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ABSTRACT

The fidelity of climate reconstructions employing covariance-based calibration techniques is tested with varying
levels of sparseness of available data during intervals of relatively constant (stationary) and increasing (non-
stationary) forcing. These tests employ a regularized expectation-maximization algorithm using surface tem-
perature data from both the instrumental record and coupled ocean–atmosphere model integrations. The results
indicate that if radiative forcing is relatively constant over a data-rich calibration period and increases over a
data-sparse reconstruction period, the imputed temperatures in the reconstruction period may be biased and may
underestimate the true temperature trend. However, if radiative forcing is stationary over a data-sparse recon-
struction period and increases over a data-rich calibration period, the imputed values in the reconstruction period
are nearly unbiased. These results indicate that using the data-rich part of the twentieth-century instrumental
record (which contains an increasing temperature trend plausibly associated with increasing radiative forcing)
for calibration does not significantly bias reconstructions of prior climate.

1. Introduction

Numerous recent studies (e.g., Smith et al. 1996; Kap-
lan et al. 1997) have attempted reconstruction of past
large-scale climate patterns [climate field reconstruction
(CFR)] using covariance information from data-rich cal-
ibration or ‘‘training’’ intervals to fill in missing values
in data-sparse ‘‘reconstruction’’ intervals. An extension
of this approach was recently used to reconstruct climate
patterns in past centuries from paleoclimate proxy data,
using the twentieth century as a calibration interval in
which the covariances between instrumental and proxy
data are used to calibrate the proxy data (Mann et al.
1998, 1999).

One concern regarding the use of these methods is
the possible introduction of a bias in the reconstructions
if the basic boundary conditions of the climate system
are changing (as might be expected in the response of
the climate to anthropogenic increases in radiative forc-
ing). In such cases the calibration interval may contain
patterns of variability that did not exist during the re-
construction interval. Conversely, the reconstruction in-
terval could potentially contain patterns that did not
exist during the calibration interval. Covariance-based
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CFR methods assume that values are missing at random
[i.e., that the probability that a value is missing is in-
dependent of the magnitude of the missing value (Little
and Rubin 1987)]. Clearly this is not the case for the
instrumental surface air temperature data because the
data density increases as mean temperature and radiative
forcing also increase (correlation coefficient r 5 0.65
for correlation between cold-season mean of available
data and number of missing values for each year). A
similar concern applies to paleoclimate reconstructions
based on proxy climate indicators wherein the presum-
ably nonstationary twentieth century is used as a cali-
bration period to reconstruct the climate in previous
centuries. In both cases, there is a potential bias in em-
ploying a nonstationary overlap (training) interval to
calibrate a sparse set of long instrumental or proxy cli-
mate series (predictors) against a more widespread but
shorter-duration climate field in reconstructing the cli-
mate field (predictand) of interest. There are a number
of issues worthy of investigation with regard to CFR,
including sensitivity to the quality of instrumental and/
or proxy data employed, the influences of specific spatial
and seasonal sampling biases, and the relative perfor-
mance of different CFR methods (e.g., Kaplan et al.
1997; Mann et al. 1998; Schneider 2001). Here, we
specifically focus on the possible effects of nonstation-
arity on the performance of covariance-based methods
of CFR. For this purpose, we only consider the accuracy
of the reconstructed values.
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We investigate this issue using the instrumental record
and both control and forced integrations of the Geo-
physical Fluid Dynamics Laboratory (GFDL) R30 cou-
pled ocean–atmosphere general circulation model
(GCM; Delworth and Knutson 2000). We perform a set
of experiments employing a recently proposed method
of CFR (Schneider 2001) that is based on a regularized
expectation-maximization (RegEM) algorithm and of-
fers some theoretical advantages over previous methods
of CFR (Smith et al. 1996; Kaplan et al. 1997; Mann
et al. 1998). We note, however, that our results should
broadly apply to other covariance-based methods be-
cause these other methods can be interpreted as ap-
proximations to the RegEM method (Schneider 2001).
In this set of experiments, we focus on the surface tem-
perature field but note the greater generality of the ap-
proach to large-scale sea level pressure and hydrocli-
matic fields provided that the underlying data series are,
as is the surface temperature field, reasonably well de-
scribed by a Gaussian distribution. We include the in-
strumental temperature field in our experiments to assess
to what extent the results of experiments on the model
output apply to actual climate data.

Our experimental design for both observational and
model-generated data emulates the conventional situa-
tion encountered in CFR in that distinct data-rich and
data-sparse intervals are created for the purposes of the
experiments. The data-rich interval is used to establish
covariance estimates between predictor and predictand
data to be used for CFR (i.e., calibration), while the
data-sparse interval is used to independently test the
fidelity of the CFR during the reconstruction interval
using additional instrumental data that were withheld
from the calibration process (i.e., verification or cross-
validation). Although the RegEM method uses all the
available data to estimate the covariance matrix, in our
experimental design (see section 4 and the appendix),
only the data-rich calibration period can contribute to
the covariance estimates between predictor and predic-
tand because it is the only time interval in which the
predictand data are available. Our experiments are set
up so as to test the effects of nonstationarity during
either, neither, or both calibration and reconstruction
intervals. In section 2, we describe the instrumental and
model data used in these experiments. In section 3, we
describe the CFR method and diagnostics used for these
experiments. In section 4, we describe the analytical
approach used to test the effects of nonstationarity in
CFR for both instrumental and model temperature fields,
and we describe the results of these experiments in sec-
tion 5. We discuss these results in section 6 and sum-
marize our primary conclusions in section 7.

2. Data

a. Instrumental data

The instrumental data used consist of monthly mean
combined air temperature over land and sea surface tem-

perature anomalies (relative to a 1961–90 reference pe-
riod) from January 1856 through December 1998 on a
58 latitude by 58 longitude grid [see Jones et al. (1999)
and references therein]. The data coverage is most com-
plete in the twentieth century and decreases consider-
ably in the nineteenth century. In addition, the data are
sparse poleward of 708 latitude at all times. We averaged
monthly data into annual calendar, boreal cold-season
(October–March), and boreal warm-season (April–Sep-
tember) means if at least 50% of values needed to cal-
culate the mean value for each year were available (e.g.,
a minimum of 6 months for the annual calendar mean
case). If less than 50% of the values were available to
calculate the average (annual, warm season, or cold sea-
son) for a specific year and grid point, the value for that
year and grid point was classified as missing. After these
averages were calculated we 1) completely removed all
grid points poleward of 708 latitude (leaving 2016 grid
points) and 2) culled all grid points that were less than
70% complete (see Fig. 1 for a flow chart of the process).
Of the original 2016 grid points, the reduced dataset
consisted of 1123 grid points in the cold season, 1118
grid points in the warm season, and 1312 for the annual
calendar mean.

Computing statistics of reconstructive skill requires
that we have a complete dataset for comparison with
the dataset completed with the RegEM algorithm. For
the GCM output this was not a problem because all grid
points for all times are known. For the culled instru-
mental record, however, there are still missing data
points. These were filled using the RegEM method to
create a complete dataset of the reduced grid points for
all times. Use of filling-in techniques can impose a bias
in estimates of the underlying climate field; in the case
of the RegEM method, imputed values will be biased
toward the climatological mean to some degree (Schnei-
der and Held 2001). However, the effects of these biases
and those that may be introduced by culling of grid
points (Fig. 1) are relatively unimportant for our pur-
poses, which simply seek a self-consistency of the re-
sults of CFR resampling experiments with the original
data rather than with the true (unknown, in the case of
the observed) surface temperature field. Moreover, the
potential impacts of such biases can be assessed directly
in our analysis through parallel CFR experiments with
model-generated climate field data. Note that we only
use the original instrumental data in any statistical as-
sessments of reconstructive skill.

b. GFDL coupled model

We used air temperature from the lowest model level
(25 m) in the GFDL coupled ocean–atmosphere model
for this study. The model is global in domain and con-
sists of general circulation models of the atmosphere
(R30 resolution, corresponding to 3.758 longitude by
2.258 latitude, with 14 vertical levels) and ocean (1.8758
longitude by 2.258 latitude, with 18 vertical levels). The
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FIG. 1. Flowchart that shows the steps to remove grid points with sparse instrumental data and shows the
test suites performed on the culled data.

model atmosphere and ocean communicate through
fluxes of heat, water, and momentum at the air–sea in-
terface. Flux adjustments are used to facilitate the sim-
ulation of a realistic mean state. A thermodynamic sea
ice model is used over oceanic regions.

Output from two experiments is used in this study.
The first experiment, referred to as control, was run for
900 yr with a constant atmospheric carbon dioxide
(CO2) concentration of 360 ppm. We used two 143-yr
intervals from the control run to investigate the ability
of the algorithm to reconstruct the temperature field
when neither the reconstruction nor the calibration pe-
riod contained nonstationary forcing, a test that cannot
be conducted on the instrumental data. The first 143-yr
period is a relatively trend-free interval of natural var-
iability, whereas the second period exhibits a natural
secular cooling trend of approximately 0.38C (Fig. 2a)
over model years 75–120. Thus, we were able to test
the performance of the CFR technique in the presence
of a trend that is internal in origin (and is thus associated
simply with limited temporal sampling of an underlying
stationary system), rather than a trend that is externally

forced (and thus associated with fundamentally nonsta-
tionary behavior).

The second experiment, referred to as the forced ex-
periment, starts from an arbitrary initial condition in the
control integration. For the period 1866–1990 the model
incorporates estimates of the observed time-varying
greenhouse gas concentration and sulfate aerosols. From
1990 onward atmospheric greenhouse gases increase at
1% per year. Delworth and Knutson (2000, and refer-
ences therein) provide further details on the model and
experiments. We selected the 143-yr interval corre-
sponding to model years 1948–2090 because this in-
terval presents the RegEM method with a worst-case
scenario of highly nonstationary mean response to ex-
ternal forcing (Figs. 2b,c). For both GCM cases, we
regridded the data to a 58 by 58 resolution corresponding
to the instrumental data.

3. Method

Here we present only a brief overview of the method
used for CFR and the statistical diagnostics used to as-
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FIG. 2. (a) Test interval of the 900-yr GCM control run (no sulfate
aerosol or CO2 forcing) showing the multidecadal cooling trend that
occurs in the absence of nonstationary forcing. Model year is arbi-
trary. (b) Forcing function for the forced GCM experiment in terms
of ppm CO2, and (c) response of the GCM (Northern Hemisphere
mean) to the forcing function in (b). The forcing includes both sulfate
aerosols and atmospheric CO2. Tests are concentrated on modeled
years 1948–2090. (d) Earlymiss and Latemiss tests showing the data
available during the calibration period (solid) and the verification
period (striped).

sess the skill of the reconstruction. Details of the CFR
method and the statistical diagnostics are in the appen-
dix. The expectation-maximization (EM) method is a
standard method for filling in missing values in a dataset
(Little and Rubin 1987). Like most statistical methods,
EM only works if the problem is well posed, meaning
that the data of interest have fewer variables than re-
cords. Typically, CFR problems are ill posed, meaning
that the data of interest have more variables than re-
cords. In our case, for example, there are over 1000
variables (grid points) and only 143 records (time steps).
Thus, some method of regularization must be used to
solve the problem. The RegEM algorithm of Schneider
(2001) uses ridge regression to regularize the problem
and applies an iterative solution method. The method
begins by filling in the missing values with a first guess.
Typically, the first guess is based, in some way, on the
mean of the available data (see the appendix for a dis-
cussion of possible choices). Next, the mean and co-

variance matrices are estimated from the completed da-
taset. Using the estimated mean and covariance matri-
ces, the filled-in values are adjusted and a revised data
matrix is created. The revised data matrix is then used
in the next iteration to adjust the estimates of the mean
and covariance matrices. The iterations continue until
the solution ceases to change appreciably (see the ap-
pendix for a discussion of stopping criteria).

We evaluate the skill of the reconstruction using the
reduction-of-error statistic (RE), or beta (by ), the co-
efficient of efficiency (CE), and a relative root-mean-
square error (Rrmse; see the appendix for details). Each
reconstruction can be thought of as containing three
components: 1) the mean of the reconstruction period
relative to the calibration period, 2) the trend of the
reconstruction period, and 3) the interannual/decadal
variability. In the case of by , each component contrib-
utes to the score. In the case of CE, however, only
components 2 and 3 contribute to the score. When the
means of the calibration and reconstruction periods are
similar, the by and CE scores are similar (for example
in the control GCM case). If the means of the calibration
and reconstruction periods differ and the reconstruction
correctly estimates the mean of the reconstruction pe-
riod, by will be larger than CE. For a perfect recon-
struction, both by and CE will be equal to 1. A random
reconstruction with neither trend nor differing means
between the calibration and reconstruction period will
have b and CE equal to 21. We calculated by and CE
for each experiment for both the multivariate case (i.e.,
the statistics for the single time series constructed from
the mean of the reconstructed grid points). Since spatial
averaging sharply reduces the degrees of freedom, spa-
tial means of the reconstruction typically resolve a sig-
nificantly larger fraction of data variance than do in-
dividual grid points. Thus, one may expect by and CE
for the mean time series to be considerably larger than
for the multivariate case. Rrmse is fundamentally dif-
ferent in that it normalizes by the variance over the
entire time period and does not differentiate between
calibration and verification. Whereas b and CE will be
influenced by the differences in mean or trend between
verification periods, Rrmse will not. See the discussion
in the appendix for details.

Although the verification by , CE, and Rrmse statistics
provide a measure of skill in the CFR experiments, ad-
ditional diagnostics of the CFR verification period must
be used to examine whether there is any evidence for
systematic bias in the CFR results. These diagnostics
involve examining the verification-period residuals (the
time series of differences between imputed and actual
values during the verification period). To conclude that
there is no evidence of bias, these residuals should 1)
be normally distributed, 2) have zero mean, 3) exhibit
no statistically significant trend, and 4) exhibit a white
noise spectrum. We thus evaluated the residuals via x-
squared normality tests (at the a 5 0.05 significance
level), t tests for zero mean (a 5 0.05) and trend (a 5
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TABLE 1. Values of by , CE, and Rrmse resolved variance statistics and the results of tests on the residuals of the mean time series. Note
that large by and CE indicate a better reconstruction, whereas a smaller Rrmse implies a better reconstruction.

Percent missing
grid points

Multivariate

by CE Rrmse

Mean

by CE

Residuals

Normal
(pass/fail)

Mean 5 0
(pass/fail)

Trend
(yes/no)

GCM control, no trend
Early 70%

85%
90%
95%
98%

0.58
0.50
0.49
0.37
0.22

0.57
0.50
0.48
0.37
0.20

0.69
0.72
0.75
0.79
0.87

0.93
0.86
0.86
0.79
0.62

0.93
0.86
0.86
0.79
0.62

P
P
P
P
P

P
P
P
P
P

N
N
N
N
N

GCM control, trend
Early 70%

85%
90%
95%
98%

0.60
0.55
0.55
0.48
0.23

0.60
0.54
0.55
0.48
0.23

0.69
0.73
0.74
0.78
0.89

0.92
0.89
0.89
0.84
0.51

0.92
0.88
0.88
0.84
0.50

P
P
P
P
P

P
P
P
P
F

N
N
N
Y
N

Late 70%
85%
95%

0.56
0.56
0.47

0.55
0.56
0.47

0.69
0.71
0.77

0.85
0.85
0.81

0.85
0.84
0.81

P
P
F

F
F
F

N
N
Y

GCM forced
Early 70%

85%
90%
95%
98%

0.79
0.77
0.77
0.74
0.60

0.61
0.56
0.56
0.51
0.23

0.53
0.56
0.57
0.60
0.70

0.99
0.99
0.99
0.99
0.97

0.95
0.90
0.93
0.79
0.35

P
P
P
P
P

F
P
P
P
P

N
Y
N
N
N

Late 70%
85%
90%
95%
98%

0.78
0.78
0.80
0.77
0.69

0.68
0.68
0.65
0.60
0.46

0.60
0.59
0.57
0.60
0.69

0.95
0.95
0.99
0.99
0.96

0.94
0.94
0.99
0.98
0.96

P
P
P
P
P

F
P
F
P
P

Y
Y
Y
Y
Y

Instrumental
Early 70%

85%
90%
95%

0.44
0.44
0.45
0.38

0.25
0.13
0.17
0.09

0.91
0.94
0.94
0.96

0.98
0.95
0.97
0.95

0.91
0.72
0.79
0.69

P
P
P
F

P
P
F
P

N
Y
N
N

Late 70%
85%
90%
95%

0.56
0.55
0.50
0.45

0.38
0.38
0.27
0.22

0.77
0.81
0.81
0.84

0.96
0.97
0.84
0.93

0.87
0.87
0.86
0.72

P
P
P
F

F
F
F
F

Y
Y
N
Y

Warm 85% 0.41 0.20 0.83 0.71 0.70 P F Y

0.05), and the general consistency of the power spec-
trum with a white-noise null hypothesis. Note that these
tests are not all independent of each other. For example,
residuals with a significant trend might be expected to
exceed the white-noise significance levels at lower fre-
quencies. In addition, if the residuals fail the normality
test, one of the assumptions of the t test and trend test
is violated. Although t tests are relatively robust to mod-
est violations of the normality assumption, these tests
should be interpreted with some caution if the residuals
fail the normality test or if they do not behave as white
noise.

4. Analytical approach

a. Instrumental data

We make use of a filled-in (spatially and temporally
complete) version of the instrumental record, which is

then resampled to provide distinct data-sparse and data-
rich subsets during either the earlier (relatively station-
ary) or latter (relatively nonstationary) halves of the full
data interval. For simplicity, the data series are resam-
pled in such a way that they provide a spatially sparse
but temporally complete data field during the data-
sparse subinterval. Two test suites were subsequently
performed on each dataset (Figs. 1 and 2d, and Table
1). In the first suite, we removed 100% of the values
from the earliest 72 yr (e.g., 1856–1927) at randomly
selected grid points, with the latest 71 yr (e.g., 1928–
98) being complete. The individual members of the suite
had varying percentages of missing data. This suite is
referred to as Earlymiss (Fig. 2d). In the second suite,
referred to as Latemiss, we removed all values in time
from the latter half (e.g., 1928–98) of randomly selected
grid points and left data for 1856–1927 complete. The
instrumental Earlymiss suite is applicable to filling in
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of the sparse early instrumental data. In contrast, the
Latemiss suite has no direct real-world application be-
cause the instrumental data are relatively complete over
1928–98. The purpose of the Latemiss suite is to assess
potential reconstruction biases that may be attributed to
calibrating over a period during which the mean appears
to be relatively stationary while attempting to recon-
struct a period during which the mean appears to be
nonstationary.

In our experimental design, the only information
available for estimating covariance between predictors
and predictands is during the data-rich calibration pe-
riod. Thus, although RegEM uses all the available data,
there is no useful covariance information in the data-
sparse verification period to estimate covariances be-
tween predictors and predictands.

b. GFDL coupled model

With the model surface temperature data, unlike the
instrumental data, we are free to test multiple possible
scenarios, including cases in which nonstationarity is
present during neither or either of the calibration and
verification subintervals (see Fig. 1 and Table 1 for a
breakdown of the tests). As with the instrumental data,
both Earlymiss and Latemiss suites were performed on
the control and forced GCM experiments (though the
distinctions between the Earlymiss and Latemiss ex-
periments obviously become less meaningful in the case
of the control simulation experiments). Furthermore, the
Latemiss/Earlymiss experiments were performed using
two distinct 143-yr intervals of the control simulation,
one in which the mean is relatively constant, and the
other in which there is a multidecadal trend present in
one-half of the full interval. These latter additional ex-
periments allow us to test the fidelity of the CFR when
secular trends associated with patterns of (stationary)
low-frequency internal climate variability, rather than
(nonstationary) secular forcing changes, are present and
impart a mean trend during either the calibration or
reconstruction interval.

To make the instrumental and GCM tests comparable,
we first removed from the GCM domain all grid points
poleward of 708 latitude, and those grid points that were
less than 70% complete were removed from both the
instrumental and GCM datasets and were not considered
in any of the tests. With the reduced ‘‘complete’’ dataset
determined in this manner, we then performed CFR ex-
periments on incomplete versions of the dataset through
the entire removal of randomly selected grid points from
either the early or late subintervals, employing varying
percentages of missing spatial data. In the Earlymiss
suite, we removed all values in time from the earliest
72 yr of randomly selected grid points while the latest
71 yr were complete. In the Latemiss suite, we again
removed all values in time from the later half of ran-
domly selected grid points and left the earlier half com-
plete.

5. Results

We present the results separately for the two GCM
runs (control and forced) and the instrumental record.
We focus on the cold-season results, but note that warm-
season and annual mean results are similar unless oth-
erwise stated. Verification statistics and tests of residuals
are summarized in Table 1.

a. GCM control experiments

The control experiment wherein no natural trend is
present during either half of the full (143 yr) interval
can serve as a baseline for comparison with all of the
other cases. The results of this experiment are sum-
marized in Table 1 and Fig. 3. In this case, we only
show results for the Earlymiss test, but, as is expected
from symmetry considerations, similar results (and sim-
ilar by , CE, and Rrmse statistics) are achieved for Late-
miss tests. A slight deterioration of the mean time series
reconstructions occurs as the number of missing grid
points increases from 70% to 90% and the multivariate
verification by drops from 0.58 to 0.49. At 98% missing
grid points, the multivariate by has dropped to 0.22 and
the mean series by is 0.62. Both CE and Rrmse show
a similar pattern. Note that a smaller Rrmse and a larger
CE and by indicate a better reconstruction.

The second time interval analyzed from the GCM
control experiment contains a multidecadal (roughly 50-
yr) cooling trend of approximately 0.38C, which occurs
without external forcing of the model (Fig. 2a). The
trend is best defined as occurring between model years
75 and 120 of the interval studied and is preceded by
a period of relatively trend-free variability. Because our
breakpoint for the Earlymiss/Latemiss tests is at year
72, the trend is completely contained within either the
calibration or reconstruction/verification subperiod.

Examples of mean reconstructed time series for the
Earlymiss and Latemiss tests are shown in Fig. 4. In
the Earlymiss tests, the trend does not appear to affect
the fidelity of the reconstructions, because the diagnos-
tics are as good as or better than those for the control
experiment without the trend (Table 1). The residuals
for the mean time series are consistent with white noise
and generally pass the normality, zero-mean, and trend
tests (although with 95% and greater missing grid
points, failures occur).

The residuals for the mean time series show evidence
for a nonzero mean in the Latemiss experiment, and the
residuals are inconsistent with white noise at the lowest
frequencies (Fig. 4d). On closer inspection, one ob-
serves that the reconstruction underestimates the mag-
nitude of several warm peaks in the early part of the
reconstruction interval. Thus the reconstruction is un-
able to reconstruct fully the magnitude of the abrupt
shift that occurs between model year 70 and 75 (see
Fig. 2a). To verify the impact of the warm peaks between
model years 72 and 85 on the evaluation of residuals,
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FIG. 3. Earlymiss mean time series reconstruction for the control GCM (cold season) experiment
with no multidecadal trend present: mean of filled-in values for (a) 85% and (b) 95% missing
grid points. In both cases the resulting reconstruction is nearly unbiased. In this and all subsequent
figures showing reconstructed time series, the solid line is the reconstruction, the dashed line is
the actual mean time series, and the dotted lines are the 2s uncertainties on the reconstruction.

we conducted tests of the residuals from model year 85
through 143. In this case the residuals consistently
passed all tests.

Figure 5 shows the gridpoint CE and root-mean-
square error (rmse) with 95% missing grid points for
the Earlymiss case. Areas with relatively high CE are
often associated with high densities of available grid
points. This is not always true, however. In many cases,
such as Europe (both east and west) and the Indian
Ocean, a few grid points are associated with relatively
high CE over a large area. In contrast, available grid
points in the Southern Ocean and southwest Atlantic
tend to produce very localized regions of relatively high
CE.

b. GCM-forced experiments

The model experiments with changing radiative forc-
ing allow us to test the algorithm with varying degrees
of externally forced trend. We present here the results
of a worst-case scenario in which the anthropogenic
(combined greenhouse–surface aerosol)-forced climate
response is larger than that inferred (e.g., Crowley 2000)
for the instrumental record. This time period represents
modeled years 1948 to 2090 (Figs. 2b,c).

1) EARLYMISS

In the Earlymiss experiments, the global/hemisphere
mean time series show no evidence of bias regardless
of the number of missing grid points (Fig. 6). Residuals
typically pass tests of normality, zero-mean, trend, and
white noise (Table 1 and Figs. 6c,d). Furthermore, the
interannual variability of the global, Northern Hemi-
sphere, and Southern Hemisphere mean time series is
captured with a high degree of skill. Unlike the control
experiments, CE statistics tend to be lower than the by

statistics, because by is ‘‘rewarded’’ for identifying the
significant change in mean that occurs between the two
subperiods in the case of the forced model experiments.
The value of by in the forced Earlymiss is larger than
that for the control Earlymiss for the same reason. Com-
paring the multivariate CE and Rrmse between forced
and control model runs for the Earlymiss tests reveals
that, even with a large trend present in the calibration
period, the reconstruction skill is similar to or better
than that achieved with the control no-trend tests. How-
ever, once the percentage of missing grid points becomes
extremely high (98% or so) the CE for the mean time
series drops precipitously to 0.23 and the Rrmse jumps
to 0.89.
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FIG. 4. Earlymiss and Latemiss (cold season) mean time series reconstruction for the GCM
control experiment containing a multidecadal secular trend. The trend extends from model year
75 to 120. Filled-in mean time series for 85% missing grid points in (a) the Earlymiss test and
(b) the Latemiss test. In the Latemiss test the magnitude of the first three warm peaks is un-
derestimated. Power spectrum of the mean time series residuals for the (c) Earlymiss and (d)
Latemiss cases, respectively. In both cases the residuals are consistent with white noise.

2) LATEMISS

In contrast to the Earlymiss experiments, the Latemiss
tests show evidence of systematic bias in the recon-
structed mean time series (Figs. 7a,b). The residuals are
inconsistent with white noise (Figs. 7c,d) and exhibit a
statistically significant trend (Table 1). Generally, the
multivariate CE for the Latemiss tests are greater than
those for the Earlymiss tests (Table 1). This result is
not unexpected, because CE is normalized by the var-
iance of the reconstruction period. If one verification
period contains a trend and the other does not, then the
verification period with the trend will tend to have a
larger CE, all else being equal. Both by and Rrmse
indicate that the Latemiss reconstructions are no better

than (90%, 95%, and 98% missing grid points) or worse
than (70% and 85% missing grid points) the Earlymiss
reconstructions, with the exception of by for the case
of 98% missing grid points,

The grid point CE and rmse for 95% missing grid
points are shown in Fig. 8. These maps illustrate the
general importance of gridpoint location. Note the rel-
atively low CE and rmse statistics over parts of North
America and the western North Atlantic, regions that
had no available grid points in the reconstruction period.
In contrast, large areas of Europe and the Indian Ocean
exhibit relatively high verification scores even though
there are few available grid points in these regions. The
maps do not illustrate the bias that exists in the mean
time series for the Latemiss case (Table 1, Fig. 7).
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FIG. 5. Maps of (a) verification CE, a measure of relative error, and (b) rmse (8C), a measure of absolute error, for
the Earlymiss (cold season) control GCM reconstruction with multidecadal trend and 95% missing grid points. Black
boxes indicate grid points that were removed because they are less than 70% complete in the instrumental record.
White boxes indicate grid points that were available during the data-sparse reconstruction period. As expected for the
case in which the calibration and verification periods have nearly the same mean, b (not shown) and CE are similar.

c. Instrumental data

Diagnostics for the instrumental data were only cal-
culated over all randomly selected missing grid points
that were initially 95% complete. However, a residual
bias may still exist in the earliest (i.e., nineteenth cen-
tury) instrumental data (e.g., Folland and Parker 1995).
We thus used a more conservative abbreviated verifi-
cation period of 1900–28 for the Earlymiss tests to eval-
uate the residuals for normality, zero-mean, and trend
but nonetheless used the full 1856–1928 verification
period for the white-noise tests to provide adequate es-
timates of the spectra of the residuals. We also note the

likelihood of data issues in the nineteenth century that
might influence our results as discussed below.

1) EARLYMISS

The Earlymiss experiments using the instrumental
data show limited or no evidence of bias (depending on
both the number and specific distribution of available
grid points). With 85% (Fig. 9a), 90% (not shown), and
even 98% (not shown) missing grid points, there is no
evidence of a warm or cold bias in the mean recon-
struction. However, with the particular sampling of grid
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FIG. 6. Earlymiss (cold season) (a), (b) mean time series reconstructions and (c), (d) white-
noise residual tests for the forced GCM with (a), (c) 85% and (b), (d) 95% missing grid points.
The 50%, 90%, 95%, and 99% significance levels are indicated on the power spectra. The results
are nearly ubiased, and the residuals are consistent with white noise.

points available in the 95% missing gridpoint experi-
ment, the mean reconstruction was found to be too warm
(primarily between 1865 and 1895) and the spectrum
of residuals is inconsistent with white noise at the lowest
frequencies at the 0.01 significance level (Figs. 9c,d).
The normality, zero-mean, and trend tests on the resid-
uals (1900–28) are mixed but are generally consistent
with the forced GCM Earlymiss results, suggestive of
little or no bias in the verification residuals.

2) LATEMISS

In the instrumental Latemiss reconstructions we en-
countered clear evidence of bias in the reconstructions
(Figs. 10a,b), consistent again with the forced model
(Latemiss) simulation results. The cold bias in the re-
construction (which is evident in the 85% missing data
experiment and increases with the number of missing
grid points) is clearly visible in the last 20 yr of the
reconstruction interval. The residuals in this case typ-
ically fail the zero-mean and trend tests (Table 1), and

the spectrum is typically inconsistent with the white-
noise null hypothesis (Figs. 10c,d). The warm-season
reconstruction exhibits a bias that is similar to that of
the cold season, though a lesser level of skill is evident
(Table 1). Though the residual tests indicate a bias in
the Latemiss reconstructions, the multivariate verifica-
tion statistics indicate that the Latemiss reconstructions
are better than the Earlymiss. This contrasts with the
forced GCM case, suggesting that nineteenth-century
data quality and availability are a factor in our exper-
iments.

6. Discussion

a. Reconstruction bias

Significant differences are found among the different
experiments in the diagnostics used to check for bias in
the verification residuals that require further discussion.
In nearly all cases, the verification residuals pass the
normal distribution test, but this is not necessarily true
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FIG. 7. Latemiss (cold season) (a), (b) mean time series reconstructions and (c), (d) white-noise
residual tests for the forced GCM with (a), (c) 85% and (b), (d) 95% missing grid points. The
open circles are the residuals, which have been arbitrarily offset for clarity. The zero line for the
residuals is shown. Note that the reconstructed mean time series tend to overestimate the true
mean temperature in the early part of the reconstruction and to underestimate it in the latter part
of the reconstruction, particularly with 95% missing grid points. In both cases, the residuals are
inconsistent with white noise.

of the other diagnostics. The control GCM, forced
GCM, and instrumental Earlymiss residuals all pass, in
general, the battery of tests (zero-mean, trend, and white
noise) for unbiased CFR. The Latemiss control GCM
experiment shows some moderate evidence of bias with
respect to the zero-mean test (which may be associated
with an underestimate in the amplitude of a few indi-
vidual temperature peaks), but the white noise and trend
test do not show any evidence of any systematic bias
in the estimate of low-frequency variability. In contrast,
residuals from the Latemiss instrumental and forced
GCM typically fail either two or three of the tests. Our
results thus suggest that employing a calibration period
that contains a forced (i.e., nonstationary) trend is likely
to produce a nearly unbiased CFR, whereas using a
stationary calibration period to reconstruct the climate
field over a period containing a forced trend may pro-
duce a systematic underestimate of the trend. This con-

clusion is broadly consistent with that of Schneider and
Held (2001), who used a GCM simulation with twen-
tieth-century forcing and the evolving data mask of the
actual instrumental record to examine the potential bias
that might be expected from filling in the instrumental
data. They found that a 25-yr forced warming trend in
the simulated twentieth-century monthly means was un-
derestimated by 10%–18% by the imputed values, which
is similar to the results for our Latemiss instrumental
and forced GCM experiments (Figs. 7 and 10). Our
results also suggest that reconstructing a natural trend
of a magnitude and duration that may be expected to
occur based on the control GCM is less problematic
than reconstructing a forced trend. Experiments using
output from a long GCM control run (e.g., 9001 yr)
that exhibit long-term drift are under way to assess the
robustness of this result to trend duration.

With regard to the case of using a stationary interval
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FIG. 8. Gridpoint (a), (c) CE and (b), (d) rmse (8C) for the forced-GCM (a), (b) Earlymiss and (c), (d) Latemiss reconstructions with 95%
missing grid points. Here, CE is larger in the Latemiss case because it is normalized by the verification period variance, which is greater
in the Latemiss case. These results also display the importance of available gridpoint location. The lowest CE statistics occur where there
are large regions without available grid points. Although CE indicates a low relative error at high northern latitudes, the rmse is large.

to reconstruct the behavior over a nonstationary inter-
val, we interpret the bias as resulting from the inability
of the covariance-based algorithm to appropriately rep-
resent the pattern associated with anthropogenic forcing
(i.e., a large-scale pattern of warming, which dominates
the late twentieth century) in terms of a linear super-
position of the more spatially heterogeneous patterns
associated with natural variability. In the Latemiss ex-
periments, the reconstruction attempts to approximate a
sparse set of grid points that sample the large-scale
warming with the spatially heterogeneous patterns that
dominate the earlier calibration period. In so doing, the
intrinsic scale of the warming pattern is underestimated,
and the large-scale warming trend is underestimated. A
longer calibration period that includes part of the warm-
ing pattern might alleviate this problem, but the utility
of such an approach will depend upon the relative im-
portance of the pattern as compared with the natural
patterns as the calibration interval is extended. Thus the
length of the calibration period necessary will likely be
application specific. On the other hand, the Earlymiss
tests show that if the calibration period contains the
forced (anthropogenic) pattern, it is not used during the
reconstruction period if there is no evidence it is im-
portant then. In essence, the amplitude of the forced
pattern can readily be damped during the reconstruction
interval if this is what the available data merit, but it is
far more difficult for a CFR algorithm to identify and

use in later reconstructions a forced pattern that is weak
or essentially absent during the calibration interval.

b. Reconstruction skill

The reconstruction skill, as expected, decreases sys-
tematically as the number of grid points available for
CFR decreases. Our results indicate that a significant
threshold is reached from roughly 95% to 98% missing
grid points in both the instrumental and GCM tests.
Somewhere within this range, the diagnosed skill de-
creases dramatically. This phenomenon can readily be
understood in terms of a sampling saturation effect
wherein the number of available grid points is poten-
tially considerably larger than the effective spatial de-
grees of freedom as defined by Schneider [2001, his Eq.
(21)]. At 95% missing data in the Earlymiss forced-
GCM experiment for example, the RegEM algorithm
estimates 23 effective spatial degrees of freedom in the
field, with 173 grid points available. In contrast, for 98%
missing data, the number of available grid points has
decreased by nearly a factor of 6 (to 30), but the ef-
fective spatial degrees of freedom are cut in half (12).
Thus, each spatial degree of freedom is now only sam-
pled about 2 times on the average, imposing a high
probability that a given spatial degree of freedom is left
unsampled.

For related reasons, a decrease in the number of avail-
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FIG. 9. Earlymiss instrumental mean time series reconstructions with (a), (c) 85% and (b), (d)
95% missing grid points. Note that the residuals fail the white-noise test at low frequencies. The
power spectra were calculated over 1856–1928. In contrast, residual tests that are limited to a
1900–28 verification period pass zero-mean and trend tests (Table 1). The discrepancy may be
due to variable instrumental data quality in the nineteenth century.

able grid points does not necessarily lead to a decrease
in the skill of the reconstruction for any given realization
(Table 1). The precise distribution of available grid
points can significantly influence the reconstructive skill
in CFR, particularly at larger percentages of missing
data for which the probability that a given (potentially
important) climatic degree of freedom remains unsam-
pled in any given sampling realization. Multiple reali-
zations were performed for several of the experiments,
using independent sets of available grid points in the
reconstruction interval. These experiments typically
yield a range of values of the multivariate by with a
standard deviation of about 0.04. A few well-placed grid
points capture a particular spatial pattern more com-
pletely than many poorly placed grid points. Certain
surface temperature grid points (e.g., those in the eastern
tropical Pacific) are located, for example, in particularly
important locations for resolving ENSO. In contrast,
grid points with large seasonal variance but low signal-
to-noise ratios with regard to interannual variability pro-
vide relatively little information to constrain the behav-

ior of patterns important for interannual-and-longer-
timescale variability. Zwiers and Shen (1997) demon-
strated the ability of a small data network to capture
large-scale patterns in a GCM and showed furthermore
that both the size of the network and the location of the
available grid points play a role. Taking this notion one
step further, it may be possible to use the instrumental
record to identify regions that are particularly important
for CFR and to target these regions for the development
of proxy climate networks.

c. Seasonal and instrumental–GCM comparisons

Some significant differences exist between the results
of the warm-season and cold-season Latemiss instru-
mental experiments (Table 1). These differences likely
arise from the greater level of spatial organization as-
sociated with cold-season interannual variability (e.g.,
El Niño teleconnections and the North Atlantic Oscil-
lation), which may provide more skillful reconstructions
of cold-season spatial patterns in the instrumental data
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FIG. 10. Reconstructed mean time series and spectra of residuals for the Latemiss tests using
instrumental data with (a), (c) 85% and (b), (d) 95% missing grid points. Note the underestimate
of the warming trend in the latter part of the reconstruction.

given a particular sparse available sampling of the spa-
tial field. The relative importance of the anthropogenic
pattern in both warm and cold seasons may also be an
important factor. The greater amplitude of the anthro-
pogenic pattern during the cold season (Schneider and
Held 2001) may increase its detectability during the (late
nineteenth/early twentieth century) calibration interval
of the Latemiss experiment, when this signal, presum-
ably, is beginning to emerge from the background of
natural variability.

The control GCM experiment, for which the calibra-
tion period contains a natural multidecadal trend, war-
rants some additional comment. The Latemiss recon-
struction in this case underestimates the magnitude of
several large peaks in the early part of the reconstruction
interval, leading to a very modest apparent bias in the
verification residuals. In contrast to the forced Latemiss
experiments, for which we attribute the more substantial
observed bias to a fundamental weakness of the use of
covariance information from a stationary field to re-
construct the behavior of a nonstationary field, this more

modest apparent bias is consistent with the known ten-
dency of the RegEM algorithm to impute values that
are slightly biased toward the mean.

It is noteworthy that the GCM experiments yield bet-
ter verification scores than do the instrumental results
for the same experiment (e.g., Earlymiss, 85% missing).
We attribute this in large part to the existence of non-
climatic sources of small-scale variance in the instru-
mental record [i.e., measurement error, systematic mea-
surement bias, and sampling error (grid boxes contain
varying numbers of observing stations)] that are intrin-
sically impossible to describe in terms of large-scale
patterns, particularly earlier in the record, for which the
differences in these scores are greatest. Furthermore, it
is likely that poor data quality and sparse coverage of
the nineteenth century contribute to the differences ob-
served between the instrumental Earlymiss and Late-
miss tests relative to the same tests for the forced GCM.
If we had 143 years of actual, complete, high-quality
instrumental data, the GCM and instrumental verifica-
tion scores may have been closer.
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7. Conclusions

Our climate field reconstruction experiments using the
RegEM method lead us to the following conclusions:

1) Under stationary boundary conditions (as deduced
from experiments with a control GCM simulation
with no changes in radiative forcing) relatively un-
biased CFR results are achieved even with extremely
low density of available data. This remains true if
the calibration interval contains a secular trend that
is entirely natural in origin (arising from the finite
sampling of low-frequency natural variability). If in-
stead the verification interval contains such a trend,
there is some tendency to underestimate the variance
of individual fluctuations but there is no evidence of
systematic bias in the low-frequency variability.

2) When changing forcing leads to nonstationary be-
havior during the calibration interval (as deduced
from the forced Earlymiss GCM experiments), CFR
during a prior interval is nearly unbiased. Similar,
though not quite as definitive, conclusions are
reached for the actual temperature record, based on
Earlymiss experiments using the filled-in instrumen-
tal surface temperature data.

3) When changing forcing leads to nonstationary be-
havior during the reconstruction, rather than cali-
bration interval (as deduced from the forced Late-
miss GCM experiments), CFR shows evidence of
systematic bias. Similar conclusions are reached for
Latemiss experiments using the filled-in instrumental
surface temperature data.

These results thus indicate that seasonal and annual
reconstructions of sparse early (early or pre-twentieth
century) climate fields from relatively complete recent
(late twentieth century) instrumental data should pro-
duce nearly unbiased reconstructions. Furthermore, it is
evident from our experiments that a relatively few well-
chosen predictors (e.g., our 95% missing temperature
gridpoints experiment, which used 73 grid points to re-
construct a surface temperature field of 1123 grid points)
can produce a skillful CFR, yielding, in particular, rel-
atively reliable estimates of global and hemispheric
means. Work is in progress to extend these experiments
to the estimate of past surface temperature fields with
predictors containing significant levels of observational
error and/or bias, which will have more direct relevance
to the problem of proxy-based climate field reconstruc-
tion.
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APPENDIX

Regularized Expectation Algorithm

The RegEM algorithm is an iterative method for the
estimation of mean values and covariance matrices from
incomplete data and for using the resulting covariance
estimates to fill in missing data with imputed values
(Schneider 2001). The RegEM algorithm is based on
iterated regression analyses of the variables (e.g., grid
points or proxies) with missing values at each record
(i.e., time step) on the variables with available values.
In each iteration, the regression of variables with miss-
ing values on variables with available values is com-
puted for each record from estimates of the mean and
of the covariance matrix. Missing values are then filled
in with imputed values predicted from the regression
model. Once all missing values in the data have been
computed, new estimates of the mean and of the co-
variance matrix are determined and are used in the next
iteration to adjust the imputed values. The iterations
continue until the estimates of the missing values, mean,
and covariance matrix have reached an already specified
level of convergence. The regression coefficients in each
iteration are estimated by ridge regression, a regularized
regression method in which a continuous regularization
parameter controls the filtering of the noise in the data
(Hansen 1997; Hoerl and Kennard 1970a,b; Schneider
2001, and references therein). In each iteration and for
each record, the regularization parameter is chosen
adaptively by generalized cross validation (Golub et al.
1979; Hansen 1997). Thus the regularization can adapt
to the density and pattern of available values in the data.
[See Schneider (2001) for details on the RegEM algo-
rithm, for a juxtaposition with other methods, and for
a comparison between ridge regression and principal
component regression.]

We used the RegEM algorithm with multiple ridge
regressions, in which a single regularization parameter
is estimated for each record with missing values. It is
also possible to estimate an individual regularization
parameter for each missing value, but this approach is
computationally more expensive. The choice of initial
estimates for the mean and covariance matrix will be
discussed below. As stopping criterion for the iterations,
we used

1/2N T N T

k k21 2 k21 2 23(x 2 x ) (x ) , 5 3 10 ,O O O On,t n,t n,t@[ ]1 1 1 1

where x is the data (T records by N variables) with the
imputed values of the kth iteration filled in for missing
values, and with the sums extending over all missing
values.

a. Initial values

The first iteration begins by assigning initial values
for missing data. Typically, each missing data point is
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initially assigned the time-mean value of all the avail-
able data for that grid point. We used a slightly different
approach by using the mean of all available data (over
space and time) from the reconstruction period, after
removing the climatological mean, as the initial value
for every missing value. In tests in which the recon-
struction period exhibited a trend (e.g., in the instru-
mental record when the 1856–1928 data were complete
and we were imputing missing grid points between 1929
and 1998) this resulted in a much faster convergence of
the algorithm. Figure A1a shows intermediate results
over 60 iterations when the mean of all available data
for grid point g is given as the initial guess for every
missing value at grid point g. The slope of the time
series is changing slowly as the number of iterations
increases. The stopping criterion has not been reached
after 60 iterations, and, based on the results at 20, 40,
and 60 iterations, several hundred iterations would be
necessary (computational constraints prohibit running
these cases for several hundred iterations). By using the
mean of all available values (over space and time) in
the reconstruction period as the initial guess, the stop-
ping criterion is reached more quickly (Fig. A1b). For
the kind of situation we are testing (with distinct cali-
bration and reconstruction intervals), the mean of all
the available data over the reconstruction period is a
better choice for a first guess at the missing values be-
cause it uses the available information from the time
period of interest (a reasonable alternative approach
might use the spatial mean at time t as the initial guess
for all missing values at time t). When extended to in-
clude climate proxy data, one could simply use the mean
of the standardized proxy series as the initial guess for
the missing values.

b. Regularization parameter

In CFR methods that use truncated principal com-
ponents to regularize the ill-posed regression problem,
the decision of where to truncate is important. Typically
these methods use some rule, such as Preisendorfer’s
‘‘rule N’’ (Preisendorfer 1988), to choose the number
of principal components to retain, and higher-order prin-
cipal components are discarded. In the RegEM algo-
rithm, higher-order principal components are smoothly
filtered out with a continuous regularization parameter
controlling the strength of the filtering instead of being
abruptly truncated. The regularization parameter is cho-
sen by generalized cross validation (GCV). Frequently,
we found that with greater than 85% missing grid points
(and rarely with less than 85% missing grid points) the
GCV selection of the regularization parameter is too
large because of a shallow or nonexistent minimum in
the GCV function. This resulted in the need for an upper
bound on the regularization parameter. We determined
an upper bound on the regularization parameter by spec-
ifying the minimum fraction of total variation in the
standardized available data that must be retained in the

regularization. We tried a number of test runs using the
forced GCM output and found that the best results are
achieved when the minimum fraction of total variation
to be retained is 95%. In many cases, this upper bound
is never reached by the GCV selection; thus, the results
are relatively insensitive to the value chosen. Even when
the bound is reached, whether the upper bound is based
on 95% or 90% variance to be retained makes little
difference in the solution.

c. Inflation factor

Another parameter that can be adjusted in the regu-
larized EM algorithm is an inflation factor. The inflation
factor adjusts the residual covariance matrix (Schneider
2001, his Eq. 3) for the underestimation of the impu-
tation error due to the regularization (Schneider 2001).
The inflation factor is important for error estimation [see
the Schneider (2001) appendix] because it accounts for
error in the ridge regression coefficients that is then
propagated to the errors in the imputed values [see the
Schneider (2001) appendix for a discussion of the es-
timated error in the imputed values]. Relative to the
effect on the estimated error, small changes in the in-
flation factor have a minor effect on the imputed values.
Using the GCM control simulation, we conducted mul-
tiple tests to determine an inflation factor for different
percentages of missing grid points [as suggested by
Schneider (2001)]. The inflation factor was adjusted un-
til the estimated (calibration) error and observed (ver-
ification) error were nearly the same (precise equating
of values would require a large number of trials with
slightly different inflation factors, which was not con-
sidered to be a worthwhile expenditure of computational
resources). These inflation factors were then applied to
the forced GCM and instrumental analyses.

d. Statistical diagnostics

Strictly speaking, the regularized EM algorithm does
not contain a calibration period or verification period in
the sense defined for standard multivariate regression
approaches. However, a calibration period can be de-
fined in the context of our experiments in terms of the
distinct data-rich period that is used to estimate the co-
variance between predictor and predictand that is ulti-
mately used to impute missing values, and a verification
period can be defined in terms of the distinct data-sparse
period during which imputed values are compared with
withheld data to assess the CFR skill. As a measure of
reconstructive skill, we evaluate three distinct measures
of resolved variance [see Cook et al. (1994) for a review
of reduction of error and coefficient of efficiency] during
the verification period.

These include the conventional reduction-of-error sta-
tistic, defined here by the symbol by [as in Mann et al.
(1998)]:
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FIG. A1. Mean time series from convergence tests using the forced GCM simulation: (a) the
climatological mean for each grid point g was used as the initial value for all missing values at
that grid point; (b) the mean of all available values in the reconstruction period was used as the
starting point. In (a), the solution is still changing after 60 iterations and the stopping criterion
has not been reached. In (b), the stopping criterion has been reached after only 15 iterations.
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and the coefficient of efficiency:

N T N T

2 2CE 5 1 2 (x 2 x̂ ) (x 2 x ) ,O O O On,t n,t n,t y@[ ] [ ]1 1 1 1

where the sums are over the imputed grid points N and
time T, c is the mean of the calibration period, y isx x
the mean of the verification period, x̂ is the imputed
value, and x is the actual value. Whereas by assigns skill
for estimating differences in mean between verification
and calibration period, CE does not.

In addition, we also calculate a relative root-mean-
square error for the multivariate case:

1/2N T1
2 2Rrmse 5 (x 2 x̂ ) /(s ) ,O O n,t n,t n[ ]M 1 1

where M is the total number of filled-in values and sn

is the standard deviation of the nth grid point over the
entire test period, not just the calibration or verification
period as with by and CE. Also shown in Figs. 5 and
8 is the standard root-mean-square error (rmse) as a
measure of absolute error (CE, b, and Rrmse are all
measures of relative error).

For each CFR experiment, we calculated all diag-
nostics for the full multivariate field and calculated by

and CE for the single time series (in which case the
expressions for by and CE above contain only a temporal
sum) of the global mean (areally weighted mean of all
filled-in grid points). For the GCM experiments, we
calculated verification by , CE, and Rrmse over all filled-
in values. For the instrumental data, recall that we ini-
tially culled all instrumental grid points that were less
than 70% complete and filled the remaining missing
values using the RegEM algorithm. This leads to the
EM algorithm sometimes filling in randomly selected
grid points that were previously partially filled using
the same method. Therefore, we calculated statistics
only using available values from grid points that were
initially 95% complete during the period of 1856–1998
(less than 7 missing out of 143 annual/seasonal values),
thereby only comparing imputed values with values that
were initially present in the raw temperature data. We
furthermore restricted the mean calculation in the in-
strumental data to include only those grid points that
were initially 95% complete, and we used only values
that were initially available in the instrumental data to
calculate the mean for each year.

The RE, or b, statistic in traditional multivariate re-
gression can be directly related to the estimates of error
in the regression model (e.g., Mann et al. 1998). We
could choose to define, in terms of the estimated (cal-

ibration) errors in the values imputed by the RegEM
approach, an analogous measure of calibration-resolved
variance ( c):b̃

N T N T
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where x̃ is the estimated error of the imputed value. To
avoid confusion with the more conventional measure of
calibration-resolved variance, we focus, however, only
on the verification statistics.
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