogenic perturbation, respectively. The total uptake for the
southern ocean, although highly variable between the ocean
carbon models, is on average �1.5 GtC yr�1, a larger sink
than the inverse estimates.
[28] A net sink of �0.4 ± 0.4 GtC yr�1 (1s) is indicated

in Figure 4 for the tropical land regions, suggesting that any
carbon released by deforestation there has been compen-
sated for by regrowth. There are no new deforestation
estimates for the 1990s, but it is reasonable to assume that
these figures have not changed strongly on the scale of our
large regions from one year to the next [Houghton, 2000].

With an estimated deforestation source for the 1980s in the
range of +0.6 to +2.5 GtC yr�1 our inversions suggest a net
tropical land uptake in the range of �1.0 to �2.9 GtC yr�1.
The land sink north of 20�N is highly uncertain, but at �2.4
± 0.8 GtC yr�1 (1s), it is also a key term in the total carbon
budget. Recall that over the 1990–1994 period, an anom-
alously large land/ocean carbon uptake apparently occurred,
compared with the mean uptake over the last 2 decades. Our
inversions allocate this increase in the sink both to the
tropical land and to the Northern Hemisphere land, with a
large spread in the north (ranging from �1.5 GtC yr�1 in the
‘‘TIa.gctm.r7’’ case to �4.3 GtC yr�1 in the ‘‘TIm.tm3.r17’’
case).
[29] The inversions must place more uptake in the north

than the south so that the modeled north-south CO2 con-
centration gradient will agree with the observed one. In the
27 experiments shown here this is done mainly by placing a
large land uptake in the north but also partially by decreas-
ing the southern ocean sink from the a priori value. The
inversions plausibly might have increased the ocean uptake
in the north to values greater than the �1.2 GtC yr�1 a
priori of Takahashi et al. [1999] instead of placing a large
sink over land. This would not only have corrected the
north-south gradient, but it would have brought the total
ocean uptake more in line with the �2.0 GtC yr�1 best-
guess estimate for that time period [Battle et al., 2000].
Nevertheless, the inversions favored less uptake in the
northern oceans, compensated by more uptake in northern
lands, giving a total sink in the north of between �2.9 and
�3.5 GtC yr�1 (1s, Figure 4). This solution must be driven
by the need to match longitudinal gradients between stations
in the Northern Hemisphere. These longitudinal gradients
are responsible for the partitioning of the northern sink
between land and oceans.
[30] A positive ocean flux total (indicating out-gassing) is

clearly out of line with our understanding of the current
carbon cycle, yet quite a few of the experiments run here
give positive values (4 out of 27). Three of these outliers are
with the TM3 model (one with TM2), and they correspond
mainly to the annual adjustment/monthly data (TIm) time
resolution (three cases out of four). This suggests that in
inversions of this sort, CO2 concentration measurements
alone are not sufficient to allow the land and ocean regions
to be distinguished robustly (for the mean fluxes), at least
for two of the models used in this study for the given station
network. This result is even more striking when one con-
siders that the ocean total was constrained a priori at �2.0
GtC yr�1 with an error level of ±0.8 (1s). Recall that this
constraint was added in order to include information on the
ocean uptake from other sources [Battle et al., 2000; Keel-
ing et al., 1996]. We varied the tightness of this �2.0 GtC
yr�1 total ocean flux constraint to see how much it would
affect the ocean/land breakdown (Figure 5). As the con-
straint was tightened, the inferred southern ocean uptake
increased only slightly, while the northern ocean uptake
increased substantially, both satisfying the ocean total con-
straint and helping to match the total north-south gradient.
As the northern ocean sink increased, the northern land
uptake had to decrease to maintain the northern latitudinal
total. Note that the inverted tropical ocean source decreased
significantly when the constraint was tightened: this had
only a small impact on the interhemispheric CO2 difference.
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The ocean total constraint had to be applied at very tight
levels before the inversion results approached the �2.0 GtC
yr�1 target ocean uptake. This suggests that rather than just
being highly anticorrelated with the land regions, the ocean
estimates are indeed fairly robust. Nevertheless, the global
ocean uptake increases from �0.5 to �0.8 GtC yr�1 as the
constraint is tightened from being infinitely loose to the
±0.8 GtC yr�1 (1s) error level. The case with the tightest
error level (±0.1) matches the global ocean constraint of
�2.0 GtC yr�1 but with a large difference for the southern
and tropical oceans from their a priori values from the
‘‘1995’’ model of Takahashi et al. [1999] (‘‘fixed at 2’’ case
of Figure 5). This trade-off illustrates the inability of the
inversions to produce a large southern ocean uptake, at least
in the present configuration. This result is, however, similar
to most published atmospheric inversions such as Tans et al.
[1990] and Gurney et al. [2002]. The fact that the inversion
results give robust global ocean uptakes significantly lower
than �2.0 GtC yr�1 suggests that a strong preindustrial
ocean source may need to be added to estimates of anthro-
pogenic uptake when obtaining total ocean fluxes.

3.3. Regional Breakdown

[31] We now consider the estimated fluxes at the con-
tinental and ocean basin scales. We present here the fluxes
grouped at our coarsest resolution (the 7-region break-
down), focusing in particular on the regions north of
20�N: North America, Eurasia, the North Pacific, and the
North Atlantic. Figure 6 summarizes the results of 27

Figure 5. Air-sea fluxes for different ocean basins and the
total ocean, as function of the tightness of the global ocean
constraint: �2.0 GtC yr�1 ± �, with � varying from 0.1 to
infinity. In ‘‘fixed at 2’’ case all ocean basins were fixed to
the ‘‘1995’’ model fluxes from Takahashi et al. [1999].
Fluxes for the 27 experiments were averaged and grouped
into the regions defined in the spatial resolution of the ‘‘R7’’
case (see Figure 2).

Figure 6. Same as Figure 4 but for the four regions of the Northern Hemisphere.
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inversions for these 4 regions. The mean partition of the
Northern Hemisphere sink by the inversions favors a larger
Eurasian CO2 uptake (�1.7 GtC yr�1), sinks of similar
magnitude in North America and the North Atlantic (�0.8
GtC yr�1), and a slight sink in North Pacific ocean. Except
for this latter region, there is a large spread in the results of
the 27 cases (around ±0.6 GtC yr�1 at 1s). This uncertainty
in the regional partitioning in the north is over twice that of
the total (land + ocean) uptake there (Figure 4). In spite of
this large regional uncertainty that can be reduced by
removing few outlying cases (see section 3.4.1), the inver-
sions suggest that there is more uptake in Eurasia than in
North America for the 1990–1994 period. This difference is
significant at the 1s level of the systematic errors given in
Figure 6 but becomes somewhat less certain if the random
errors estimated by the inversion itself are added to these
systematic errors (see the discussion of errors in section
3.4).
[32] Much of the regional uncertainty, however, is due to

large anticorrelations between the fluxes for North Ameri-
ca and the North Atlantic in just 4 of the 27 cases:
TIm.tm2.r12, TIm.tm2.r17, TIm.tm3.r12, and TIm.tm3.r17
(see Table 4). These four cases appear as the outliers in the
upper left-hand corner of Figure 7, which is a scatter plot
of the North American versus North Atlantic fluxes for the
27 cases. If we group these two sets of results separately,
their sum can be estimated to within 0.3 GtC yr�1 (1s).
This indicates that the stations that we used are unable to
fully separate North America and North Atlantic mean
fluxes, at least when using the annual adjustment/monthly
data (TIm) method with the TM2 and TM3 models (the
four outliers). Note in Figure 7 that the other time reso-
lutions (TIa and TDm) also produce anticorrelation
between North America and the North Atlantic fluxes but
to a much lesser extent (see section 3.4.2). Figure 7 shows
the uptake from the ‘‘1995’’ model of Takahashi et al.
[1999] for the North Atlantic as a horizontal dashed line.
Note that many of our inversion results deviate substan-
tially from this Takahashi et al. [1999] North Atlantic
estimate, particularly the four outliers mentioned above,
which are unlikely to be correct. We shall return to a
discussion of these later in the paper.
[33] On the other hand, the estimated flux over the

northern Pacific basin appears to be ‘‘robust,’’ with a
standard deviation of 0.2 GtC yr�1 (Figure 6). This result
probably reflects the presence of many sites within or at the
border of the basin (10 out of 46), ensuring that the fluxes
from this region are well observed. Also, the spatial pattern
of the surface fluxes over the North Pacific, with uptake in
the northwest part and out-gassing in the southeast nearly
cancelling each other out in the sum, probably prevents the
inversion from estimating large corrections there: Any
overamplification of the dipole pattern in the fluxes would
be sensed easily at the measurement sites and prevented if
not compatible with the data. This observation highlights
the problem of having fluxes of both signs within a region, a
situation that is more likely with large regions. Note that we
did not split the northern Pacific basin into two parts, as we
kept the ‘‘response function’’ identical to that of the
previous Baker [1999, 2001] studies.
[34] According to this study, the longitudinal breakdown

of the mean net fluxes in the northern regions is much less

robust than the latitudinal totals. This is true both when all
27 sets of inversion results are used to calculate the spread
(Figure 6) and when the outlying TIm results are thrown
out (Table 5). The range spanned by the 27 estimates is
large enough to include most of the recent synthesis
inversion results presented in Table 1. The results of Fan
et al. [1998], who estimated a sink of �1.7 ± 0.5 GtC yr�1

in North America using the equivalent of our TIa approach
(with land regions equivalent to our 7-region case, two
different estimates of the air-sea flux, and two different
GCMs) lie at the edge of our 1s envelope, especially when
we remove our TIm cases. Note, however, that the North
American uptake of 1.6 ± 0.6 that Fan et al. [1998]
obtained with the model most similar to our GCTM TIa
case (GCTM with the air-sea flux of Takahashi et al.
[1997], which gives �0.55 GtC yr�1 for the Atlantic north
of 15�N) is larger than the North American uptake of �0.9
GtC yr�1 we obtain with GCTM in the equivalent TIa case.
They differ by �1.3 standard deviations of each other. On
the other hand, the Fan et al. [1998] GCTM result cannot
be directly compared with our TIa.gctm.r7 case because (1)
they held the ocean fluxes fixed to the values of Takahashi
et al. [1997] and only solved for the three land regions, (2)
they examined a different period of time (1987–1992), and
(3) they used slightly different stations. Given the high
sensitivity of the North American flux to the North Atlantic
flux suggested by Figure 7 for the GCTM cases (depicted
as triangles), their assumptions (especially hypothesis 1)
may have had a large impact on their estimated fluxes for
the northern lands. Note, in particular, that the North
Atlantic uptake determined in our TIa.gctm.r7 case is
�1.0 GtC yr�1, as contrasted to the value of �0.55 GtC
yr�1 specified by Fan et al. [1998] based on Takahashi et
al. [1997]. Further details on this comparison are given by
Baker [2001]. Although the North Atlantic is one of the
places where Takahashi et al.’s [1997] fluxes are most
tightly constrained by measurements, more oceanic meas-

Figure 7. Annual CO2 fluxes for North America versus
North Atlantic, as estimated in the 27 inversion cases. The
7, 12, and 17 regions inversions show the same symbols.
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urements there would help to resolve the disagreement with
inverse results.

3.4. Error and Covariance Estimates

[35] A strength of the synthesis inversion is that it
estimates not only the fluxes over each region but also an
associated error covariance matrix. The diagonal terms of
the covariance matrix give the errors in the regional fluxes
and nondiagonal terms give the covariances between differ-
ent regions. This matrix characterizes random errors in the
flux estimate due to the assumed random uncertainties in the
observations and the a priori fluxes; these errors will be
referred to here as ‘‘internal errors.’’ While these errors vary
slightly between the 27 different inversions (3 models � 3
types of spatial discretization � 3 types of temporal
resolution), we will discuss only their mean values here.
Note, however, that the diagonal terms of the covariance
matrix do not account for systematic errors (biases and
incorrectly modeled correlations in space and time). A
portion of these systematic errors can be estimated from
the spread in the annual mean flux estimates given by our
27-member sample. We calculate a covariance matrix from
the 27 cases as follows. Diagonal terms are the variances
calculated from the 27-member sample for each region. Off-
diagonal terms are the covariances between the mean fluxes
(27) from different regions. This covariance matrix thus
summarizes additional uncertainties due to the parameters
that we have varied (the three axes of variability); these
errors will be referred to as ‘‘external errors’’ (used in
Figures 4 and 6). Both standard deviations and correlation
coefficients between fluxes for different regions are calcu-
lated from these internal and external covariance matrices
and compared. These two types of errors (or correlations)
can not be strictly added as they are not fully independent
(the a priori data error should in principle account for the
transport error, as described by Tarantola [1987]), but they
both need to be taken into account when discussing uncer-
tainties on the flux estimates. The largest error should at
least be considered as a lower bound of the ‘‘true’’ uncer-
tainty.
3.4.1. Errors
[36] Table 6 gives the standard deviation of both the

internal and external errors in the annual mean fluxes in
the 7-region breakdown, averaged across all 27 experi-
ments. In general, external errors are significantly larger
than internal errors, especially for those northern regions
whose fluxes have the largest variability among the experi-
ments. This result suggests that there are still large uncer-

tainties associated with the main components of an
inversion (the transport model, the spatial patterns of the a
priori fluxes, the time resolution) that are not explicitly
accounted for in each inverse calculation. However, the
different setups that we tested are not likely to be equally
valid (see section 3.4.2) so that the estimated external error
should be conditional to the likelihood of choosing valid
setups. As with the internal errors, the external errors tend to
be larger for the land regions than the ocean regions, which
are better constrained by the present atmospheric measure-
ment network.
[37] Since the external errors are so large, one clearly

cannot use the internal errors given by the least squares
covariance matrix to assess uncertainty of regional fluxes.
Rather, one could perform sensitivity tests, examining the
sensitivity of the inversion result to certain key parameters.
A Monte Carlo approach could be used to give realistic
external error estimates. Then one should consider both the
external and internal errors to get a total error for the
estimates. Even then, it must be understood that these error
estimates will still tend to be too low, since all sources of
systematic error will generally not be explored adequately.
3.4.2. Correlations
[38] As mentioned in section 3.4.1, an external flux

correlation matrix was calculated from the mean fluxes of
our 27-experiment sample, summarizing the anticorrelations
between the flux results for the different regions for the 27
inversion results. Table 7 gives this external correlation
matrix for the 7-region breakdown, along with a mean
internal correlation matrix (calculated from the average
covariance matrix for the 27 experiments). These two
matrices really summarize entirely different information.
The internal correlation matrix tells us how well a given
measurement network (along with a given a priori con-
straint) can distinguish one region from another in the
presence of random measurement noise, assuming a perfect
model (perfect basis functions: perfect transport and un-
biased sampling). The external correlation matrix, on the
other hand, tells us how well the regional fluxes can be
distinguished in the presence of systematic errors in the
model and across three different time resolutions and three
spatial resolutions. Negative correlation values indicate that
the current inversions assess the sum of the fluxes for each
of these pairs of regions more safely than they do the
individual fluxes themselves. In such cases an inversion
that gives a larger flux in one region will tend to compensate
with a smaller flux in the other, thus maintaining the

Table 6. Internal and External Flux Estimation Errora

Standard Deviation, GtC yr�1

Region Internal External

North America 0.43 0.65
Eurasia 0.38 0.57
Tropical land 0.39 0.38
North Pacific 0.17 0.21
North Atlantic 0.26 0.58
Tropical oceans 0.19 0.27
Southern oceans 0.15 0.25

a Internal error as used here is the random estimation error given by the a
posteriori flux covariance matrix. External error is the systematic error in
the flux estimate across the three axes of variability examined here; it is
calculated from the variance about the mean of our 27-experiment sample.

Table 7. Internal and External Correlation Matrices for the Fluxes

in the 7-Region Breakdowna

Region NAm Eur TrL NPc NAt TrO SOc

North America – �0.21 �0.33 �0.02 �0.79 �0.12 0.36
Eurasia �0.61 – �0.22 �0.48 �0.22 �0.05 �0.43
Tropical land �0.21 �0.20 – �0.00 0.24 �0.46 �0.21
North Pacific �0.09 �0.30 0.05 – �0.05 �0.15 0.57
North Atlantic �0.53 �0.10 0.11 �0.07 – 0.23 �0.33
Tropical oceans 0.08 0.05 �0.73 �0.05 �0.03 – �0.36
Southern oceans 0.15 0.13 �0.80 �0.03 �0.09 0.42 –

aThe internal correlations, calculated from the a posteriori flux
covariance matrix, are given in the lower left of the matrix; the external
correlations, calculated from the variability across the 27-experiment
sample, are given in the upper right.
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combined total. On the other hand, positive correlations
between regions indicate that the difference in the fluxes is
more robust (i.e., the inverted fluxes tend to move together
in response to some changing parameters), as is the case, for
instance, for the fluxes that determine the interhemispheric
concentration differences.
[39] The largest external anticorrelation is at �0.79,

between North America and the North Atlantic. For a
statistic with 22 degrees of freedom (i.e., 27 variables minus
2 and minus 3 linked variables) 90% of correlations should
fall inside ±0.43. The North America-North Atlantic anti-
correlation is thus statistically significant, as can be clearly
seen in Figure 7. It is mainly due to the large spread in the
inversions done with the annual adjustment/monthly data
method (TIm), especially with the four outliers as discussed
in section 3.4.1. Without these outliers, the external anti-
correlation drops to �0.46, a value very close to the level of
significance. Note also that such an anticorrelation com-
puted with only the annual adjustment/annual data method
(TIa) reaches �0.95. Such a large value indicates that with
only annual data, the actual atmospheric network is unable
to fully separate North America and North Atlantic, at least
with our three models. All the other external correlations are
below or close to the 0.43 significance level except for a
+0.57 correlation between the North Pacific and the south-
ern oceans that involves only little external error (�0.2,
Table 6). The external correlations are quite different from
the internal ones, as they largely should be if they are
reflecting different phenomena. The largest internal corre-
lations are between the tropical land and the southern
oceans (�0.80) or the tropical oceans (�0.73), reflecting
the difficulty in distinguishing the tropical land fluxes from
the surrounding ocean fluxes with ocean-based measure-
ment sites and strong vertical transport over the tropical
continents. Such values are above the 1s significance of
0.58 (with the number of regions as the number of degrees
of freedoms). North America and Eurasia are also anticor-
related but only at the level of �0.61 (slightly significant).
The internal correlation between North America and the
North Atlantic is only �0.53, indicating that lack of
observability is not the main cause of the external anti-
correlation computed for these two adjacent regions.
[40] Again, our results highlight the fact that the internal

correlations alone are not sufficient to characterize the
codependence of the fluxes and that sensitivity studies must
also be performed to identify additional anticorrelations due
to nonrandom factors, as already pointed out by Bousquet et
al. [1999b]. Further analysis must be done to separate the
contribution of each axis of variability to the overall
external correlation, in order to identify the key parameters.
This is done in section 4. In the case of North America and
the North Atlantic, fitting seasonal data with a fixed
seasonal flux pattern (in the TIm time resolution) seems
to cause the largest differences in the flux results, at least
when using the TM2 and TM3 models.

4. Discussion of the Main Results

[41] In this section, we investigate the causes of the large
variance seen across our 27 experiments in the flux esti-
mates at the regional continental and oceanic scale. Often,
only a small subset of the 27 inversions, corresponding

either to a particular transport model, time resolution, or
spatial discretization, is responsible for most of the spread in
the results (i.e., large external variance). It is thus important
to isolate and discuss such particular cases. The following
discussion will investigate successively the three main axes
of our ensemble of inversions (transport model, time reso-
lution, and spatial discretization) to determine their relative
contribution to the external variance of the regional fluxes.
Figure 8 shows, as a summary, the percentage of the total
external variance explained by each of the three major axes
of variability. In the following subsections, we analyze each
of these in turn and discuss Figure 8.

4.1. Transport Model

[42] Differences in atmospheric transport have been sus-
pected to be a major source of uncertainty trying to relate
measured concentration of atmospheric trace gases to sur-
face sources [Law et al., 1996; Bousquet et al., 1999b; Law
and Rayner, 1999]. In the Intercomparison Transport
Experiment (TRANSCOM) 2, GCTM, TM2, and TM3 were
all among the models with the slowest meridional mixing
rates for SF6, a nonseasonal tracer with an emission pattern
similar to fossil fuel CO2 [Denning et al., 1999]. These slow
mixing rates give steep north-south gradients in SF6 that are,
however, in rather good agreement with a north-south SF6
measurement transect taken in 1993 over the Atlantic Ocean
[Denning et al., 1999]. Figure 9b shows the simulated
annual mean CO2 concentrations at the monitoring sites
(ordered by latitude) resulting from nonseasonal fossil fuel
emissions for the three models. TM3 produces a somewhat
steeper north-south gradient than the other two models, in
good agreement with the interhemispheric exchange time of
the models (see Table 2). A systematic difference of �1
ppmv in the north/south gradient for fossil CO2 occurs
between TM3 and the two other models, and large differ-
ences of up to 2 ppmv occur among the three models for
certain northern extratropical sites. These differences are
probably related to the strength of vertical mixing over the
continents, the horizontal winds, and the vertical and ho-
rizontal resolution of the models. Both GCTM and TM3
give much higher concentrations at KSN, TAP, and SCH,
for example, than does TM2. This is because TM2 has a
coarser horizontal resolution than the other two and
smoothes out the spatially concentrated fossil fuel sources.
The result of this is that stations inside the Asian and
European input plumes see lower concentrations in the
boundary layer than in the case of the more highly resolved
models. Moreover, TM2 produces a smaller vertical gra-
dient over northern extratropical source regions than TM3
and GCTM, reflecting its more powerful vertical mixing.
This feature likely relates to differences in sub-grid-scale
parameterization of vertical transport between the models.
Denning et al. [1999] gave maps of the surface concen-
trations of SF6 and of the zonal mean cross sections of SF6
produced by these models in the TRANSCOM 2 experi-
ment that further confirm these differences in vertical
mixing.
[43] Figure 9c gives a similar latitude plot for the effect of

the seasonal part of the land biosphere (the seasonal rectifier
effect). In the TRANSCOM 1 simulation, the zonal mean of
GCTM was found to give higher surface values in the
northern hemisphere than in the southern hemisphere, while
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Figure 8. Contribution (percent) caused by varying the parameter along each axis (model, time-
discretization method, and spatial resolution) to the overall external variance. The latter is calculated from
our 27 inversion sample (3 models � 3 time-resolution methods � 3 spatial resolutions) and the variance
along each axis is defined with three values, each corresponding to the average of the nine inversions
performed with this particular parameter held fixed. Note that the sum of the variances along the three
axes does not equal the total variance, as the variables are not independent.

PEYLIN ET AL.: ATMOSPHERIC CO2 CONVERSIONS ACH 5 - 15



ACH 5 - 16 PEYLIN ET AL.: ATMOSPHERIC CO2 CONVERSIONS



TM2 showed no such rectification gradient [Law et al.,
1996]. This is seen also at the individual sites in Figure 9c.
The TM3 model gives an even larger rectification gradient
than does GCTM, and much of the variability among the
three models occurs in longitude at high northern latitudes.
Differences there are of the order of 1 ppmv, and thus
slightly lower than for fossil fuel (Figure 9b). The spatial
structure of the models’ surface rectifier is illustrated in
Figure 10. One should recall that part of the differences in
rectifier between GCTM and the two other models can be
linked to the use of two different models of biospheric flux,
CASA versus SiB2. However, as the differences between
TM2 and GCTM in Figure 9c are very similar to those
reported in the TRANSCOM-1 experiment, in which the
biospheric fluxes for the two models were identical, we
believe that most of these surface rectifier differences can be
attributed to transport differences. Note also that these maps
should only be compared in terms of spatial structure and
not in terms of the values of the rectifier; they represent the
rectifiers of the lowest level of each model, which are at
very different heights (70 m in TM3 against 170 m in
GCTM and 400 m in TM2). One can clearly see large
spatially coherent structures in the rectifier that differ
strongly among the three models. The TM3 model presents
a strongly positive rectification value over northeast Asia
and over northwest America that spreads out over the
Pacific Ocean but has nearly no positive rectification over
Europe. The rectification pattern in GCTM is more uniform
in longitude in the northern extratropics. TM2, on the other
hand, tends to produce an annual mean CO2 deficit over
central Asia and Europe compared with surrounding areas.
In TM2, increased horizontal transport in winter spreads
respired CO2 out of Eurasia [Ciais et al., 1998] while
horizontal transport in summer ‘‘concentrates’’ the summer
sink signal over the interior of Eurasia.
[44] Figure 9a displays the latitude plot for the total a

priori model concentration, including the effect of fossil
fuel, the seasonal land biosphere rectifier, and the Takahashi
et al. [1999] air-sea fluxes (this last component being rather
similar between the three models). The observations aver-
aged across 1990–1994 are also shown. The modeled a
priori north-south gradient, which is steeper than the
observed one, is corrected in the inversions by adding more
of a sink to the a priori in the north than in the south. Some
systematic behavior in the flux results of our 27 experiments
can thus be directly explained by the transport properties
discussed in section 2.3. First, the north-south flux differ-
ence for the three models, which was fairly robust for the
nine experiments (TIa, TIm, and TDm versus 7/12/17
regions) for each model, agrees well with the sum of the
north-south CO2 gradients caused by fossil fuel burning and
the seasonal land biosphere (rectifier) (Figure 9a). TM3
infers the largest flux difference. The fact that it gives the
steepest north-south gradient for both fossil fuel and the
rectifier suggests that more of a sink is required in the north
than the south (to bring this gradient in line with the

shallower observed CO2 gradient), although relationships
between transport efficiency and inferred fluxes are prob-
ably more complex. TM2 had the smallest flux difference,
reflecting the fact that it has the shallowest gradient for both
fossil fuel and the rectifier. GCTM had an intermediate flux
difference, reflecting the fact that it had a fossil fuel gradient
and rectifier intermediate between those of TM3 and TM2.
[45] Second, the large uptake in Eurasia inferred by TM3

can be explained by the large positive rectifier pattern
generated over that region by that model (Figure 10),
directly influencing stations SHM, BRW, and CBA. This
points to the importance of longitudinal patterns of the
rectifier for the partition of the northern extratropical sink
between continents and ocean basins. Rectification pattern
differences between models will become even more crucial
as new surface data become available in the near future over
the northern continents. A better quantification of rectifica-
tion effects is thus essential before any assimilation of new
continental data can be considered robust. Overall, the
partitioning of the sink in the extratropical Northern Hemi-
sphere relies on interstation differences of the order of 0.5 to
1.0 ppmv (sites north of 40�N in Figure 9a). However, we
see in Figure 9 that the intermodel differences for these
stations are of this order or larger for both the fossil fuel and
rectifier signals; this represents a severe constraint for the
actual inversion.
[46] The contribution of transport uncertainties to the

overall external variance of the fluxes (i.e., the contribution
of one axis of variability compared with the contribution of
the other axes) is depicted in Figure 8. It shows the

Figure 9. (opposite) (a) Annual CO2 concentration (ppm) simulated by TM2, TM3, and GCTM at all 46 stations with the a
priori sources and sinks as defined before the inverse optimization, along with the observed concentrations. Stations are
ordered by increasing latitude. (b) Contribution of the fossil fuel emissions only to the annual total concentration in Figure 9a.
(c) Contribution of the annually balanced land biosphere only to the annual total concentration in Figure 9a. See color version
of this figure at back of this issue.

Figure 10. The annual mean surface CO2 concentration
(ppmv) produced by the annually balanced land biosphere
flux for three biosphere/transport model (lowest level)
combinations: CASA/GCTM, SiB2/TM2, and SiB2/TM3.
These maps illustrate what Denning et al. [1995] call the
seasonal land biosphere rectifier effect.
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percentage of the total external variance explained by the
three axes of variability. For each parameter along one axis
(e.g., TM2, TM3, and GCTM for the transport axis) we
compute the average flux from the nine inversions that use
this parameter (e.g., 3 time resolutions � 3 spatial resolu-
tions in the foregoing example). We then take the variance
of the three mean fluxes corresponding to one axis and
report it as a fraction of the total variance (contribution in
%). Note that the total contribution does not equal 100%
because the inversions are not independent from each other.
However, this simple diagnostic clearly shows that for
Eurasia, transport uncertainty is the dominant factor (as
noted in section 4.1) owing to the rectification gradients. On
the other hand, transport is a less influential parameter for
North America (where the time resolution was more impor-
tant), at least for the stations and the regional breakdown
that we used.
[47] Overall, there is a clear need to improve model

transport characteristics when applying inversions at con-
tinental to regional scales. The recent TransCom 3 study,
using many models [Gurney et al., 2002] and a TIa
approach, has investigated the sensitivity of the flux esti-
mates to the transport model in detail and has emphasized
the importance of understanding transport differences in the
northern and tropical land regions.

4.2. Time Resolution

[48] While model-dependent differences are responsible
for some of the variability in the estimates, especially in
terms of the latitudinal partitioning of the fluxes and the
uptake in Eurasia, the time discretization method used (TIa
for annual fluxes/annual data, TIm for annual fluxes/
monthly data, and TDm for monthly fluxes/monthly data)
also contributes a large part of the variability.
[49] Figure 8 shows that for North America and the North

Atlantic, the two regions with the highest external cova-
riance (see Table 7), almost all the variance can be attributed
to differences among the time discretization methods. Much
of this method-dependent variability can actually be
explained by an anticorrelation between the estimates for
North America and for the North Atlantic in just four of the
experiments: those for the TIm method in the 12 and 17
region cases with the TM2 and TM3 models, as discussed in
section 3.4.2. Figure 7 shows that in these cases an
especially large uptake in North America of ��2.0 GtC
yr�1 is counterbalanced by an out-gassing in the North
Atlantic of �+0.5 GtC yr�1. In the remaining cases these
two adjacent regions take up �0.6 and �0.9 GtC yr�1,
respectively, on average, with surprisingly good agreement
among the different time resolutions. The external error for
North America computed without the four TIm outliers is
only 0.47 GtC yr�1, as compared with 0.65 GtC yr�1 with
them, and is only 0.32 for the North Atlantic, as compared
with 0.58 GtC yr�1 with them.
[50] One might expect beforehand that the annual adjust-

ment/monthly data (TIm) method would be the most robust
of all the time discretization methods, since it uses more
measurements per flux solved for, and the information
contained in the seasonal cycle of the measurements should
provide an extra constraint not available in the TIa method.
Apparently, though, this is not the case. Errors in the
magnitude or phase of the a priori seasonal cycles of flux

can cause very large differences at the measurement sites in
certain months. Matching the modeled concentrations with
the observed ones for these few months drives the solution
in quite a different direction than an inversion using annual
mean measurements (TIa) would obtain. The TIm method
thus might fit the seasonal cycle of the fluxes much more
accurately than the TIa method, but it might do worse on the
annual mean fluxes (see the discussion of the c2 statistic in
section 5.1).
[51] Whatever is responsible for the outlying TIm results

(i.e., those four cases with the out-gassing in the North
Atlantic, Figure 7), it is surprising how similar the annual
adjustment/annual data (TIa) and monthly adjustment/
monthly data (TDm) cases are in terms of the annual mean
fluxes. This gives us some confidence that the monthly flux
inversion, even with its greater complexity, is rather robust.
Our results argue against using the annual flux adjustment
inversion using monthly data (TIm), however, a time
resolution that has been widely used in previous studies
[Rayner et al., 1996; Bousquet et al., 1999a; Taguchi, 1999;
Ciais et al., 1998].

4.3. Spatial Resolution

[52] Another source of variability in the estimated fluxes
arises from the use of large regions in the inversions. The
relative spatial pattern of flux is fixed inside these regions,
and since it is generally fixed to patterns that may disagree
with the true ones, this can lead to biases in the estimated
flux magnitudes. Kaminski et al. [2001] formally addressed
this source of error (referring to it as ‘‘aggregation error’’)
and suggested solving for as many regions as computation-
ally feasible to reduce it, then grouping them together
afterward. However, when solving at high resolution (the
highest resolution being the one of the transport model), no
correlation are usually assumed between the errors on the a
priori fluxes. One region can thus move away from its a
priori value independently of the others. There is no a priori
link in terms of CO2 fluxes between them. We might thus
argue that part of our knowledge of biogeochemical pro-
cesses, as well as of the spatial patterns of the driving
factors (i.e., climatic variables, fertilization by nitrogen
deposition) is not taken into account in such approach. On
the other hand, defining large spatially coherent regions is a
way to set perfect correlations between different pixels
grouped in a region. If only one part of the region is ‘‘seen’’
by the atmospheric network and further adjusted, the other
unconstrained part will be adjusted in a similar way accord-
ing to the a priori fluxes. In this case, such tight a priori
correlations strongly influence the inverse solution.
[53] In this study, we performed inversions using three

different spatial resolutions (3/4, 6/6, and 7/10 land/ocean
regions, see Figure 2) to assess these errors to some extent.
The use of two different models for the a priori flux patterns
(the SiB2 model for the inversions using the TM2 and TM3
transport models and the CASA model for the inversions
using GCTM) also helps to quantify this source of uncer-
tainty.
[54] While the spatial resolution of the solved-for fluxes

seems to cause less variability in the results than is con-
tributed by the transport model and time discretization
method, it does have an effect. Figure 8 shows that for
the tropical land, a region with high variability across the
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27-member sample (�0.4 GtC yr�1), almost all the varia-
bility is due to differences between the number of regions
solved for. The results for the northern regions shift system-
atically as the resolution is increased from the 7-region case
to the 12- and 17-region cases (see Table 4).
[55] The 12-region inversion has 7 regions in the extra-

tropical north versus only 4 in the 7-region case. It should
not be surprising, then, that the largest flux differences
between these cases occurs in the north. In all the cases,
except the TIm methods with TM2 or TM3 mentioned in
section 3.4 (outlying cases), there is a tendency for uptake
in North America to decrease and for uptake in Eurasia to
increase when going from the 7- to the 12-region cases. In
most of the cases the North Atlantic and Pacific do not
change much, though there is a shift toward greater uptake
in the North Atlantic in the 12-region TIa cases with TM2
or TM3. The lower North American uptake in the 12-region
cases is due to out-gassing in the boreal part of the
continent partially canceling out uptake in the temperate
part when the North American continent is split into two
regions (boreal and temperate). No such cancelation occurs
within Eurasia. The 17-region inversion has 10 regions in
the tropics and south versus only 5 in the 12-region case, so
most of the differences in flux between the corresponding
cases occur there. In the GCTM and TM3 cases the tropical
oceans tend to have less out-gassing when they are sub-
divided, with the tropical land regions taking up less carbon
to compensate. Most of the spread on the results for the
tropics is thus related to the spatial resolution solved for.
Finally, there is a tendency towards less uptake in the
southern oceans in the TDm cases, especially when solving
for 17 regions.
[56] It is quite possible that the shifts we see between the

7- and 12-region solutions are largely due to the removal of
biases caused by assuming spatial patterns across the whole
of Eurasia, North America, and the North Atlantic in the 7-
region case. On the other hand, there may be other system-
atic errors that occur when solving for many regions. For
example, the north-south flux difference for the 17-region
GCTM monthly data/monthly flux case (TDm.gctm.r17) is
much higher (�3.5 GtC yr�1) than those for the other cases
(�2.5 GtC yr�1 for 7 regions and �2.7 GtC yr�1 for 12
regions with this model, from Table 4). This is due to
anticorrelations between the ill-constrained tropical land
regions and the southern oceans: An anomalous out-gassing
in the southern oceans is balanced by a large uptake in the
southern part of the tropical land regions during the South-
ern Hemisphere summer. This large summer uptake in the
southern part of South America and Africa is balanced by
increased out-gassing during the rest of the year in those
same land regions, resulting in relatively low annual mean
uptakes for the whole of each region. The TDm inversion is
thus using the time degree of freedom to create a north-
south gradient within South America and Africa to help
balance the overall north-south gradient of CO2 in the
atmosphere. While it is possible that this is what is occur-
ring in the real world, it is more likely that this solution is a
model artifact and that the inversion is placing anomalously
large fluxes in poorly observed regions/months to force a
better fit to the data. Thus one must also be careful to solve
for the fluxes at a spatial resolution that can be adequately
observed by the number of stations available. The example

above shows that systematic errors, as well as the random
ones, will increase in this case.
[57] Overall, the optimal spatial resolution to solve for

must minimize the sum of both the systematic and random
errors. Such a choice is closely related to the information or
model that we use to define the spatial patterns for the
fluxes. What spatial patterns the land sink is assumed to
have (distributed according to biome productivity (NPP),
nitrogen fertilization, land use change, or other factors or a
combination of these factors) is probably as important as
using one particular model or one particular inverse scheme
[Bousquet et al., 1999b; Kaminski et al., 2001]. Note that
the TRANSCOM 3 inverse experiment [Gurney et al.,
2002] considers only one scenario for the spatial distribu-
tion of the fluxes (uniform over the oceans and using CASA
net primary production for the land) together with spatially
large regions. There is thus a need for a careful investigation
of this source of uncertainty. This could be done by
applying several flux models (biospheric and oceanic) to
an atmospheric transport model. Some insights on this issue
have already been provided by Heimann et al. [1998].

5. Consistency Check for the Inversions:
Importance of A Priori Errors

[58] In this section, we examine a few diagnostics to
assess the robustness of the results of the overall inverse
procedure. We discuss the validity of the main underlying
hypothesis of random Gaussian errors used in the synthesis
inversion framework and also how we ensure a consistent
statistical comparison between the inversions of the three
time discretization methods (TIa, TIm, and TDm). We will
also discuss the impact of the errors assumed for both the
data and the a priori fluxes on the estimate.

5.1. Consistency of the Inversions: The C
2 Diagnostic

[59] As a first check of the realism of an inversion, one
should examine the measurement residuals: the difference
between the optimized concentrations and the observations.
The standard deviation of these residuals should be, on
average, proportional to the assumed measurement errors,
and the residuals should be distributed as a Gaussian around
the observed values. We have plotted the histograms of the
residuals for our 27 inversions. Their distribution appears to
be roughly symmetric, with rather short tails, and centered
around zero, indicating no systematic bias in the modeled
concentrations.
[60] As a second useful check, the consistency of the

estimate with the measurement errors and the a priori flux
errors assumed is analyzed using the global c2 statistic. The
global c2 is defined as twice the cost function J(x) (equation
(1)) at its minimum [see Tarantola, 1987, p. 212]:

Measurements Fluxes

c2 ¼
PNobs

i¼0 yai � yoi
� �2

=Ro
i þ

PNflux

j¼0 xj � xbj

� �2

=Pb
j :

ð4Þ

The c2 value follows the so-called chi-square probability
density, with the number of observations (Nobs) as the
number of degrees of freedom (because in our case the rank
of the matrix is equal to the number of fluxes solved for).
This c2 value, divided by Nobs (normalized c2), should
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therefore be close to 1. A value >1 indicates that the
residuals (from the measurements and/or from the a priori
fluxes) are larger than the uncertainties initially assumed.
Deviations from 1.0 become statistically significant at the
95% confidence level outside the range 1.0 ± 0.4 (assuming
a c2 statistic with Nobs = 46 degrees of freedom). Deviations
larger than 1.4 should be avoided, as they indicate the
violation of some hypothesis; for example, the errors for the
measurements or the a priori sources might have been too
small, or the response functions calculated with the
transport model are too far from reality, or both. On the
other hand, a c2 lower than 1 indicates that we could have
decreased the initial data errors to ensure a better fit between
model and data.
[61] Table 5 shows the values for normalized c2 for each

model and time resolutions, averaged across the different
spatial resolutions (since they give similar values). First of
all, we notice that except for the annual adjustment/annual
data inversions (TIa), the c2 for all three models are lower
than or close to 1, which indicates that we were consistent in
the way we set the initial uncertainties. The c2 values are
significantly lower in the case of monthly fluxes (TDm)
than in the case of annual fluxes (TIm). This difference
reflects a better fit to seasonal data when the sources are
adjusted on a monthly basis (TDm) compared with the case
where only their annual magnitude is adjusted (fixed
seasonality in TIm). For the annual adjustment/annual data
inversions (TIa) the c2 values are above the level of
significance for all transport models (1.4 for 46 degrees of
freedom). The relative contribution of the measurement
term to the total c2 (equation (4) or cost function at its
minimum) is much larger than that of the flux term (88%
versus 12% on average), indicating that the a priori con-
straints are fairly loose.
[62] Thus for the TIa inversions the uncertainties on the

annual mean data are the ones that are probably too low.
Recall that we used the hypothesis of independence between
monthly errors to compute the annual errors (equation (2))
in order to statistically compare the different time discreti-
zation methods (TIa, TIm, and TDm). Such an assumption
leads to relatively low annual errors (monthly errors divided
by

ffiffiffiffiffi
12

p
), which seem to be incompatible with the annual

response function. This diagnostic suggests that we should
reconsider the hypothesis of independent monthly errors for
each station when computing annual errors for the TIa
method. In order to get c2 in the TIa cases that are similar
to those in the TIm cases (i.e., closer to 1), we estimate that
the monthly error should be divided by the square root of 4
instead of 12. This would mean that the measurement errors
are highly correlated on average over 3 consecutive months,
leading effectively to only four independent measurements
(instead of 12). The implication of this in terms of the flux
estimates has not been examined yet. The best way to treat
correlations between the individual monthly data error
would be to solve the inverse problem with some non-
diagonal a priori covariance matrix to account for the
correlations. We nevertheless believe that the impact will
be limited, although such analysis is currently under inves-
tigation.
[63] Note that the c2 values for the inversions in which

all ocean fluxes were fixed to their a priori value of
Takahashi et al. [1999] (the ‘‘fixed at 2.0 GtC yr�1’’ case

in Figure 5) are always larger than the c2 values for the
inversion, in which the ocean fluxes are solved for region-
ally. As noted in section 3, this indirectly confirms the fact
that within our inverse setup, the atmospheric data do not
support a large ocean sink, especially in the south.

5.2. Relative Weight Between Stations: Influence
of Particular Sites

[64] In addition to the global consistency between data
errors and a priori flux errors one should also assess the
validity of the relative weights (inverse of the squared data
error) assumed for the individual measurement residuals
(i.e., at each station). These weights are crucial for parti-
tioning the CO2 sources and sinks spatially. In this study, we
calculated monthly measurement errors from the root mean
square of the residuals between the raw data and a seasonal
fitted curve (see section 2.3). For certain stations, only a few
measurements are available, which may yield an unrealisti-
cally low estimate of the error. The inverse solution might
then be biased by these few sites, especially if the a priori
modeled concentrations do not match the data well (i.e., are
not within 1s error). In order to check for such outlier
stations, we display in Figure 11 the individual contribution
of each site to the cost function J(x) (equation (1)) for the
7-region cases (( yi

a � yi
o)2/Ri

o). This quantity can be also
des-cribed as a ‘‘c2 per station,’’ as it represents the
contribution of each site to the first term (the dominant
term) of the global c2 (equation (4)). For monthly data
inversions (TIm and TDm) the 12 monthly contributions are
summed in Figure 11.
[65] As a general feature, the relative influence of each

site to the solution significantly differs between the three
models. Moreover, a few stations appear to contribute more
than others to the cost function (J(x)). For the annual
adjustment/annual data inversions (TIa) we notice large
values (above 10) for few stations in the Southern Hemi-
sphere (CO2, P14, CGO, CRZ) compared with the northern
sites which are mostly below 5 (except three sites in the
north for the GCTM model). Note that a value from 9 to 25
indicates that the model concentration differs from the
observed one by 3 to 5 times the data error. For the annual
adjustment/monthly data (TIm) inversions the contributions
of QPC and RPB to J(x) appear clearly as outliers for the
TM3 model. In the case of QPC it is linked to a large
mismatch during the summer months. For the monthly
adjustment/monthly data (TDm) inversions we do not
observe the same problem at QPC that we did with TIm
(using TM3) because the inversion is now able to correct
summer fluxes independently from winter ones.
[66] In general, the presence of a few stations with much

larger contributions to J(x) than the other stations means that
the a priori errors for these particular sites were chosen too
low. It is thus important to verify that they do not com-
pletely drive the inverse solution. If so, one should carefully
investigate the pertinence of such a choice. As a sensitivity
test, we removed stations QPC and RPB from the TIm
inversion with TM3. The estimated CO2 uptake increases
by 0.3 GtC yr�1 over Eurasia compared with the control
case, while decreasing by the same amount in the tropics.
Such changes, although not drastic, point to the importance
of the choice of the individual station data errors. For
inversions with annual data (the TIa cases) the Southern
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Figure 11. Contributions of each station to the misfit function J(x) (equation (1)) at its minimum (or the
global c2) for the 7-regions inversions: 3 models � 3 time-resolution methods (three graphs). These
contributions are the terms of the first right member in equation (4), section 5.1. For monthly data inversions
the 12 monthly contributions are summed for each station. Stations are ordered by decreasing latitude from
north to south, and the numbers in parenthesis represent the monthly data a priori uncertainties.
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Hemisphere sites have fairly small annual errors compared
with the northern sites, �0.13 ppm versus �0.50 ppm,
respectively. These errors are simply the monthly ones
(number in parentheses, Figure 11c) divided by

ffiffiffiffiffi
12

p
. This

is why the contribution of the Southern Hemisphere sites to
the inverse solution is enlarged (Figure 11a).
[67] For the data errors, most of inverse studies published

so far use either a constant value for all sites [Rayner et al.,
1999; Fan et al., 1998; Enting et al., 1995] or an approach si-
milar to ours (see section 2.2) [Bousquet et al., 1999a; Peylin
et al., 1999; Kaminski et al., 1999; Baker, 2001]. We per-
formed a sensitivity test where we progressively smoothed all
data errors (si) to the limiting case where all sites have the
same mean monthly data error, smean = 0.92 ppm, according
to snew = smean * (si/smean)

x with x = 0 to 1. Leveling the
errors (x = 0) enhances the weight of the Northern Hemi-
sphere sites in the inversion and decreases the weight of the
Southern Hemisphere sites compared with our standard case
(x = 1). Figure 12 presents annual mean CO2 fluxes aggre-
gated over large regions and averaged across all 27 inversions
for five different sets of data errors. In the ‘‘constant error’’
case (x = 0, s = smean) the southern ocean sink and the
Northern Hemisphere land sink are increased by �0.3 GtC
yr�1 each compared with the standard case, while the tropical
land compensates to maintain the global CO2 budget (+0.8
GtC yr�1). The inverse solution, although not drastically
changed, is thus fairly sensitive to the relative weight
between stations. This is even more crucial when one con-
siders a finer regional breakdown (e.g., R17 regions). Note
also that Figure 12 only displays an average of the 27 flux
estimates, which strongly smoothes the flux variations.
[68] Overall, the choice of data errors for an inversion

requires great care. It has to satisfy not only global
consistency between a priori data errors and flux errors
(see section 3.4.1) but also must ensure that a few particular
sites do not nudge the inverse solution excessively. We have
discussed here important diagnostics to consider in order to
control these potential pitfalls. Recall that in the framework
of Bayesian synthesis inversions, described by the cost
function J(x) (equation (1)), the data error matrix Ro should
contain the observational uncertainty as well as the uncer-
tainties due to model error [Tarantola, 1987]. More pre-
cisely, it should comprise instrumental error; intercalibration
error between networks (if needed); sampling error, both in
space and time, including those due to the selection criteria
of air masses at most stations; intrinsic error of the transport
model; aggregation error due to the fact that we assume
spatial patterns for the sources inside of large regions
[Kaminski et al., 2001]; and the use of the wrong wind
fields for the span considered. In principle, we should try to
quantify all these terms. The use in Ro of the standard
deviation of the residuals between raw data and a cyclical
function (this approach is used in most of the inverse
studies published so far) is oversimplified and rather inac-
curate.

5.3. Interdependence on the A Priori Flux Errors

[69] The choice of constraining the fluxes to some a priori
estimate to within its given uncertainty (second term in the
cost function J(x)) allows an optimal use of available
information and is an essential part of stabilizing the ill-
conditioned tracer inversions in the Bayesian approach. In

this respect the values of the a priori flux errors need to be
chosen carefully. Small a priori errors correspond to the
perspective that the corresponding fluxes are already well
known; in that case atmospheric data are less likely to
improve our a priori knowledge on the fluxes. On the other
hand, errors correspond to the perspective of a ‘‘blind
inversion’’ where atmospheric data are the main source of
information. In this study, we specified fairly large errors for
the air-sea flux (1 GtC yr�1 per basin) and even larger error
for the net land uptake (2 GtC yr�1 per region), except for
the tropical land regions (1 GtC yr�1, to avoid some large
dipoles between these poorly constraint regions). Note that
for the gross biospheric fluxes that we solve for (GPP and
RES of SiB2 for TM2 and TM3 and NPP and RESh of
CASA for GCTM), we set very large errors (50% of the
flux). Such a choice is somewhat arbitrary and favors
information from atmospheric data.
[70] We performed sensitivity tests in which we varied the

a priori errors on the net fluxes, ranging from very tight
errors to very loose ones, as in Bousquet et al. [1999b].
Large changes in the estimated fluxes (>0.5 GtC yr�1 per
region) appear when the flux errors are decreased by more
than a factor of 2 as compared with the standard case. On
the other hand, only slight changes appear when the errors
are loosened (at least in the 7-region cases; in the 17-region
cases changes up to 0.3 GtC yr�1 occur in the optimized
fluxes). Such results indicate that the standard inversion lies
in the range where the solution only slightly depends on the
a priori errors, at least for small numbers of regions
(7-region and 12-region cases). Solving for a larger number

Figure 12. Annual CO2 fluxes in GtC yr�1 as function of
the data uncertainties and reported for five regions
(aggregated from the seven regions breakdown). Differ-
ences between data uncertainties as defined from the
GLOBALVIEW database are progressively smoothed
according to snew = smean * (si/smean)

x, with x taking the
values 1 (standard case, si), 0.7, 0.5, 0.2, and 0.0 (limit case
of a constant uncertainty for all site defined as the mean
standard uncertainties, smean =

P
i = 1
Nobs si).
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of regions than used in this study would require greater care
in defining error on the a priori fluxes.

6. Summary and Conclusions

[71] We have carried out a series of synthesis inversions
to investigate the robustness of current inverse approaches
and also to identify the components of the inversion that are
most responsible for the scatter obtained in the regional
fluxes published to date (Table 1). The inversions were
performed using data from 46 atmospheric measurement
sites [GLOBALVIEW-CO2, 1999] with Bayesian a priori
values to regularize the solution [Tarantola, 1987]. To
assess the sensitivity, we systematically varied one param-
eter or component of the inversion after another: the
atmospheric transport (TM2, TM3, and GCTM models),
time discretization of the data and the fluxes (monthly or
annual), spatial resolution of the fluxes (7, 12, and 17
regions), and the tightness of a constraint on the global
ocean flux total. These axes of variability are summarized in
Figure 3. The main results of this study can be divided into
biogeochemical implications for the regional carbon balance
and suggestions for further improvement of inverse studies.

6.1. Biogeochemical Results

[72] The results of our 27 inversions (3 models � 3 time
discretization � 3 spatial discretization) using a global
ocean uptake constraint of �2.0 ± 0.8 GtC yr�1 show that
the flux estimates appear to be robust (i.e., with little scatter)
when considering total flux (land plus ocean) over large
zonal areas. For the 1990–1994 period we estimate a large
CO2 sink north of 30�N (�3.2 ± 0.3 GtC yr�1), a small
source over the tropical band (+0.2 ± 0.35 GtC yr�1), and a
surprisingly small sink south of 30�S (��0.6 ± 0.25 GtC
yr�1). Recall that the global uptake for this period was quite
large compared with the average for the 1980s and 1990s;
our set of inversions tends to locate this enhanced sink
mainly at high northern latitudes, especially over land.
[73] The mean global ocean uptake of �0.9 GtC yr�1

(�1.1 GtC yr�1 without the spurious TIm cases discussed in
section 3) is smaller than the �2.2 GtC yr�1 estimate of
Takahashi et al. [1999] and the estimates of independent
studies using O2/N2 atmospheric data [Battle et al., 2000] or
a suite of ocean carbon cycle models [Orr et al., 2001]
(�2.0 and �2.2 GtC yr�1, respectively). More precisely, the
discrepancy between our ocean flux estimates and theirs
occurs predominantly in the southern ocean, where the
inversions tend to produce a much smaller sink (from
�1.1 to +0.1 GtC yr�1). These low values primarily reflect
the need to match the model north-south gradient to the

shallower observed one. Possible explanations for the
gradient mismatch may be (1) interhemispheric mixing in
the transport models that is too fast and (2) a ‘‘rectifier’’
over northern latitudes that is too strong, which would need
to be compensated for by a large sink over these regions
(and conversely a smaller sink in the southern ocean). The
total uptake is well define by the atmospheric global CO2

growth rate. On the other hand, a large preindustrial source
of CO2 in the Southern Hemisphere (from river fluxes or
ocean transport) might also bridge the gap. Further inves-
tigation is needed to resolve this important disagreement.
[74] When considering the longitudinal breakdown of the

fluxes in the north (i.e., between North America, Eurasia,
North Atlantic, and North Pacific or even simply between
the land and ocean) the spread between all our estimates
increases. This spread, referred to here as the ‘‘external
uncertainty,’’ as opposed to the ‘‘internal uncertainty’’ given
by the inverse procedure, is important to consider. The
‘‘external uncertainties,’’ which provide an estimate of the
systematic errors, appear to be larger than the ‘‘internal
uncertainties,’’ except for tropical land where the lack of
measurement seems to be the most critical issue (Table 8). If
the results of all 27 cases are considered, the spread is large
enough to make it difficult to draw a clear picture of the
regional carbon balance in the north. If we reject the
suspicious TIm results, however, the spread for the North
Atlantic drops to a level (0.3 GtC yr�1) at which it seem
fairly well constrained; the spreads for Eurasia and North
America are then low enough to begin to believe their
partitioning, as well. In either case, for 1990–1994 our
ensemble of inversions tends to favor larger uptake over
Eurasia than over North America and the North Atlantic
(�1.6, �0.5, and �0.9 GtC yr�1, respectively, without the
TIm cases), with a smaller uptake in the North Pacific.

6.2. Recommendations

[75] In this study, we have investigated some of the
systematic errors that can arise from using a particular
transport model, using an annual or monthly temporal
discretization, and solving for different numbers of regions.
Among these sources of errors, we found that (1) the choice
of time resolution is crucial in partitioning the CO2 sink
between North America and North Atlantic, (2) the uncer-
tainty on the transport dominates the ‘‘external uncertainty’’
for Eurasia, and (3) the spatial resolution (number of regions
solved for) was the main factor only for the tropics (Figure
8). This analysis has shown the importance of the time
resolution in the spread of the regional estimates, an aspect
poorly documented until now. We found that using an
annual adjustment with monthly data (TIm method) gave

Table 8. Mean Inversion Results Across the Whole 27-Experiment Sample (All) and Without the Annual Adjustment/Monthly Data

Method (No TIm), in the 7 Regions Breakdowna

Case NH Land NH Oce Trop. Land Trop. Oce. South. Oce.

All �2.45 ± .34/.77 �0.78 ± .28/.61 �0.36 ± .39/.38 0.59 ± .19/.27 �0.63 ± .15/.25
No TIm �2.16 ± .40/.55 �1.05 ± .33/.41 �0.41 ± .42/.27 0.56 ± .20/.27 �0.58 ± .16/.29

Case NH Total N. Amer. Eurasia N. Paci. N. Atlan.

All �3.23 ± 17/0.31 �0.79 ± .43/.65 �1.66 ± .38/.57 �0.12 ± .17/.21 �0.66 ± .26/.58
No TIm �3.21 ± .19/.25 �0.52 ± .49/.47 �1.64 ± .44/.59 �0.13 ± .19/.25 �0.92 ± .29/.31

aThe ‘‘mean internal’’ and the ‘‘external’’ errors are added (in GtC yr-1).
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the most unlikely results (with TM2 and TM3). This
approach and maybe more generally an approach where
one solves for fluxes at a finer time step than the time
discretization of the data, can be highly sensitive to partic-
ular data (depending on the value of the response function,
i.e., H term in equation (1)). The TIm method thus appears
to be less robust and needs to be used with great care. For
the spatial resolution we believe that there is an optimal
number of regions to solve for that minimizes the sum of the
random estimation error and the systematic aggregation
errors. A more detail analysis needs to be made to be sure,
but the results from our sparse resolution case (seven
regions) may show large biases in the estimated fluxes in
the Northern Hemisphere. This ‘‘aggregation problem’’ is
also directly linked to the choice of the a priori patterns for
the fluxes within each region. Such choice should be further
investigated, as different scenarios for the land uptake of
carbon are highly debated.
[76] The choice of data errors also appears to be a critical

step that requires great care. As a useful check, the con-
sistency between data errors and a priori errors should at
least be achieved with the global c2 diagnostic (its value
should not be greater than one [Tarantola, 1987]). More-
over, one should also check the distribution of the residuals
(or the contribution of each station to the cost function) in
order to verify that the inverse solution is not driven by only
few specific sites. There is a crucial need to better define the
data errors (in a physical sense) and to account for the
correlations in time (and probably in space) between those
errors. The choice of the a priori flux errors can be also
important. We chose in this study to set large a priori errors
for ocean fluxes, which might underestimate our current
knowledge of ocean biogechemistry, rather than risk the
possibility of overconstraining the inversion.
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Figure 9. (opposite) (a) Annual CO2 concentration (ppm) simulated by TM2, TM3, and GCTM at all 46 stations with the
a priori sources and sinks as defined before the inverse optimization, along with the observed concentrations. Stations are
ordered by increasing latitude. (b) Contribution of the fossil fuel emissions only to the annual total concentration in Figure
9a. (c) Contribution of the annually balanced land biosphere only to the annual total concentration in Figure 9a.
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