
The Relation between Baroclinic Adjustment and Turbulent Diffusion in the
Two-Layer Model

PABLO ZURITA-GOTOR

UCAR Visiting Scientist Program, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

(Manuscript received 28 March 2006, in final form 19 July 2006)

ABSTRACT

Baroclinic adjustment and turbulent diffusion are two popular paradigms used to describe the eddy–mean
flow closure in the two-layer model, with very different implications for the criticality of the system.
Baroclinic adjustment postulates the existence of preferred equilibrium states, while the turbulent diffusion
framework predicts smooth variations of the mean state with the forcing. This study investigates the
relevance of each paradigm over a wide range of the parameter space, including very strong changes in the
diabatic forcing. The results confirm the weak sensitivity of the criticality against changes in the forcing
noted by baroclinic adjustment studies but do not support the existence of preferred equilibrium states.

The weak sensitivity of the mean state when the forcing is varied is consistent with the steepness of the
diffusive closure predicted by homogeneous turbulence theories. These turbulent predictions have been
tested locally against observed empirical diffusivities, extending a previous study by Pavan and Held. The
results suggest that a local closure works well, even at low criticalities when the eddy momentum fluxes are
important, provided that the criticality is generalized to include the effect of the meridional curvature
potential vorticity (PV) gradient. When friction is weak, the development of this curvature may be impor-
tant for halting the cascade and making the flow more linear. A remarkable difference from previous
homogeneous results is that the empirical closure does not appear to steepen at low criticality. This may be
due to the use of a generalized criticality or to the distinction between a local and domain-averaged closure.

1. Introduction

The two-layer quasigeostrophic (QG) model (Phil-
lips 1954) has a remarkable history. Although much of
its original appeal was due to its computational afford-
ability as a numerical weather prediction model, the
model quickly outgrew this functionality to become an
invaluable theoretical tool. Even today, when more so-
phisticated models can be run at a reasonable cost in
popular platforms, there are still many papers pub-
lished each year using the two-layer system (e.g.,
Zurita-Gotor and Chang 2005; Lapeyre and Held 2004;
Deng and Mak 2005). What makes this model most
attractive is a good compromise between simplicity and
relevance: the two-layer model is widely regarded as
the simplest model that can capture the essential fea-
tures of the extratropical dynamics (Held 2007). Not-

withstanding the obvious limitations associated with the
quasigeostrophic framework and the poor vertical reso-
lution, the two-layer model may still be geophysically
relevant as part of a hierarchy of climate models of
increasing complexity (Held 2005).

Despite the simplicity of the model, we still lack a
simple framework for describing the eddy–mean flow
closure in this system. Several different theories have
been proposed, but there seems to exist no consensus in
support of any single one. This might reflect an implicit
concession that, since all theories incorporate some as-
sumptions, none can be universally valid. For instance,
we shall see that two of the most popular theories, baro-
clinic adjustment and turbulent diffusion, are in some
sense opposite and each deemed appropriate in a dif-
ferent limit. Both theories can be succinctly described
in terms of a single parameter encapsulating the mean
state, the criticality

� �
U

��2 , �1�

where U � U1 � U2 is the baroclinic shear and � �
NH/f is the Rossby radius based on the layer depth H;
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N is the square root of the Brunt–Väisälä frequency.
Each of these two theories predicts a very different
dependency of this parameter. The goal of this paper is
to compare and contrast both theories and to ascertain
which one best describes the criticality of the system
over a broad parameter range.

The concept of baroclinic adjustment was introduced
by Stone (1978), originally for the continuous case.
Stone noted that observed isentropic slopes changed
much less during the seasonal cycle than either the hori-
zontal or vertical temperature gradients, so as to pro-
duce a robust criticality � � 1 in the discretized system.
Since this is precisely the instability condition for the
two-layer model, Stone (1978) attributed his finding to
the efficient adjustment to neutrality. The problem with
this theory is that the two-layer model has been shown
to equilibrate in supercritical regimes � � 1 (Vallis
1988); much of the literature on the topic of baroclinic
adjustment has focused on reconciling these two find-
ings (see Zurita-Gotor and Lindzen 2007 for a recent
review).

Yet the two-layer model itself exhibits its own form
of baroclinic adjustment, in the sense that its supercriti-
cality also changes little when the forcing is varied. For
instance, Stone and Branscome (1992) found the con-
dition � � 2.4 to be well satisfied at midchannel over a
wide range of parameters. They referred to this condi-
tion as weak baroclinic adjustment, to emphasize the
fact that the value � � 2.4 is not associated with any
stability limit. Cehelsky and Tung (1991) and Welch
and Tung (1998) also noted a remarkable robustness of
the supercriticality in their two-layer model over large
variations in the forcing and introduced the concept of
nonlinear baroclinic adjustment to explain this finding.
The authors attributed the robust supercriticality to
neutrality of the dominant heat-carrying wave, rather
than that of the most unstable one, with strict criticality
� � 1 only occurring for weak forcing, when they both
coincide. The authors argued that, as the forcing in-
creases, shorter modes saturate and the supercriticality
shifts up to the stability threshold of the next longer
wave.

Thus, one may more generally interpret baroclinic
adjustment as the tendency of the system to equilibrate at
some preferred equilibrium state (or several, in its non-
linear version). Regardless of whether this is due to
neutrality or to something else, the existence of pre-
ferred equilibria necessarily implies the failure of a lo-
cal closure because the model can produce different
eddy fluxes for the same local criticality. In other
words, the eddy fluxes are not determined locally but
depend on the full rearrangement of the fluid through-
out the domain (see, e.g., Zurita-Gotor and Lindzen

2007). In that scenario, there is little hope that a diffu-
sive closure will work because diffusion is essentially a
local process.

On the other hand, there is an independent line of
work for this model based on turbulent diffusion, which
also has shown some relevance for the eddy–mean flow
closure. This closure is based on the homogeneous tur-
bulence theory developed by Larichev and Held (1995)
and Held and Larichev (1996). These authors devel-
oped a fully predictive framework by combining the
classical phenomenology of QG turbulence described
by Salmon (1980) with mixing length assumptions for
the diffusivity. In this framework, the diffusivity is a
function of the eddy length scale L, which is generally
larger than � due to the existence of an inverse cascade.
Held and Larichev (1996) showed that when the back-
ground potential vorticity gradient halts this cascade
and L is the Rhines scale, L/� 	 �. The supercriticality
thus measures the nonlinearity of the system or the
extension of the inverse cascade (see also Held 1999).
Based on this closure, Held and Larichev (1996) predict
scaling laws for the diffusivity and various other eddy
statistics as a function of the criticality �.

Doubly periodic models provide a physical system
consistent with the homogeneous framework, so one
can use this type of model to test the turbulent closures
of Held and Larichev (1996). These authors, and more
recently Lapeyre and Held (2003), found good agree-
ment with the theoretical predictions at high criticalities
but less so for moderate �. This is not surprising because
the theory of Held and Larichev is based on the as-
sumption that L/� � � k 1. Pavan and Held (1996) and
Lapeyre and Held (2003) proposed a semiempirical
correction to the theory that fits the results better at
low criticalities.

Although the theory of Larichev and Held was de-
veloped under the assumption of spatial homogeneity,
this assumption has more to do with the spectral prop-
erties of the turbulence than with whether the mean
flow has some structure or not. Held (2007) discusses in
some detail the conditions under which application of
the homogeneous theory to the inhomogeneous prob-
lem is appropriate. In actual simulations, Pavan and
Held (1996) found that the diffusivity scaling predicted
by the homogeneous theory fitted well the inhomoge-
neous results when applied locally. Held (1999) thus
proposed using the doubly periodic model as an experi-
mental device to “measure” diffusivities, which could
then be used for closure in the inhomogeneous prob-
lem.

It is remarkable that there is nothing special about
� � 2.4 or any other criticality in the turbulent diffusion
framework. The scaling laws proposed by Held and
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Larichev (1996) depend smoothly on �, and one can
likewise impose any desired supercriticality in the dou-
bly periodic model with no hint of singular behavior.
The question then is how can these results be compat-
ible with the existence of preferred equilibrium states
noted by baroclinic adjustment studies? The simplest
explanation is that each paradigm is appropriate in a
different limit: baroclinic adjustment applies to narrow
baroclinic zones, whereas the local turbulent closure
works for sufficiently wide domains (Held 2007). If that
is the case, it is not clear where the transition lies; Pavan
and Held (1996) find good agreement with the local
closure with baroclinic zones of about two Rossby radii.
An additional complication is that for narrow baroclinic
zones the criticality � � L/� is moderate. Hence, the
failure of the turbulent closure in that case may simply
reflect the violation of the high-criticality assumption
and does not necessarily imply a breach of the homo-
geneous premise. Note that these conditions are not
equivalent: one can also construct a homogeneous
(doubly periodic) two-layer model with low criticality
and large eddy momentum fluxes.

We investigate these issues by exploring the behavior
of the criticality in an inhomogeneous two-layer model
over a wide range of parameters. Section 2 describes
the model used, including a strong-forcing procedure
that allows us to use much stronger forcings than con-
sidered by previous studies. Section 3 explores the rel-
evance of baroclinic adjustment by studying the transi-
tion to radiative equilibrium as the diabatic forcing is
changed. This extends the results recently presented by
Zurita-Gotor and Lindzen (2006). Section 4 investi-
gates how well the local closure works as the model’s
criticality is varied and discusses the relation with ho-
mogeneous turbulence theories. Section 5 concludes
with a summary of our results.

2. Description of model and forcing

We use the same model described in Zurita-Gotor
and Lindzen (2006). This model solves the standard
equations:

�qn

�t
� �J��n, qn� � �T��1�n

�1 � �2 � �R

�2

� �n2�M�2�n � 	�6�n, �2�

where qn � 
2�n � (�1)n(�1 � �2)/�2 � y stands for
the potential vorticity in the upper (n � 1) and lower
(n � 2) layers, and �n is the corresponding streamfunc-
tion. Here � is the Rossby radius based on the layer
depth H. Potential temperature is proportional to the
baroclinic streamfunction


 �
f0

gH
�0��1 � �2�,

where f0 is the reference Coriolis parameter, g is grav-
ity, and �0 is a reference temperature.

Here ��1
T and ��1

M are the diabatic and frictional forc-
ing time scales (friction only applies to the lower layer)
and fourth-order hyperdiffusion is included to get rid of
the small scales. The flow is forced through relaxation
to a “radiative equilibrium” profile �R defined by the
following thermal wind:

�
��R

�y
� UR exp��y2�2�. �3�

Our control set of parameters has UR � 40 m s�1, � �
2500 km,  � 1.6 � 10�11 m�1 s�1, � � 700 km, ��1

T �
20 days, and ��1

M � 3 days. The domain is meridionally
bounded by rigid walls, where standard boundary con-
ditions are formulated �x � �a � 0 (these two condi-
tions imply that the zonal-mean U is independent of
time at the walls, which is what is actually imposed in
the model). The channel length is 32 � 103 km and the
meridional walls are located far away from the baro-
clinic zone (for instance, for the control value of � Ly �
48 � 103 km). This ensures that the region over which
the mean flow is modified, which exceeds � due to
meridional propagation, is determined internally, inde-
pendently of the artificial boundaries. As we shall see,
this may play an important role. The diffusion coeffi-
cient is � � 5 � 1015 m4 s�1.

The key parameters that we vary in this study are the
diabatic and frictional forcing rates �T, �M (for the
mean flow only), the derivative of the Coriolis param-
eter , the Rossby radius �, the strength of the radiative
equilibrium thermal wind UR, and the width of the
baroclinic zone �. The specific values of the parameters
studied are summarized in Table 1. We use a spectral
transform method, with 60 waves zonally and 120 me-
ridionally; with a standard 2/3 truncation, this gives an
effective resolution of 400 km in x and 300 km in y. To
ensure that our results are not affected by resolution,
we reproduced the set of runs varying � at double reso-
lution. All the simulations were run for 3000 model
days (the model day is defined by the inverse advective
time scale) starting from perturbed radiative equilib-
rium conditions, and the climatological means and
fluxes were calculated averaging over the last 2500
days.

As in Zurita-Gotor and Lindzen (2006), we allow for
the use of a different forcing time-scale �T for the
zonal-mean and eddy parts of the flow (the same is also
done with �M). In the simulations described below, only
the forcing time scale for the mean flow is changed
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unless otherwise indicated. This key aspect of the for-
mulation has two important advantages compared with
the more traditional use of a single Newtonian time
scale for both eddies and mean flow. First, it reduces
the inherent ambiguity when the forcing of the mean
and the damping of the eddies are changed simulta-
neously (see Robinson 1997 for an example with me-
chanical damping). Moreover, this also allows us to ex-
plore the limit of very strong forcing, in which the flow
would be stabilized if the eddies were damped as
strongly. We regard this type of forcing as a simple
mathematical device that allows us to force the flow
more strongly but do not associate it with any particular
physical process.

As an example, Fig. 1 compares the equilibrium
states for our control run and for a strong-forcing run
with ��1

T � 1 day. Not surprisingly, the flow is more
baroclinic and energetic for the latter, and the surface
winds are faster. To show that there is nothing peculiar
about using a different time scale to force the eddies
and the mean, we have also performed a run forced
with prescribed heating Q rather than through Newto-
nian forcing. Figure 1 shows that when this prescribed
heating is taken to be the time-mean heating from the
strong-forcing run, the equilibrium states are also very
similar.

3. Baroclinic adjustment and the transition to
radiative equilibrium

As discussed in the introduction, Stone and
Branscome (1992) found a tendency for the midchannel
supercriticality � to stay close to the value 2.4 in their
two-layer model. While our results for a simulation
with the control parameters and slow forcing (��1

T � 40
days) are in good agreement with this value (Fig. 2),

this condition is violated in a run with ��1
T � 0.01 days.

This is not surprising because for this very strong forc-
ing the thermal structure is very close to radiative equi-
librium. The key question is whether the transition be-
tween these two limits is smooth or if the � � 2.4 value
might represent some preferred equilibrium.

The dependence of the criticality on the forcing time
scale is displayed in Fig. 3, which also includes results
for two other sets of runs with UR � 80 and 120 m s�1.
The top two panels of this figure show the criticality as
a function of the forcing time scale, but Fig. 3b uses a
logarithmic scale. When only slow-forcing time scales
(slower than 10 days or so) are considered, the flow is
relatively insensitive to changes in the forcing, as found
by Stone and Branscome (1992). However, it is clear
from Fig. 3b that there is nothing special about the
control run supercriticality, other than it varies very
slowly with the forcing time scale. Likewise, the sensi-
tivity to the radiative equilibrium shear is small in the
slowly forced limit. One needs to change the forcing
time scale by an order of magnitude to obtain substan-
tial changes in the supercriticality. Previous studies
could not investigate these regimes because for strong
forcing, the flow is stabilized when the eddies are
damped with the same time scale.

These results share some similarities with those of
Cehelsky and Tung (1991) and Welch and Tung (1998),
who proposed a nonlinear generalization of the tradi-
tional baroclinic adjustment paradigm. These authors
conjectured that the observed supercriticality is not that
required to fully stabilize the flow (� � 1) but that
required to stabilize the dominant heat-carrying wave.
They also argued that, as the forcing is enhanced, short
waves saturate and longer waves dominate the trans-
port. Since waves longer than the most unstable mode
are stabilized at increasingly larger criticalities, this al-

TABLE 1. Description of the experiments performed. For each set of runs, we indicate the setting, the parameter that is varied, the
number of runs performed, and the range of values investigated. Each set is also uniquely associated with a marker in all figures in the
paper. The specific values of the parameters considered are (0.01, 0.1, 1, 3, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80) days for the runs varying
�M or �T; (400, 500, 600, 700, 800, 900, 1000) km for the runs varying �; (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3) � 0

for the runs varying ; and � � (0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 6, 10, 12) � �0 for the runs varying � (0 and �0 are the control values
of  and �).

Set Setting Parameter Runs Range Marker

1 Control �T 14 0.01–80 days Empty circles
2 UR � 80 m s�1 �T 14 0.01–80 days Empty triangles
3 UR � 120 m s�1 �T 14 0.01–80 days Asterisks
4 � � 500 km �T 14 0.01–80 days Pluses
5 � � 900 km �T 14 0.01–80 days Crosses
6 Control � 7 400–1000 km Diamonds
7 Control  13 0 � 4.8 � 10�11 m�1 s�1 Filled squares
8 Control �M 14 0.01–80 days Filled triangles
9 Control � 12 500–30 000 km Filled circles
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lows the supercriticality to increase with the forcing as
observed in Fig. 3. There is, however, an important
difference. The nonlinear baroclinic adjustment para-
digm predicts a constant supercriticality over large
variations in the forcing, with abrupt jumps to larger
supercriticalities occurring at the saturation thresholds
only. In contrast, Fig. 3b shows that the dependence of
the supercriticality on the forcing is slow but smooth in
our runs over the full parameter space.

Figure 3c shows the zonal barotropic eddy kinetic
energy (EKE) spectrum for three different values of
the forcing time scale. Consistent with nonlinear baro-
clinic adjustment theory, the peak of the spectrum
moves upscale from wavenumber 5 to 4 to 3 as the
forcing is enhanced (for reference, the most unstable
wave of the initial radiative equilibrium state is wave-
number 7). However, this transition does not occur
abruptly in �T space: for intermediate values of �T the
spectrum is not clearly single peaked (not shown). We

have also computed a characteristic eddy length scale L
based on the mean EKE-weighted wavenumber:

L � 2���kE�k� dk

�E�k� dk �
�1

, �4�

where E(k) is the EKE spectrum displayed in Fig. 3c.
Figure 3d confirms that this characteristic eddy length
scale varies uniformly rather than abruptly with the
forcing. Because the channel length used in Welch and
Tung (1998) was chosen so that the first few zonal har-
monics dominate, one might speculate that the trunca-
tion of the zonal spectrum prevents a smooth inverse
energy cascade in their runs. However, our own experi-
ments in a shorter channel (not shown) also show a
smooth dependency of the length scale. Another factor

FIG. 1. The control run (thin solid), a run with strong forcing ��1
T � 1 day (thick solid), and a run with prescribed

heating taken from the strong forcing run (thick broken) for (a) lower-layer wind; (b) temperature gradient; (c)
eddy heat flux; and (d) upper-layer eddy momentum flux in equilibrium. The thin dashed lines in (a), (b) show the
corresponding radiative equilibrium values.
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that might affect quantization in their model is the
proximity of the meridional walls. Yet we shall see that
the eddy length scale is only weakly constrained in our
model by the width � of the radiative equilibrium forc-
ing (cf. Fig. 7).

Another problem with the nonlinear baroclinic ad-
justment theory is that linear stability theory predicts
(Lindzen 1990, p. 283)

�crit�k� � �k2�2 �2 � k2�4��1,

where k is the total wavenumber. Assuming isotropy,
k 	 L�1, which implies a stronger than quadratic de-
pendence of the criticality on the eddy scale L. In con-
trast, it will be shown in the next section (see Fig. 4b)
that the relation � � f(L/�) is only linear, consistent
with homogeneous turbulence theories.

The results presented above suggest that the robust-
ness of � noted by previous studies might be simply due
to the weak sensitivity of the supercriticality to changes
in the forcing, rather than to baroclinic adjustment.
This weak sensitivity is due to the steepness of the dif-
fusive relation, which implies a fifth-order dependence
of the EKE generation on the supercriticality (Held
and Larichev 1996). Thus, the energy cycle is sped up
substantially even with small changes in �; producing
moderate changes would require very strong changes in
the forcing. We can be more quantitative by relating the
eddy forcing ��q� to the restoration of the mean flow
using the potential momentum framework of Zurita-
Gotor and Lindzen (2006):

��2q�2 � �T�M � MR� � �MU2 � �T�M � MR�, �5�

where M is the lower-layer potential momentum de-
fined as

M � �
f0

H�z
�

�b

y


 dy� � ��
�b

y �1 � �2

�2 dy�. �6�

Here MR is the radiative equilibrium potential momen-
tum (obtained replacing � by �R above), �z is the ref-
erence stratification of QG theory, and b is a reference
latitude. Zurita-Gotor and Lindzen show that Eq. (5) is
insensitive to the choice of b, as long as it is chosen
within a region of undisturbed mean flow. In the dis-
cussion that follows results are evaluated at the center
of the channel y � 0.

Zurita-Gotor and Lindzen (2006) note that �T(M �
MR) [i.e., the eddy potential vorticity (PV) flux] must
vary slowly (sublinearly) with the thermal forcing rate
�T. The reason is that as the forcing is enhanced,
�T(M � MR) must increase but M � MR , a measure of
how far the flow is from radiative equilibrium, de-
creases. On the other hand, the steepness of the diffu-
sive closure (Held and Larichev 1996) implies that
small changes in the PV gradient suffice to produce
large changes in the PV flux. Both arguments combined
imply that one needs to change the forcing time scale
�T by a large amount in order to obtain noticeable
changes in the PV gradient (and hence in the criticality
� � 1 � qy2/).

This is illustrated in Figs. 3e,f. As anticipated, in all
three sets of runs ��q� � �T(M � MR) increases with �T

but M � MR decreases. For the control set, there is
some hint that the eddy PV flux is already flattening to
some asymptotic value for the strongest forcing consid-
ered (��1

T � 0.01 day), but for the other two sets of runs
��q� is still increasing at that stage. To the extent that
there is a universal local closure, this asymptotic PV
flux should agree with the homogeneous model predic-
tion for the same radiative equilibrium conditions. To
achieve this value, roughly an order of magnitude
larger than the control value, one needs to force the
mean flow over 1000 times more strongly than in that
run. Over this range, the supercriticality of the flow has
only doubled from its “weak baroclinic adjustment”
limit of about 2.5 to a radiative equilibrium value �R �
5. To obtain the larger radiative equilibrium criticalities
of the other sets of runs one should force even faster
than 0.01 days�1. Although these numbers are some-
what exaggerated by the asymptotic approach to radia-
tive equilibrium in Fig. 3f, this example clearly illus-
trates why we should not expect much larger criticali-

FIG. 2. Equilibrium supercriticality for the runs with ��1
T � 40

days (thick solid), ��1
T � 0.01 days (thin solid), and in radiative

equilibrium (thick broken).
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ties than found by Stone and Branscome (1992) in a
realistic setting. It would be very hard to maintain such
a basic state against the strong eddy feedback. In con-
trast, one may impose any desired criticality in a doubly

periodic model because the mean state needs not be
maintained in that case.

In the inhomogeneous case, we can use Eq. (5) and
the definition 6 to show that the eddy PV flux that can

FIG. 3. (a), (b) Sensitivity to the diabatic time scale of the criticality �; (c) spectra of barotropic EKE for the
values of ��1

T indicated; (d) sensitivity of the average length scale L (see text); (e) sensitivity of the potential
momentum depletion from radiative equilibrium; and (f) sensitivity of the diabatic restoration/eddy PV flux. All
the results are evaluated at midchannel, and the vertical dash-dotted line indicates the control value of �T.
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be maintained by the thermal forcing over a baroclinic
zone of width � and baroclinicity �y grows at the most1

as ��q� 	 �Tf0(H�z)�1(�Ry � �y)�2 [related arguments
are given by Pavan and Held (1996)]. This implies that

one may approach the large PV flux required by the
homogeneous limit by either increasing �T or by wid-
ening the domain, as in Pavan and Held (1996). The
former, more efficient computationally, is our preferred
procedure to explore the higher criticality regimes.
However, both routes are not necessarily equivalent, as
discussed in section 4.

1 In reality, the eddy PV flux should grow slower than this
because �Ry � �y is not fixed but decreases with increasing � and �T.

FIG. 4. (top) Empirical dependence of the normalized diffusivity on the criticality � both evaluated at midchannel;
(bottom) same but for the (left) length and (right) velocity scales. We also show some idealized dependences
predicted by homogeneous theory. Each marker identifies a different set of experiments, as described in Table 1.

APRIL 2007 Z U R I T A - G O T O R 1291



4. The local diffusive closure

A key argument for the weak dependence of the
criticality on the forcing is the steepness of the diffusive
closure, as predicted by the homogeneous theory of
Larichev and Held (1995) and Held and Larichev
(1996). However, it is not clear that these predictions
still work for inhomogeneous flow at low criticalities.
The main argument against it is that while the homo-
geneous theory ignores the eddy momentum fluxes,
these may be fundamental for the eddy equilibration
(James 1987), particularly when surface friction is
weak. This difficulty is not unique to the inhomoge-
neous problem, as eddy momentum fluxes can also be
important in the homogeneous case. In the presence of
a planetary vorticity gradient that halts the inverse cas-
cade and favors the formation of zonal jets, the eddy
momentum fluxes mediate one major route to eddy
kinetic energy dissipation via conversion to zonal mean
kinetic energy. Yet as long as the assumption of a
nearly inertial range at that scale remains valid, the
anisotropy in EKE dissipation does not affect the scal-
ing of Held and Larichev (1996), which is based on
EKE generation rather than on its dissipation. This is
why we still expect the theory to work at high criticality,
when the eddy momentum fluxes are unimportant for
EKE generation. In contrast, the theory must be modi-
fied at low criticality, presumably to account for the
effect of the eddy momentum fluxes on EKE genera-
tion. We next review the homogeneous theory before
presenting our results.

a. Homogeneous theory

Using simple mixing length arguments one may ex-
press the diffusivity as the product of a characteristic
length and velocity scale:

D 	 VL, �7�

where closure requires expressing these scales in terms
of the mean flow properties. The theory of Larichev
and Held (1995) builds on the classical phenomenology
of QG turbulence (Salmon 1980) and on the existence
of an inverse energy cascade. This implies that the
length scale of the eddies increases with their energy
level:

L � rL� T �
L

V
� rT

�

U
. �8�

The factors rL, rT measure the enhancement in the eddy
length scale and eddy turnover time due to the inverse
cascade. It is this enhancement that accounts for the
stiffness of the diffusive relation. Since EKE generation
increases with PV mixing, an enhanced diffusivity leads

to an increase in the EKE generation, which leads in
turn to an increase in the eddy length and velocity
scales and thus to a further increase in the diffusivity.
This “nonlinear runaway feedback” is stopped by what-
ever halts the inverse cascade, which defines the energy
level. Assuming that it is the planetary vorticity gradi-
ent (Rhines 1975), we get

L2 	
V

�
⇒ rLrT 	

U

��2 � � �9�

and a diffusivity D 	 r2
Lr�1

T U� 	 �3r3
L. Note that one

must have rL � rT when the energy level increases up-
scale and V � U. Equation (9) implies that the enhance-
ment in the diffusivity depends on how rT changes. The
diffusivity increases the most when the eddy turnover
rate is accelerated (rT � 1), in which case the length
scale increases faster than the energy level.

The key assumption in the theory of Held and Lar-
ichev (1996) is that the bulk of the baroclinic energy
generated in the large scale by the stirring of the envi-
ronmental potential energy gradient is converted, after
flowing downscale, into barotropic energy.2 Combined
with the assumption that barotropic energy is only dis-
sipated, after cascading itself, in the large scale, this
implies that the rate �inv at which barotropic energy
flows through the inverse cascade must also equal the
baroclinic generation:

�gen � � �
k�1,2

��kq�kUk. �10�

Neglecting the eddy momentum fluxes, we may express

���1q�1 � ��2q�2 �
f0

H�z
��2
� � D

U

�2 	 VL
U

�2 , �11�

where U � U1 � U2. This gives a baroclinic generation
rate �gen 	 VLU2/�2, which must equal under the as-
sumptions of Larichev and Held the rate at which baro-
tropic energy flows through the inverse cascade. As-
suming an inertial range near the eddy scale, dimen-
sional analysis predicts for this rate

�inv 	 V3L�1. �12�

2 Larichev and Held (1995) also assume that the conversion
from baroclinic to barotropic energy is spectrally localized at
scales of the order of the deformation radius, and that enough
scale separation exists between this scale and the eddy scale L.
When this is true, one also gets well-defined inertial ranges with
the classical slopes in both the direct and inverse cascades. How-
ever, this spectral localization is not fundamental to the closure.
All that is required is that the direct and inverse rates are equal,
and that a nearly inertial range exists in the inverse cascade at the
large scales only so that Eq. (12) applies.
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Equating �gen and �inv one obtains

V2

L2 	
U2

�2
⇒ rT 	 1. �13�

As noted by Held and Larichev (1996), the eddy turn-
over rate is still the Eady growth rate in the homoge-
neous problem. Thus, the length and velocity scales in-
crease proportionally, so that when the scale is halted
by beta Eq. (9) gives

L

�
	 �

V

U
	 �

D

��3 	 �3. �14�

However, Pavan and Held (1996) found that these ex-
pressions do not work well in the low criticality limit. In
that limit, the eddy momentum fluxes may also be im-
portant and the diffusivities D1, D2, and DT for the up-
per- and lower-layer PV and temperature are different.
Lapeyre and Held (2003) propose neglecting the eddy
momentum flux and associating D in Eq. (7) with the
lower-layer diffusivity D2. Then, the generation rate be-
comes

�gen � �� ��kq�k Uk � ��2q�2U

� UD2qy2 	 VLU��� � 1�, �15�

so that after equating �gen � �inv Eqs. 14 are replaced by

L

�
	 �1�2�� � 1�1�2

V

U
	 � � 1

D

�3 	 �3�2�� � 1�3�2.

�16�

The latter expression agrees with the empirical fit to the
diffusivity proposed by Pavan and Held (1996). Note
that because � log(� � 1)/� log � � �(� � 1)�1 � 1, this
correction results in an additional steepening of the dif-
fusive relation � log D/� log � at low criticality.

b. Midchannel results

We have tested these theories in our inhomogeneous
model, using nine different sets of runs. In five of these
sets we change the diabatic time-scale ��1

T (by 4 orders
of magnitude) to explore a wide range of the criticality
space. These sets include the control set and four other
sets with perturbed values of UR or �. Additionally, we
have performed four other sets of runs with fixed ��1

T

and changed either �, , �, or �M (for the mean only).
Table 1 describes the range of values considered and
the plotting conventions associated with each set of
runs, which are consistently used across all figures.
Overall, 116 experiments are included.

We first test in Fig. 4 the theory at the center of the

channel,3 where the PV flux is maximized. Figure 4a
shows the normalized lower-layer diffusivity D2/�3

against the criticality and Figs. 4b,c show the sensitivity
of the velocity and length scales. The former was cal-
culated as the square root of the barotropic EKE, and
the latter using Eq. (4). There is a lot of scatter in all
three plots, but also some hint that the experiments
collapse on a single line somewhat reminiscent of the
homogeneous predictions. This is violated only by two
sets of runs, those in which �M and � are changed.

That the homogeneous theory fails when ��1
M is

changed is not surprising because for large frictional
time scales the flow equilibrates through the barotropic
governor. Figure 5 shows results for the runs with
��1

M � 1, 10 days. The midchannel criticality � is larger
in the weak friction run, indicating a stronger baroclinic
shear U. Zurita-Gotor and Lindzen (2006) argue that
this enhanced shear is required to compensate for the
enhanced meridional curvature PV gradient, so that the
net lower-layer PV gradient remains nearly the same
(Fig. 5c). The standard criticality � fails to capture this
behavior because it neglects this contribution to the PV
gradient. This suggests that one might obtain better
results using a generalized criticality:

�̃ � 1 �
qy2

�̃
�

U

�̃�2
, �17�

where ̃ �  � �yyU2. This would also be consistent
with the results of Pavan and Held (1996), who found
less scatter plotting ��2q�2 as a function of the full PV
gradient than as a function of � and with the diffusive
closure used by Zurita-Gotor and Lindzen (2006).
When we replace � by �̃, the �M set of runs also lies
within the main cloud of points (not shown). Note that,
contrary to the standard criticality, the generalized
criticality actually decreases with weaker friction be-
cause although qy2 does not change much ̃ still in-
creases. This is more consistent with the observed re-
duction in the PV flux (Fig. 5d).

One may justify the use of the generalized criticality
based on linear theory. An alternative definition more
consistent with the turbulent framework involves the
use of a “barotropic” *:

�* �
U

�*�2 �* � � �
1
2

�yy�U1 � U2�, �18�

3 The minimize sampling errors our results here and elsewhere
are actually averaged over the central region where the PV flux
lies within 10% of its maximum. Very similar but slightly noisier
results are obtained using a 5% threshold or the actual midchan-
nel values.
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based on the assumption that the relevance of the rela-
tive vorticity gradient arises from its role in halting the
inverse cascade. Figure 6 shows how Fig. 4 changes
when we replace  by the barotropic *, both in the
definition of the criticality and in the nondimensional-
ization of D. Generally speaking, this renormalization
results in a reduction of the criticality (�* � �) that can
now be smaller than one. This reduction is most pro-
nounced for the weaker friction runs. The experimental
sets that were aligned in Fig. 4 are still aligned with the
same slope in Fig. 6 (except for some runs with very
small ). The fact that the alignment does not change in
these subsets when  is redefined implies that the re-
definition of  only affects the diffusive closure through
a multiplicative constant, as */ is weakly sensitive to
the perturbed parameter. There is also a hint that the
renormalization has reduced the scatter in these runs,
though this may simply reflect the fact that the overall
� range is reduced by the rescaling. More interestingly,
the sets of runs varying �M and � are now found to lie
within the main cluster of points in Fig. 6a, which sug-

gests that our ad hoc redefinition of * has succeeded
somewhat in capturing the essential physics. However,
we note that comparable results are obtained when re-
defining  in terms of the lower-layer curvature alone
(not shown). Additionally, the correction does not
work so well for the length and velocity scales indepen-
dently: as friction weakens, the generalized criticality
decreases, but the length scale remains mostly flat. One
might be able to improve the results using some com-
bination of ̃ and *, but we will proceed with the
barotropic * in the remainder of the paper.

The redefinition of  also aids the set of runs with
varying �. The behavior of this set is quite distinct in
Fig. 4. For the narrower cases the points conform to the
“universal” behavior, but after some threshold the dif-
fusivity and energy level increase with little changes in
�. This indicates that the baroclinic shear U has satu-
rated at that point and is no longer increasing with �.
Interestingly, this occurs at a value of Usat � UR. Re-
defining the criticality as in Eq. (18) brings this set to a
better agreement with the general law. The reason is

FIG. 5. The runs with �M � 1 day (thin) or �M � 10 days (thick) for (a) zonal wind (lower-layer is dashed); (b)
criticality; (c) net lower-layer PV gradient, normalized by ; and (d) lower-layer PV flux.
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that as the baroclinic zone broadens, the meridional
curvature of the jet becomes less and less important;
this reduces * and increases �*, consistent with the
enhanced D. The same can be seen in Fig. 7, which
shows that �* increases monotonically with � but �
saturates. By construction, both curves meet each other
when the meridional curvature becomes negligible, a
condition just met with our largest �. This also roughly

marks the transition to a double-jet state in our runs
(Lee 1997), and there is some hint that � might be in-
creasing again thereafter. Another interesting result is
that the eddy length scale L always increases with � but
with a slope much flatter than 1 (n � 1/3). Figure 7
strongly suggests that the width of the forcing region
only affects the eddy length scale through its impact on
the energy level and the associated Rhines scale, as

FIG. 6. Same as in Fig. 4 but with modified *, �* that also take into account the effect of the barotropic
relative vorticity gradient.
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measured by the (generalized) criticality. Strikingly,
this is the case even for narrow baroclinic zones with
� � �. This is possible because � is not necessarily a
good predictor of the actual width of the baroclinic
region, which almost always expands from radiative
equilibrium. The results might have been different had
the meridional walls been closer, which would have
prevented this expansion and halted the inverse cas-
cade.

To conclude, we point out that the previous descrip-
tion implies that the asymptotic approach to the maxi-
mum eddy PV flux (and possibly the end state itself) is
different when increasing �T or �. When the problem is
strongly forced, the baroclinicity is not allowed to
change and the thermal structure approaches radiative
equilibrium, including its meridional structure, as �T

increases. In contrast, when � is increased the tempera-
ture gradient can change: its smearing produces re-
duced time-mean baroclinicities U � UR over broader
baroclinic zones.

c. Meridional structure

So far, we have shown that a universal law can ap-
proximate the diffusivity in our runs over the region of
maximum baroclinicity. A more stringent test in the
inhomogeneous problem is whether the same diffusive
law can also describe the behavior at other locations.

Figure 8a shows the meridional structure of the dif-
fusivity for six select runs. We note that the results are
a bit noisy—they can be much more noisy and asym-
metric for other runs with larger UR, �T, and with

smaller � (not shown). This suggests that some of the
scatter in previous figures could be reduced with longer
simulations. However, despite this noise, the results
clearly show a tendency for the diffusivity to be flat
with latitude over the eddy generation region (we high-
light the region with ��2q�2 � 0.5 � ��2q�2 max in the figure,
which also roughly captures the region with surface
westerlies). This result holds in our model even for nar-
row baroclinic zones (the �/3 curve has � � �). The
reason for this flat diffusivity is unclear. One possible
explanation is that the eddies are coherent over their
characteristic length scale.

We next examine if the diffusive law based on the
results at the center of the channel is consistent with
this flat diffusivity. Figures 4 and 6 suggest diffusive
laws D 	 �3�3 or D 	 *�3�*3, depending on whether
the meridional curvature contribution is included in the
definition of  or not. If the first law were valid, �
should also be constant with latitude for the diffusive
closure to hold. On the other hand, the second law
would require a flat *1/3�* with latitude. Figure 8b
shows that only the latter is true for our control run. It
is thus essential to include the meridional curvature in
the criticality for the diffusive law to work away from
the center of the channel. This is consistent with the
results of Pavan and Held (1996), who found that a
closure based on the local PV gradient worked much
better than one that only takes into account the criti-
cality. The negative Uyy reinforces  and decreases the
criticality at the center, whereas the opposite is true for
the positive Uyy on the sides, so that in some sense the
midchannel stabilization occurs at the expense of later-
al destabilization. Figures 8c,d show that similar results
hold for the other runs displayed in Fig. 8a, with the
possible exception of the �/3 case.

d. Difficulties with the theory

The results presented above support the validity of a
local diffusive closure in the inhomogeneous problem,
with an empirical diffusive law that is reminiscent of
that predicted by the homogeneous theory. This sug-
gests that the only correction needed in the inhomoge-
neous case is to include the contribution to the envi-
ronmental PV gradient by the barotropic curvature.
Following the same derivation of section 4a with *
replacing , one obtains

L

�
	 �*1�2��* � r�1�2

V

U
	 �* � r

D

�*�3 	 �*3�2��* � r�3�2, �19�

FIG. 7. The set of runs varying the width � of the baroclinic zone
for standard criticality (dashed, crosses), generalized criticality
(solid, asterisks), and eddy length scale (dash dotted, circles). We
also show for reference a line with slope n � 1.
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where r � ̃/* � 1 � �yyU/2* can be considered
constant to first order.

The main problem is that there is no hint of steep-
ening of the diffusive relation at low criticality in our
runs, in contrast with Eq. (19) (the r factor is close to 1)

and previous homogeneous studies. The cubic power
law appears to hold even for the lowest criticalities in
Fig. 6.

The difference with previous results might be due to
the different choice of averaging region, at the jet cen-

FIG. 8. (a) Meridional structure of the empirical lower-layer PV diffusivity for the runs indicated; (b) meridional
structure of the criticality (dashed) and of (*/)1/3�* (solid) for the control run; (c) diffusive closure based on the
standard criticality; and (d) diffusive closure based on the generalized criticality �*. Only latitudes with � �2q�2
exceeding half its maximum value are included in (c), (d); these latitudes are also emphasized in (a), (b).
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ter in our case and a domain average in doubly periodic
models. As we have seen, when a local relation is for-
mulated, one needs to take into account the meridional
curvature, yet this term disappears when averaging
across the domain. This distinction between � and �*
could introduce an additional feedback and change the
functional form of the closure. In particular, �* (and
thus D1/3) might vary faster than � at low criticality due
to the varying impact of the meridional curvature. In-
deed, our results varying � (see Figs. 4a and 7) suggest
that the � � D relation at midchannel is infinitely steep
in some parts of the parameter space. However, this
cannot be the full answer because the empirical relation
D(�) based on the standard supercriticality does not
steepen at low criticality either (Fig. 4a). There could
be other reasons why the domain-averaged closure is
steeper than the local one: for instance, that would be
the case if the fraction of the total domain occupied by
the eddy generation region decreased as � is reduced.

Accepting that it is the relation D 	 �*3 that is indeed
relevant over the eddy generation region, the theoret-
ical prediction Eqs. (19) do not provide an appropriate
local description at low criticality. The theory needs to
be refined, presumably because the eddy momentum
fluxes can be important for EKE generation. Even at
high criticality, when the straight generalization of the
Larichev and Held theory using * provides the correct
functional dependence, the local closure requires
knowledge of *. Thus, we cannot have a complete
theory unless we have some theory for the eddy mo-
mentum fluxes.

5. Summary

In this paper we have studied the equilibration of the
two-layer model over a broad range of parameters with
the goal of understanding the relation between two
seemingly different frameworks, baroclinic adjustment
and local diffusion. Starting with a “realistic” control
setting with moderate supercriticality, we studied the
transition to high supercriticality as the different pa-
rameters were varied.

The concept of baroclinic adjustment is motivated by
the observed robustness of the supercriticality in this
and other models, particularly when the diabatic time
scale is changed. This robustness led Stone and
Branscome (1992) and Welch and Tung (1998) to pro-
pose that certain equilibrium states with fixed criticality
might be preferred by the dynamics.

Our results confirm the robustness of the supercriti-
cality against changes in the forcing but also suggest
that there is no preferred equilibrium state. In our
model, the supercriticality varies slowly but uniformly

with the forcing time scale. We note that we could ex-
plore a much broader region of the parameter space
than previous studies because we kept the rate of dia-
batic damping for the eddies constant as the mean flow
forcing was changed.

We also investigated the validity of a local diffusive
closure in our inhomogeneous model and found the
empirical diffusivity to be well approximated by a uni-
versal law (with the possible exception of the small 
cases). At midchannel, the closure can be expressed in
terms of the local supercriticality alone, except for the
runs in which either surface friction or the width of the
baroclinic zone is varied. The reason is that the re-
sponse in those cases is dominated by changes in the
meridional curvature of the flow. However, we found
that this effect could be simply captured using a gener-
alized criticality, in which the local meridional curva-
ture is added to . When this is taken into account, the
same diffusive law was also found to work away from
the center of the channel. This is consistent with the
findings of Pavan and Held (1996) that, in the inhomo-
geneous problem, a closure based on the local PV gra-
dient works better than one based on the criticality
alone.

We proposed two different methods to incorporate
the meridional curvature, using either the lower-layer
curvature or the curvature of the barotropic flow. Both
methods gave similar results, but the latter has a clearer
conceptual connection with homogeneous turbulence
theories. According to this interpretation, the develop-
ment of curvature enhances the local beta and halts the
inverse cascade. When friction is low, this implies that
the eddy scale is constrained by the width of the jet (or
equivalently, by the scale of the linear modes) because
the strong curvature developed by the flow prevents the
inverse cascade. Thus, the turbulent notion that the ed-
dies define the scale of the jet (Panetta 1993) and the
linear notion that it is the width of the jet that con-
strains the eddy scale instead (Ioannou and Lindzen
1986) could be compatible with a generalized .

The fact that one can encapsulate the impact of the
meridional processes in our runs through the meridi-
onal curvature PV gradient is unexpected, as James
(1987) has shown that the barotropic governor effect
entails more than just changes in the PV structure. For
instance, a constant meridional shear with no PV gra-
dient can also affect the structure of the modes (James
1987). Since the symmetry of our setup prevents this
type of flow, it is possible that our results are not com-
pletely general.

The empirical diffusivity shows a cubic dependence
on the generalized criticality in our model, with little
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hint of steepening at low criticalities. This stands in
contrast with previous findings in homogeneous models
(Lapeyre and Held 2003), a difference that could be
due to the different choice of averaging region in both
cases. Even so, this dependence is still very steep, which
explains the weak sensitivity of the criticality on the
diabatic time scale noted above, especially when the
circulation itself is weakly (sublinearly) dependent on
the forcing. Essentially, a small change in the criticality
implies a much larger change in the PV fluxes, which
requires an even larger change in the forcing time scale.
Thus, although one can in principle impose any desired
criticality in the homogeneous model—in which the
mean state needs not be maintained—only moderate
supercriticalities are realistic in the inhomogeneous
context, unless the forcing is very strong or the domain
is very broad.

The relevance of the steepness of the diffusive clo-
sure for climate sensitivity has long been realized (Held
1978). Likewise, the association between the robustness
of the mean state and the strong eddy feedback is not a
new idea: this is in fact a common argument invoked to
justify baroclinic adjustment (e.g., Stone 1982). What
our results show is that this robustness is not associated
to any given threshold. Another important difference
with the traditional baroclinic adjustment paradigm is
that this strong feedback is due to the nonlinear prop-
erties of QG turbulence rather than any particular fea-
ture of linear growth rates.

We focused in this paper on describing the sensitivity
of the model’s criticality to changes in the forcing, mo-
tivated by the theme of baroclinic adjustment. This is
the easiest sensitivity to understand because changes in
the diabatic time scale only affect the turbulent prop-
erties through changes in the mean state. In contrast,
understanding the sensitivity to other parameters, such
as beta or the stratification, is complicated by the fact
that changes in these parameters also affect the diffu-
sive properties when the mean state does not change. In
those cases, the stiffness of the system entails different
constraints than a nearly constant criticality. This is in-
deed already apparent in Fig. 6, which shows that or-
der-one changes in the stratification produce changes of
the same order in the supercriticality (see set with dia-
mond markers). We will address this sensitivity in an
upcoming study.
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