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ABSTRACT

In isopycnal coordinate ocean models, diapycnal diffusion must be expressed as a nonlinear difference equation.
This nonlinear equation is not amenable to traditional implicit methods of solution, but explicit methods typically
have a time step limit of order Dt # h2/k (where Dt is the time step, h is the isopycnal layer thickness, and k
is the diapycnal diffusivity), which cannot generally be satisfied since the layers could be arbitrarily thin. It is
especially important that the diffusion time integration scheme have no such limit if the diapycnal diffusivity
is determined by the local Richardson number. An iterative, implicit time integration scheme of diapycnal
diffusion in isopycnal layers is suggested. This scheme is demonstrated to have qualitatively correct behavior
in the limit of arbitrarily thin initial layer thickness, is highly accurate in the limit of well-resolved layers, and
is not significantly more expensive than existing schemes. This approach is also shown to be compatible with
an implicit Richardson number–dependent mixing parameterization, and to give a plausible simulation of an
entraining gravity current with parameters like the Mediterranean Water overflow through the Straits of Gibraltar.

1. Introduction

In geopotential coordinate ocean models, time inte-
gration of the vertical diffusion equation is fairly simple.
Vertical diffusion is described by a linear equation, and
an implicit time stepping scheme for vertical diffusion
in geopotential coordinates is easily implemented by
solving a tridiagonal equation and is stable for any time
step and vertical resolution. In many cases the vertical
resolution is sufficiently coarse that the time steps set
by other processes can even be used safely with an
explicit discretization of vertical diffusion. By contrast,
when density is the vertical coordinate of an ocean mod-
el, the vertical diffusion equation is much more difficult
to integrate in time. Implicit integration of the diapycnal
diffusion equation in isopycnal coordinates is compli-
cated by the fact that this equation is nonlinear, and
since the vertical resolution migrates with the flow there
is no guarantee that the vertical resolution is sufficiently
coarse to permit an explicit time integration.

Vertical advection in geopotential coordinates is often
thought of as independent of diapycnal diffusion, where-
as its counterpart in isopycnal coordinates, diapycnal
advection (motion of fluid across isopycnal surfaces),
is the direct result of diapycnal diffusion. The nonlin-
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earity of diffusion in the isopycnal layer thickness equa-
tion is the counterpart of the nonlinear vertical advection
of density in geopotential coordinates.

Isentropic coordinate atmospheric models do not suf-
fer quite the same difficulty as isopycnal coordinate
ocean models because radiative transfer and moist con-
vection act to restore the (dry) atmospheric stratification
much more efficiently than does thermal diffusion in
the ocean.

An explicit time integration scheme is inadequate for
an isopycnal coordinate model because it is subject to
the time step limit kDt/h2 , ½ for stability, where k is
the diapycnal diffusivity, Dt is the time step, and h is
the layer thickness. Since there should be no lower
bound on the thickness of a layer, it is impossible to
satisfy this constraint in all cases, even if k is constant.
If k is determined by the local gradient Richardson num-
ber, a very large k may be indicated precisely where h
is smallest. Hu (1996a) avoids this constraint by cal-
culating the diapycnal buoyancy flux using the average
density gradient over a specified distance from the center
of a layer (typically 20 m) if the layer is thinner than
this distance. [The Hu scheme is used in some versions
of the Miami Isopycnic Coordinate Ocean Model, and
in simulations by Hu (1996b).] This solution suffers
from being potentially an O(N 2) operation for each hor-
izontal grid point, where N is the number of layers, and
from having quantized buoyancy fluxes when the layers
are thin. Oberhuber (1993) calculates the entrainment
rate of each layer implicitly, but the entrainment in each
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layer is independent of the entrainment in adjacent lay-
ers. Oberhuber’s approach can lead to spuriously van-
ishing layers if the diffusivity (or in his construction the
layer turbulent kinetic energy) differs significantly be-
tween adjacent layers, requiring a corrective step in his
time discretization. McDougall and Dewar (1998) men-
tion the step limitation of explicit integration in their
exploration of the discretization of diapycnal diffusion
in isopycnal coordinate models but offer no solution.

It should be noted that the ocean’s interior is char-
acterized almost everywhere by diffusive timescales that
are extremely long compared with the other character-
istic timescales of the flow, such as the inertial period.
In such situations any time integration scheme will work
well for describing diapycnal diffusion in an isopycnal
coordinate model, and it is no more difficult to represent
diapycnal mixing than it would be in a depth-coordinate
model. The techniques described here reproduce the
proper solutions in this most common case where dif-
fusion operates slowly, while also giving sensible results
in those situations where diapycnal mixing is vigorous.

The time step limit with explicit time integration of
diapycnal diffusion is a particularly acute problem for
incorporation of Richardson number–dependent mixing
(or another form of model-state-dependent mixing).
With a forward scheme, entrainment must somehow be
limited to keep the neighboring layers from developing
negative thickness, and this limit severely restricts the
utility of Richardson number–dependent mixing for de-
scribing instances of intense and strongly spatially vary-
ing entrainment. It is not clear that an effective Rich-
ardson number entrainment scheme can be implemented
in an isopycnal coordinate model without using some
form of implicit time integration.

But some form of model-state-dependent mixing is crit-
ical for some oceanographically important phenomena. For
example, entraining gravity currents are extremely im-
portant for determining the watermass properties that are
found in the open ocean, and strongly nonlinear entrain-
ment is absolutely essential for reproducing the observed
transport and density variations along the plume (Price
and Baringer 1994). The recent DYNAMO project finds
that a lack of entrainment in the gravity currents down-
stream of flow over sills is one of the most acute defi-
ciencies of the isopycnal coordinate model they use (DY-
NAMO Group 1997). Similarly, it is generally accepted
that the combination of small-scale turbulence and re-
solvable shears is responsible for the vigorous mixing in
the subsurface equatorial ocean and that the resolvable
Richardson numbers rarely drop below a critical threshold
value (Peters et al. 1995).

The isopycnal coordinate models in most common use
are coupled to a variable density surface bulk mixed layer
(Bleck et al. 1992; Oberhuber 1993). The surface mixed
layer is, by definition, unstratified and hence would always
represented by just one or two isopycnal layers (if the
mixed layer density falls between the prescribed layer den-
sities). Unlike geopotential or sigma coordinate ocean

models, a pure isopycnal coordinate ocean model will nev-
er be able to resolve the vertical structure of the mixed
layer. Sea surface temperature is often a critical field either
for coupling an ocean model with a model atmosphere or
for calculating the surface buoyancy flux, but with a pure
isopycnal coordinate model sea surface temperatures
would have abrupt jumps where the layers outcrop. Also,
it is difficult to apply separate heat and freshwater flux
surface boundary conditions without a bulk mixed layer—
they may nearly compensate each other, requiring me-
chanical mixing to the correct depth to give accurate ten-
dencies of sea surface temperature and salinity. When the
surface structure is of interest or a nontrivial equation of
state is used, it is advisable to use a bulk surface mixed
layer. The turbulent mixing schemes described here for
use in the interior and in the bottom boundary layer are
probably only useful for the surface mixed layer as well
for idealized geophysical fluid dynamics studies.

The present work suggests an implicit time integration
technique for diapycnal diffusion in isopycnal coordinate
ocean models. When the diffusivity of a layer is specified,
two schemes are suggested for the entrainment rate of a
layer given the entrainment rates of neighboring layers.
These schemes are essentially implementations of the dual-
entrainment approach of Oberhuber (1993) and McDou-
gall and Dewar (1998), in which each layer simultaneously
entrains both from above and below, and both diapycnal
diffusion and advection are simultaneously described.
These schemes give qualitatively correct results in all parts
of parameter space. If a very long time step is used, a
modified iterative technique may be used to give arbitrarily
accurate solutions, otherwise a simple implicit technique
gives reasonable results. Using an estimate of the deriv-
ative of each layer’s entrainment rate with respect to the
entrainment rates of neighboring layers, a Newton’s meth-
od–based vertical iteration, subject to constraints to impose
surface and bottom flux boundary conditions, is used to
update the estimate of layer entrainment rates. This ap-
proach is shown to give qualitatively accurate entrainment
rates in difficult cases, even after just the first iteration,
and converges to an exact solution with multiple iterations.
With one iteration, this scheme is only moderately more
expensive than an explicit time integration scheme for
diffusion with limits to keep the layer thicknesses from
becoming negative, and avoids numerical instabilities due
to diapycnal diffusion. A partially implicit layer Richard-
son number–dependent entrainment scheme can be com-
bined with the diffusive layer entrainment scheme, and
such an approach is shown to give reasonable entrainment
in a simple model of a gravity current, whereas an equiv-
alent explicit scheme is wholly inadequate.

2. Diapycnal diffusion in isopycnal coordinate
models

McDougall and Dewar (1998) present an excellent der-
ivation of an appropriate discretization for diapycnal dif-
fusion in isopycnal coordinate models with both temper-
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ature and salinity as state variables. Only a very brief
reprise of that work is presented here, and for simplicity
density is assumed to be a state variable. The time inte-
gration techniques presented here are entirely consistent
with the McDougall and Dewar (1998) discretization.

The Boussinesq continuity equation and the density
equation,

Dr
= · U 5 0 and 5 = · (k=r) (2.1)3 Dt

(here U3 is the three-dimensional velocity, r is potential
density, and k is the Fickian diapycnal diffusivity), can
be combined to give the continuity equation in isopycnal
coordinates:

] ]z ]z ] ]z Dr
1 = · u 5 2r1 2 1 2 1 2]t ]r ]r ]r ]r Dt

] ]z ] ]r
ø 2 k1 2[ ]]r ]r ]z ]z

] ] ]r
5 2 k . (2.2)1 2[ ]]r ]r ]z

The only approximations here are that only diapycnal
diffusion alters the density of a fluid parcel and that the
slope of isopycnals is sufficiently small that the total
density gradients are well approximated by just the ver-
tical gradients. Both of these assumptions are well jus-
tified for the ocean at mesoscales and larger except in
regions of active convection. If (2.2) is integrated in
density between rk21/2 and rk11/2 and the layer thickness
is defined as

rk11/2 ]z
h [ 2 dr, (2.3)k E ]r

rk21/2

the layer continuity equation results:

]h ] ]r ] ]rk 1 = · (u h ) 5 k 2 kr k k 1 2) 1 2)]t ]r ]z ]r ]zk11/2 k21/2

1 ]r ]r
ø k 2 k1 2 1 2[ ]r 2 r ]z ]zk11 k k11 k

1 ]r ]r
2 k 2 k .1 2 1 2[ ]r 2 r ]z ]zk k21 k k21

(2.4)

Finally, the vertical buoyancy flux in interior layers can
be discretized consistently as

]r k (r 2 r ) k Drk k11/2 k21/2 k k2 k 5 [ . (2.5)1 2]z h hk kk

Here the definition of kk would include the difference
between the inverse of the average h over a grid cell
and the average of (1/h) over that cell. Since the buoy-

ancy fluxes are defined only for each layer, any buoy-
ancy flux boundary conditions must be applied to the
top and bottom layers, as will be described in section
4. Combining (2.4) and (2.5) with the definition Drk11/2

[ rk11 2 rk gives the final form of the diffusive con-
tinuity equation:

]h 1 k Dr k Drk k k k21 k211 = · (u h ) 5 2r k k 1 2]t Dr h hk21/2 k k21

1 k Dr k Drk11 k11 k k2 2 .1 2Dr h hk11/2 k11 k

(2.6)

Introducing the layer buoyancy flux, Fk, defined by

k Drk kF [ , (2.7)k hk

and the thickness loss from layer k due to the fluxes in
the neighboring layers, Gk, defined by

F Fk21 k11G [ 1 , (2.8)k Dr Drk21/2 k11/2

(2.6) becomes

]h F 2 F F 2 Fk k k21 k11 k1 = · (u h ) 5 2r k k]t Dr Drk21/2 k11/2

1 1
[ 1 F 2 G . (2.9)k k1 2Dr Drk21/2 k11/2

There can be no mass flux through the upper surface of
the topmost layer or the bottom surface of the bottom-
most layer, so the first and second terms on the right-
hand side of the first line of (2.9) are omitted in the top
and bottom layers, respectively.

As shown by Oberhuber (1993) and McDougall and
Dewar (1998), a dual-stream upstream discretization for
the entrainment of density (or any other state variable
that is conserved upon mixing) guarantees that the den-
sity of each layer is conserved with a linear equation
of state. With the dual-stream entrainment parameteri-
zation, both diapycnal diffusion and diapycnal advection
are simultaneously described by fluid moving both up-
ward and downward across every interior interface in
appropriate ratios. Oberhuber (1993) further utilizes the
dual-entrainment scheme to compensate for any dis-
crepancies between the modeled layer density and the
preordained target layer density by adjusting the ratio
of the entrainment by a layer from the layers above and
below. The density conservation equation,

]
(r h ) 1 = · (u h r )k k r k k k]t

F r 2 F r F r 2 F rk k21 k21 k k11 k k k115 2 , (2.10)
Dr Drk21/2 k11/2

can be combined with (2.9) to give
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]r F 2 F F 2 F ]hk k k21 k11 k kh 5 r 2 2 2 = · (u h )k k r k k[ ]]t Dr Dr ]tk21/2 k11/2

Dr Drk11/2 k21/21 F 2 5 0,k1 2Dr Drk11/2 k21/2

(2.11)

showing that the layer density is constant with the dual-
entrainment upstream discretization. This property
holds regardless of the scheme used to solve (2.10) in
time. For temperature or salinity, an implicit time dis-
cretization of the appropriate counterpart to (2.10) (cal-
culating horizontal advection separately) is both nec-
essary and easy to implement.

If there is a nonlinear equation of state, the density
or potential density of a layer will not be guaranteed to
be perfectly constant after diapycnal mixing. The layer
density will also vary due to cabbeling arising from
along-isopycnal mixing. These discrepancies may be ad-
dressed by an appropriate, conservative vertical remap-
ping [which is essentially what McDougall and Dewar
(1998) advocate], or it may be addressed as a part of
the vertical mixing, as Oberhuber (1993) does. Ignoring
horizontal advection, an implicit time discretization of
(2.10) with the ratios of entrainment from above and
below modified [along the lines used by Oberhuber
(1993)] to correct for density deviations can be written
as

n11 n11 n n n11 n11˜ ˜r h 2 r h (F 1 F )r 2 (F 2 F )rk k k k h k k21 k21 k21 k5
Dt Drk21/2

n11 n11˜ ˜(F 1 F )r 2 (F 2 F )rk11 k11 k k k k112 .
Drk11/2

(2.12)

It can easily be shown that will agree with a layern11rk

target density ifr̂k

nhk n˜ ̂F 5 (r 2 r ). (2.13)k k k2Dt

For the stability of (2.12), the corrective flux must be
less than the minimum flux that a layer will have av-
eraged over a time step, so for an interior layer (2.13)
must be replaced by

nh Dr Drk k+1/2 k21/2n˜ ̂F 5 min (r 2 r ),k k k12Dt Dt(Dr 1 Dr )k11/2 k21/2

1/2Dr Drk kn 2 n3 (h ) 1 2kDt 1 2 hk k5 1 2 6[ ] 2Dr Drk11/2 k21/2

(2.14)

or a more restrictive limit. This corrective flux is not
perfect, both because its magnitude is limited in thick
and weakly diffusive layers, and because of nonlinear-
ities in the equation of state, but it will cause the layer
densities to be damped toward the target densities. These

corrective fluxes would be calculated before any vertical
iteration, and their inclusion is straightforward in all of
the developments that follow, so they will be omitted
henceforth for the sake of clarity. If the density anom-
alies are not predominantly due to errors in the diapycnal
mixing, a minimally diffusive vertical remapping would
be the preferred correction. Even with the corrective
fluxes, occasional vertical remapping may still prove
necessary to correct layer density discrepancies, de-
pending on the characteristics of a particular flow.

In geopotential coordinates diffusion is described by
a linear equation, and it is always possible to choose a
diffusivity and time step that are small enough that an
explicit discretization of diffusion is stable. Alternately,
it is trivial to implement an implicit discretization of
diffusion in one dimension with standard techniques. In
isopycnal coordinates, diapycnal diffusion is described
by a nonlinear equation, and it is possible for a flow to
evolve into a state (with very thin layers) in which an
explicit discretization of diffusion is unstable, regardless
of how small the diffusivity or time step. It is absolutely
essential to use an implicit discretization of the right-
hand side of (2.6), but standard (linear) techniques can-
not handle this nonlinear equation.

The fundamental difference between diapycnal dif-
fusion in geopotential coordinates (or other fixed co-
ordinates) and diapycnal diffusion in isopycnal coor-
dinates is that isopycnal coordinates make the physically
meaningful connection between diapycnal advection
and diapycnal diffusion, through the dual-entrainment
scheme, while in fixed coordinates these two processes
are separate. The nonlinear diapycnal advection term in
fixed coordinates is in some sense responsible for the
nonlinearity of diffusion in Lagrangian (isopycnal) co-
ordinates. This physically well-motivated combination
of diapycnal advection and diffusion is largely respon-
sible for the exceedingly valuable adiabatic nature of
an isopycnal coordinate model, but it demands a so-
phisticated treatment of diapycnal diffusion to be able
to accurately handle all realizable situations. The re-
mainder of the paper presents a suitable time integration
technique for diapycnal diffusion in isopycnal coordi-
nates.

3. Integrating the equation for a single layer

If the diffusive buoyancy fluxes (Fk) in neighboring
layers are known, and the density differences between
the layers are equal, the diffusive continuity equation
(neglecting horizontal advection) for layer k, (2.6), be-
comes

]h 2k F F 2kk k k21 k11 k5 2 2 [ 2 G . (3.1)k]t h Dr Dr hk k

This is a fairly simple equation, but it is not one that
is commonly encountered, so it is worthwhile to briefly
discuss several options for integrating this equation nu-
merically. An arbitrarily accurate, iterative solution
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technique is described first. This scheme is useful both
for consideration for use in ocean models and as a stan-
dard against which to judge other time integration tech-
niques. A number of algebraic discretizations of (3.1)
are described next. These schemes are less computa-
tionally demanding and are the most likely to be useful
for ocean models. All of these schemes give accurate
results when diffusive timescales are long, as is the case
in much of the ocean’s volume. The distinction between
the schemes arises in the uncommon, but oceanograph-
ically important, case where mixing timescales are rel-
atively short.

a. An exact iterative solution for one layer

Equation (3.1) can be integrated analytically in time
for Dt starting at a thickness hk,0 to give a closed form
implicit solution for hk,t [ hk(Dt) provided that Gk

. 0:

2k 2k 2 G hk k k k,th 2 h 1 ln 5 2G Dt (3.2)k,t k,0 k[ ]G 2k 2 G hk k k k,0

or

2k 2 G hk k k,0h 5 h 1k,t k,0 Gk

Gk3 1 2 exp 2 (G Dt 1 h 2 h ) . (3.3)k k,t k,05 6[ ]2kk

If Gk 5 0, (3.1) can be integrated analytically to give
an explicit expression for hk,t:

2h 5 Ïh 1 4k Dt. (3.4)k,t k,0 k

Equations (3.2) or (3.3) must be solved iteratively.
The solution to (3.3) can be found to at least 10 sig-
nificant digits within four or five iterations of Newton’s
method (for a sufficiently small error the number of
digits of accuracy doubles with each iteration) when the
initial guess is taken as

2k hk k,00h 5 h 1 min Ï4k Dt, 2 G min Dt,k,t k,0 k k1 2 1 2[ ]h Gk,0 k

(3.5)

or

k G hk k k,00F 5 Dr min Ïk /Dt, 2 min 1,k k 1 2 1 2[ ]h 2 DtGk,0 k

DrGk1 ,
2

(3.6)

and subsequent iterations are

2kkn11h 5 h 1 h 2 1k,t k,0 k,01 2G hk k,0

n G hk k,t

2k k1 13 . 
G h Gk k,0 k n1 2 2 exp (G Dt 1 h 2 h )k k,t k,0 [ ]2k 2kk k 

(3.7)

The buoyancy flux implied by (3.7) is

n G hk k,t

n11 n11F h 2 h G G h 2k 2k k k,t k,0 k k k,0 k k5 1 5 1 2 1 1 1 1 2Dr 2Dt 2 2 2Dt G hk k,0 G h Gk k,0 k n1 2 2 exp (G Dt 1 h 2 h )k k,t k,0 [ ]2k 2kk k 

 n nG h h G F Dt G F Dtk k,0 k,0 k k k k1 exp 2 1 21 2[ ] 2k G Dt Drk Drkk k k kG k G hk k k k,0  5 1 1 2 . (3.8)1 22 h 2k nk,0 k G h G F Dtk k,0 k k1 exp 2 1 1 22k Drkk k 

Even a single iteration of (3.7) gives an excellent es-
timate of the exact flux if the first guess is qualitatively
reasonable, as is the case with (3.5).

It is necessary to use a first guess like (3.6), rather
than the just the flux from the previous time step, be-
cause that guess must be within the radius of conver-

gence of the iteration given by (3.7). If another estimate
of the flux, (such as the flux from the previous timeEstF k

step or a previous vertical iteration through the layers—
since Gk may have changed), is to be used to start the
iteration, it must be constrained to be within the phys-
ically motivated (and mathematically adequate) bounds
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 G Dr Drk k h G 2kk k k k,0 k kEstmin , max F , , Dr 2 1 for h $k k,05 1 2 6[ ]2 h DtG 2Dt 2 G k,0 k k
0 F 5 (3.9)k

G Dr Drk G Dr 2kk k k kEstmax , min F , , DrÏk /Dt 1 for h # .k k k,05 6[ ]2 h 2 G k,0 k

b. Algebraic approximations to the solution for one
layer

The iterative estimate of the flux can be compared
with several algebraic discretizations of (3.1). A forward
Euler integration of (3.1) gives

2kkForwardh 5 h 1 2 G Dt or (3.10)k,t k,0 k1 2hk,0

DrkkForwardF 5 . (3.11)k hk,0

The forward Euler integration is the simplest possible
time stepping scheme, and it is perfectly adequate in
the limit of slow diffusive timescales that characterizes
much of the volume of the ocean.

A backward Euler integration of (3.1) gives

2kkBackwardh 5 h 1 2 G Dt, (3.12)k,t k,0 kBackward1 2hk,t

which can be solved for to giveBackwardhk,t

1
Backwardh 5 {h 2 G Dtk,t k,0 k2

2 1/21 [(h 2 G Dt) 1 8k Dt] }, (3.13)k,0 k k

which implies a layer buoyancy flux of

Dr
BackwardF 5 {G Dt 2 hk k k,04Dt

2 1/21 [(h 2 G Dt) 1 8k Dt] }. (3.14)k,0 k k

There are two ways to write a trapezoidal scheme
integration of (3.1). The first is

4kkTrap1h 5 h 1 2 G Dt, (3.15)k,t k,0 kTrap11 2h 1 hk,t k,0

which can be solved for to giveTrap1hk,t

1
Trap1 2 1/2h 5 {2G Dt 1 [(2h 2 G Dt) 1 16k Dt] },k,t k k,0 k k2

(3.16)

and this implies a layer buoyancy flux of

Dr
Trap1F 5 {G Dt 2 2hk k k,04Dt

2 1/21 [(2h 2 G Dt) 1 16k Dt] }. (3.17)k,0 k k

The second trapezoidal scheme integration of (3.1) is

k kk kTrap2h 5 h 1 1 2 G Dt, (3.18)k,t k,0 kTrap21 2h hk,t k,0

which can be solved for to giveTrap2hk,t

1 k DtkTrap2h 5 h 1 2 G Dtk,t k,0 k52 hk,0

2 1/2k Dtk1 h 1 2 G Dt 1 4k Dt ,k,0 k k1 2 6[ ]hk,0

(3.19)

and a layer buoyancy flux of

Dr k DtkTrap2F 5 1 G Dt 2 hk k k,054Dt hk,0

2 1/2k Dtk1 h 1 2 G Dt 1 4k Dt .k,0 k k1 2 6[ ]hk,0

(3.20)

All four of these schemes are consistent with the con-
tinuous equation. The two trapezoidal schemes are sec-
ond-order accurate in time and exhibit smaller errors
for small time steps than would the forward scheme or
the backward scheme, both of which are only first-order
accurate in time.

c. Comparison between the approximations to the
solution for one layer

There are several asymptotic limits of the analytic
solution that can be compared with these four proposed
schemes. If hk,0 and Gk are both negligibly small, hk,t

should remain finite for a finite time step. The backward
scheme and the first trapezoidal scheme satisfy this con-
straint, while the forward scheme and the second trap-
ezoidal scheme are unbounded for excessively small
hk,0. If Gk 5 0, the first trapezoidal scheme (3.16) exactly
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FIG. 1. Fractional error of the thickness changes within one time
step calculated with four schemes, relative to the flux calculated by
iterating (3.8) to convergence, with Gk/G 5 0.2. The fluxes with these
four schemes are given by one iteration of (3.8) starting from (3.5),
(3.14) for the backward scheme, (3.11) for the forward scheme, and
(3.17) for the first trapezoidal scheme.

FIG. 2. As in Fig. 1 but with Gk/G 5 20. The equivalent plot with
a much larger value of Gk/G is qualitatively similar.

FIG. 3. Thickness after one time step with Gk/G 5 20. The schemes
are the same as are depicted in Figs. 1 and 2.

reproduces the analytic solution (3.4). The backward
scheme entrains too little with Gk 5 0, by a factor of
(1 2 ½) for infinitesimal hk,0 and by a factor ofÏ
(kkDt/ ) for large hk,0.2hk,0

For very large time steps, hk,t should tend toward
(2kk/Gk). Only the backward scheme satisfies this con-
straint. The first trapezoidal scheme tends toward (2hk,0

1 4kk/Gk), which may be negative. The second trape-
zoidal scheme and the forward scheme are both un-
bounded, although the second trapezoidal scheme is at
least guaranteed to yield positive hk,t. The second trap-
ezoidal scheme will not be considered further in this
paper because of its unstable behavior for small values
of /kDt. The forward scheme will be considered, but2h0

only because of its previous use in the literature (Hu
1996a; McDougall and Dewar 1998).

The trapezoidal schemes are superior to the backward
scheme for short time steps, while the backward scheme
is the only one of the four algebraic schemes presented
above to reproduce the qualitative behavior of the exact
solution in all of the relevant asymptotic limits. It is
possible to construct a second-order accurate scheme
with two iterations of the backward scheme that exhibits
qualitatively correct behavior for all of the criteria dis-
cussed above, but this scheme is as complicated and
computationally expensive as the more accurate exact
iterative solution discussed above.

There are only two free parameters in (3.1) after it
has been nondimensionalized by dividing hk,0 by H 5

kkDt and dividing Gk by G 5 kk/Dt. The fractionalÏ Ï
error in the layer thickness change over one time step
calculated with the various schemes relative to the exact
solution is depicted in Fig. 1 and Fig. 2 for two values
of Gk. For a small value of Gk (Fig. 1), all of the schemes
except the forward scheme give qualitatively accurate
fluxes for all initial thicknesses. Typically h k H, and
in this part of parameter space, all of the schemes are
accurate, but the trapezoidal scheme and the first iter-
ation toward the exact scheme give a very high degree

of accuracy. With a large value of Gk (Fig. 2), all of the
schemes have some problems when h ø GkDt—the first
iteration toward the exact scheme gives a reasonably
accurate estimate of the flux, while the backward
scheme overestimates the flux. The forward scheme and
trapezoidal scheme tend to drastically underestimate the
flux and the thickness after a time step can be negative
for these two schemes, as seen in Fig. 3. Reasonable
behavior in the limit of large Gk is essential if the model
is to be useful for simulation of strongly entraining
flows, such as flow of dense water over a sill.

The two schemes among those listed above that sat-
isfy all of the desired properties are the backward
scheme and the first iteration (or repeated iteration) to-
ward the exact scheme starting with a reasonably ac-
curate first guess. The backward scheme is simpler, but
the first iteration is significantly more accurate. The rel-
ative expense of the two schemes depends partially on
whether it is more expensive to evaluate an exponential
function or a square root, but the exact iterative scheme
is generally much more complicated. Also the exact
scheme requires a reasonably accurate starting guess for
the iteration. Both schemes always yield positive thick-
nesses, both asymptote to Gk/2 for large Gk, and both
are well behaved for small initial thicknesses.

Although it is only first-order accurate in time, the
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backward scheme exhibits qualitatively correct behavior
in all limits, which makes this scheme attractive. If an
exceedingly accurate solution to (3.1) were desired, the
iterative exact scheme would be the best choice, but for
use with an ocean model it is simply not reasonable to
use a highly accurate but expensive scheme. The com-
putational resources could certainly be used more ef-
ficiently to minimize truncation errors associated with
resolution or the parameterization of other physical pro-
cesses. Still, the fact that first iteration toward the exact
scheme gives qualitatively correct approximations to the
solution to (3.1) in all limits and is often significantly
more accurate than any of the algebraic discretizations
may make this first iteration a viable scheme for con-
sideration with ocean models. In the next section the
backward scheme and the first iteration are examined
for use in simultaneously solving the set of equations
(3.1) for many layers.

4. Integration of the diffusion equation for
multiple layers

For any of the schemes presented in section 3 except
the forward scheme, the diffusive buoyancy flux in each
layer depends nonlinearly on the fluxes in both of its
neighbors. This prevents these coupled equations from
being solved simply with standard techniques. Also, the
boundary conditions are somewhat peculiar with density
coordinates because the coordinates diffuse out of the
domain and the density at which the boundary condi-
tions must be applied changes over time. An effective
method of handling these complications is described in
this section.

a. Boundary conditions

Buoyancy flux boundary conditions are applied at the
topmost and bottommost interfaces. In order to conserve
volume (or mass if the thicknesses are reinterpreted as
pressure differences between the interfaces above and
below a layer) and the density of the topmost or bot-
tommost layers, there can be no buoyancy flux conver-
gence at these outermost interfaces, so the buoyancy
flux within the topmost or bottommost layer must equal
the buoyancy flux boundary condition. (A mass source
or sink boundary condition due to evaporation and pre-
cipitation or freezing and melting at the bottom of sea
ice can be applied instead fairly easily.) At interior in-
terfaces, all layers entrain fluid from their neighboring
layers at a rate proportional to the buoyancy flux within
that layer. The net flux of fluid across an interface is

simply given by (Fk 2 Fk21)/Drk21/2, so the maximum
buoyancy flux that can occur within layer k for a time
step while still leaving at least a thickness e within each
of the overlying layers is given by

k21Drk21/2max,a max,aF 5 F 1 (h 2 e)Ok k21 jDt j51

k i211
5 F 1 Dr (h 2 e), (4.1)O O1 i21/2 jDt i52 j51

with 5 F1 from the surface flux boundary con-max,aF1

dition. The schemes presented here all work perfectly
well with e 5 0, but it may be useful (e.g., in calculating
the vertical viscosity or the Coriolis terms using a po-
tential vorticity conserving discretization) to use a very
small positive e. Hallberg and Rhines (1996) use e 5
10210 m, and the same, absurdly small value is used in
the calculations here. The value of e should be taken to
be sufficiently small that any physically reasonable
amount of diffusion is not hindered. Similarly, the max-
imum buoyancy flux that can occur within a time step
while leaving at least a thickness e within each of the
layers below is

NDrk11/2max,b max,bF 5 F 1 (h 2 e)Ok k11 jDt j5k11

N21 N1
5 F 1 Dr (h 2 e), (4.2)O ON i11/2 jDt i5k j5i11

with 5 FN implementing the bottom flux boundarymax,bF N

condition. The maximum buoyancy flux for each layer
(including the top and bottom layers) is

5 min( , ).max max,a max,bF F Fk k k (4.3)

There is a possibility that , F1 or that ,max,b max,aF F1 N

FN, in which case the buoyancy flux at the top or bottom
must be modified; in this case the surface or bottom
buoyancy forcing cannot be accommodated with the
given resolution in density space because all of the fluid
is already in the lightest or densest layer.

b. Interior solutions

The exact solution to the set of equations given by
any of the schemes from section 3, with appropriately
implemented boundary conditions, can be found itera-
tively. For example, if the backward Euler integration
scheme is adopted, an initial refinement of the flux in
layer k, given the previous guesses for the fluxes in all
of the layers, is

Drkn,0 Backward n21 max n21 n21 2 1/2 maxF 5 min(F (G ), F ) 5 min {G Dt 2 h 1 [(h 2 G Dt) 1 8g k Dt] }, F , (4.4)k k k k k k,0 k,0 k k k k1 24g Dtk
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FIG. 4. Diapycnal fluxes in one time step, in units of (Dr kDt)Ï
for various schemes. The clipped forward scheme is the minimum
of the flux from a forward Euler calculation and (Dr kDt). The twoÏ
backward schemes differ only in the lack of the iterative correction
as described by (4.7). The exact flux is found by iterating the Newton’s
method scheme to convergence. The diffusivities and density differ-
ences between layers are uniform. Layers 1–5, 15–23, 27–35, and
45–50 are initially essentially massless (1028 kDt or 10212 kDt,Ï Ï
it makes no difference); layers 6–14 and 36–44 have thickness
(5 kDt), while layers 24–26 have thickness (2 kDt). There is anÏ Ï
insulating bottom boundary condition and a downward surface flux
of (0.5Dr kDt).Ï

where n is the iteration number,
n,0 n21F Fk21 k11n21G 5 1 , andk Dr Drk21/2 k11/2

1 Dr Drk kg 5 1 . (4.5)k 1 22 Dr Drk21/2 k11/2

The sensitivity of this equation to changes in the fluxes
of the adjacent layers is given by

 Dr G Dt 2 hk k k,01 1
2 1/25 64g [(h 2 G Dt) 1 8g k Dt] k k,0 k k kn]Fk  5 . (4.6)n,0 maxfor (F , F )k k]Gk  

n,0 max0 for (F $ F ) k k

The exact iterative scheme of the previous section, (3.8),
can be used with one iteration of each layer equation
per iteration through all the layers, subjecting each pre-
vious estimate to limits to ensure that it is qualitatively
reasonable with the updated values of Gk. The algebra
is much more complicated with that scheme, but the
derivation of the equivalent expression is straightfor-
ward, so it will be omitted here. Linearizing around the
estimated fluxes from (4.4) gives a set of equations for
the based on Newton’s method:nF k

n n n21 n n,0]F F 2 F F 2 Fk k11 k11 k21 k21n n,0 maxF 5 min F 1 1 , F ,k k k1 2[ ]]G Dr Drk k11/2 k21/2

(4.7)

with the boundary conditions 5 and 5n max nF F F1 1 N

. This tridiagonal set of equations is straightforwardmaxF N

to solve. The logical constraints in (4.6) and (4.7) are
not the formidable complications that they might seem
to be, because if any layer k has a flux of , eithermaxF k

all of the layers above or all of the layers below have
a flux for layer j. A reasonable starting guess ofmaxF j

the fluxes for use with the first iteration is
0,0 maxF 5 min(Dr Ïk /g Dt, Dr k /h , F ). (4.8)k k k k k k k,0 k

This vertical iteration usually converges rapidly to
the exact solution of the set of equations; there is an
appreciable error in the first iteration (although the so-
lution is not qualitatively wrong) only when hk61,0 ø
min( kkDt , kkDt/hk,0) in several adjacent interior lay-Ï
ers, at which value there is a transition between the large
and small thickness asymptotic limits. The fluxes in
much thicker layers are largely independent of the fluxes
in their neighbors, while the linearization in (4.7) is an
excellent approximation for thinner layers. When the
layers have approximately this intermediate thickness,
the backward scheme converges more rapidly than does
the exact iterative scheme because ]F/]G changes less
abruptly with changing G with the backward scheme.

An example of the fluxes generated by various
schemes with several density fronts in the middle of a

fluid is given in Fig. 4. The initial density profile has
two arbitrarily sharp and well-resolved interior density
fronts. Massless layers are included at the top and bot-
tom of the profile to demonstrate that the boundary con-
ditions are correctly implemented with all the schemes.
The forwards Euler fluxes shown in Fig. 4 are truncated
at a value of (Dr kDt). This is the maximum trun-Ï
cation value for which the neighboring layer will not
be depleted with constant diffusivities and density dif-
ferences between layers. In practice a smaller truncation
flux would have to be used if the diapycnal diffusivity
has vertical variations. Even with this large truncation
flux, the forward Euler flux dramatically underpredicts
the fluxes across the interior fronts. The backward
scheme without iteration similarly underpredicts the
fluxes through the front, but at least in real simulations
this scheme could be implemented with the same ac-
curacy seen in this simple demonstration. The fluxes
through the fronts are dramatically improved by even a
single iteration of the form given by (4.7) for either the
backward Euler scheme or the scheme based on New-
ton’s method. Subsequent iterations rapidly reduce the
errors further. [The two schemes differ both with the
first iteration and at convergence, but by a relatively
small amount; in Fig. 4 this difference would only be
about 0.1(Dr kDt).] If there are strongly varying dif-Ï
fusivities with depth, the relative improvement of the
iterative schemes can be much greater than depicted
here.

The computational expenses of various schemes are
shown in Table 1. These statistics are only for calcu-
lations of the layer fluxes that will yield positive definite
layer thicknesses. The computational requirements for
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TABLE 1. Relative CPU time requirements of various schemes on
two computers.

Scheme

Computer

SGI
Indigo

Cray
T90

Forward Euler with positive definite limitations
Backward scheme without iteration
One iteration with backward scheme
Additional iterations with backward scheme
One iteration with Newton method scheme
Additional iterations with Newton method scheme
(vertical advection of two velocity components)

1
3.3
4.8
3.3
7.5
5.9
2.8

1
2.0
5.0
3.6
8.4
7.1
2.5

implicit vertical advection of two velocities are included
for comparison. All of these schemes scale linearly with
the number of layers, and enough layers are used that
the slightly different treatment of the uppermost and
bottommost interior layers is not significant. Since the
entire calculation of diapycnal fluxes and diapycnal ad-
vection is typically on the order of 10% of the total CPU
time involved with the baroclinic portion of an ocean
model simulation, replacing a crudely limited forward
Euler scheme with a single iteration of the backward
scheme will increase the overall model run time by
about 10%–12%. Multiple iterations with either scheme
are probably prohibitively expensive for common use,
while the backward scheme without iteration only in-
creases the total run time by 3%–6%. On the other hand,
for studies where accurate portrayal of diapycnal dif-
fusion is important or with significant variations of dia-
pycnal diffusivity, such as simulation of an entraining
density current, the iterative schemes provide excellent
solutions at modest expense.

5. Richardson number–dependent entrainment

There are several places in the ocean where velocity
shears that might be resolvable by an ocean GCM drive
significant turbulent mixing. Strong turbulent mixing is
important for both the mass and momentum budgets of
the equatorial undercurrents (Jones 1973; Wacongne
1989; Pedlosky 1996). While there is strong observa-
tional evidence that high-frequency, small-scale shears
are as important as the resolvable-scale shears in driving
the mixing (Peters et al. 1995), there has been consid-
erable success with parameterizations based on the re-
solved Richardson number due to shears with vertical
scales of tens of meters (Pacanowski and Philander
1981; Yu and Schopf 1997). Essentially these param-
eterizations are able to reproduce the observation that
the resolvable Richardson numbers are never too small,
and just enough mixing occurs to keep the Richardson
numbers at or above some threshold value, even if the
variability of the mixing or its exact cause are not cap-
tured. The gravity currents generated by the overflow
of dense waters from marginal seas such as the Medi-
terranean and Nordic Seas exhibit intense entrainment,

doubling or even quadrupling their volume flux within
a few days (Price and Baringer, 1994). This entrainment
is absolutely critical in determining the watermass prop-
erties that fill the open ocean, but since most of the
entrainment occurs very vigorously across extremely
sharp density gradients it is difficult to simulate this
process accurately. This section presents a Richardson
number–dependent mixing scheme that will be shown
in the next section to give reasonable entrainment in a
simple simulation of a gravity current.

Price and Baringer (1994) successfully model the en-
trainment into a gravity current using the Richardson
number–dependent entrainment parameterization that
Turner (1986) has developed based on laboratory sim-
ulations. According to Turner (1986), the entrainment
rate of a gravity current is well parameterized by

 0.08 2 0.1RiBDU Ri , 0.8B1 1 5Riw 5 BE (5.1)

0 Ri $ 0.8, B

where DU is the magnitude of the velocity difference
between the gravity current and the environment and
the bulk Richardson number is given by

gDrh
Ri 5 . (5.2)B 2r(DU )

In discrete isopycnal layers the appropriate definition
of the layer Richardson number is

2Dr Dr ghk21/2 k11/2 kRi 5 .k 2 2r (Dr |u 2 u | 1 Dr |u 2 u | )k k11/2 k k21 k21/2 k k11

(5.3)

Equation (5.3) is obtained by comparing the changes
in kinetic and potential energy when a layer entrains
a small amount of fluid and by requiring that these
changes balance when Rik 5 1. With this formula for
the layer Richardson number, Turner’s parameteriza-
tion, (5.1), can be used without modification. To main-
tain the density of the layer in question, the entrainment
into layer k from above and below must be related by

Drk11/2 5 Drk21/2 . Since (5.1) is essentially a1 2w wk k

parameterization of entrainment from above into a lay-
er with a density that is much closer to the density of
the existing bottom boundary layer than to the interior
density, the final parametrization should agree with
(5.1) when Drk11/2 K Drk21/2 and Drk11/2 |uk 2 uk21 | 2

k Drk21/2 |uk 2 uk11 | 2 . With this constraint, a consis-
tent estimate of DrDU across a layer is given by
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1Dr DUk11/2 k

1/2gDr hk k25 Dr DU 5 2(Dr 1 Dr )k21/2 k k21/2 k11/2 1 2r Rik k

3(Dr 1 Dr )k21/2 k11/25 [ Dr Drk21/2 k11/2

1/2

2 23 (Dr |u 2 u | 1 Dr |u 2 u | ) .k11/2 k k21 k21/2 k k11 ]
(5.4)

When the density differences between layers are equal,
(5.4) is simply

DUk 5 [8(|uk 2 uk21|2 1 |uk 2 uk11|2)]1/2

ø 2|uk11 2 uk21|, (5.5)

where the final, approximate expression holds when the
velocity of layer k is the average of the velocities of its
neighbors. So the equivalent expression for discrete lay-
ers to Turner’s parameterization for Richardson num-
ber–dependent entrainment becomes

 0.08 2 0.1Rik6DU Ri , 0.8k6 1 1 5Riw 5 kk (5.6)

0 Ri $ 0.8, k

where is entrainment from layer k 6 1 into layer k,6wk

and DU6 and Rik are defined in (5.4) and (5.3). The
entrainment rates given by (5.6) are most appropriately
interpreted as the net entrainment of a layer, not the total
entrainment; this interpretation gives results that are
consistent with the original Turner parameterization
when there are multiple thin layers separating the en-
training gravity current from the interior.

Ideally both the velocities and the layer thickness in
(5.3) and (5.4) would be treated implicitly, and a suf-
ficient number of vertical iterations could be used to
determine the exact solution to the set of equations
found by substituting the entrainment rates given by
(5.6) into (3.1). But this approach would be too time
consuming for practical use; in order to guarantee con-
vergence the number of iterations would have to be on
the order of the number of layers. Instead, an approx-
imate estimate of the net velocity differences after a
time step will be used here with a scheme that is implicit
in the layer thickness.

The velocity differences between layers before the
entrainment may be quite different from the differences
afterward, especially for thin layers. For example, if
vertical viscosity with coefficient n is applied before
diapycnal diffusion, adjacent layers that are much thin-
ner than nDt will have approximately the same ve-Ï
locities. [Hallberg and Rhines (1996) use an upwind-
biased vertical viscosity to solve the difficulties asso-
ciated with calculating the Montgomery potential gra-
dient near the point where an isopycnal intersects the

sloping bottom.] A reasonable estimate for the final ve-
locity differences might be the velocities that each layer
would have if it entrained enough to have at least some
minimum thickness, say hmin 5 nDt or kDt, if thisÏ Ï
fluid were not in turn entrained by neighboring layers.
(The exact value of hmin is relatively unimportant in most
instances.) These estimated velocities can be calculated
implicitly with a tridiagonal set of equations:

est(u, y)k

est estDr (u, y) 1 Dr (u, y)k21/2 k11 k11/2 k210 0 eh (u, y) 1 Hk k k [ ]Dr 1 Drk21/2 k11/2
5 ,

0 eh 1 Hk k

(5.7)

where

0 max[(h 2 h ), 0],min k

NDrk11/2 min 1 1 (h 2 e),O j
(5.8)1 2e [ Dr j5k11H 5 min k21/2 k

k21Drk21/21 1 (h 2 e)O j 1 2 ]Dr j51k11/2 

is an estimated entrainment rate with limitations to pre-
vent entrainment of nonexistent fluid. Essentially this
step is only necessary to prevent extremely large or
small shears in small amounts of fluid from having an
excessively large influence on the evolution of a sim-
ulation. The velocities of sufficiently thick layers are
unaltered by this approach, while velocity shears are
roughly homogenized over a vertical distance over
which the background viscosity or diffusivity might be
expected to work within a time step.

The layer Richardson numbers are proportional to the
layer thicknesses, so it is straightforward to write an
easily solvable time integration scheme for (5.6) that is
implicit in the layer thickness and explicit in the layer
velocities. Defining

2 2h (Dr |u 2 u | 1 Dr |u 2 u | )k k11/2 k k21 k21/2 k k11h [ 5 rk kRi 2gDr Drk k11/2 k21/2

(5.9)

to be the layer thickness at which the Richardson num-
ber would be 1 and using the entrainment defined by
(5.6), the equation for the layer thickness after a time
step of turbulent mixing is

Turb 0.08h 2 0.1hk kn est1 est2h 1 Dt(DU 1 DU )k k k Turb h 1 5hk kTurbh 5 k nh , 0.8hk k
n0.8h h $ 0.8h . k k k

(5.10)



MAY 2000 1413H A L L B E R G

The choice that the layer should detrain down to the
critical thickness when it is thicker than this thickness
is made because the final flux will be taken as the max-
imum of this turbulent flux and the diffusive flux; this
choice limits the amount of net detrainment that a layer
can experience due to turbulence in neighboring layers.
The , 0.8hk branch of (5.10) can easily be solvednhk

for , givingTurbhk

Turb n est1 est2h 5 0.5h 2 0.1h 2 0.01Dt(DU 1 DU )k k k k k

n est1 est2 21 {[0.5h 2 0.01h 2 0.01Dt(DU 1 DU )]k k k k

n est1 est2 1/21 [0.2h 1 0.016Dt(DU 1 DU )]h } .k k k k

(5.11)

So when , 0.8hk, the diffusive buoyancy flux isnhk

given by

nDr h hk k kTurb est1 est2F 5 G 2 0.5 2 0.1 2 0.01(DU 1 DU )k k k k12g Dt Dtk

1/22n nh h h hk k k kest1 est2 est1 est21 0.5 2 0.1 2 0.01(DU 1 DU ) 1 0.2 1 0.016(DU 1 DU ) , (5.12)k k k k5 6[ ] [ ] 2Dt Dt Dt Dt

which is always greater than GkDrk/2gk. [Recall that
gk, defined by (4.5), is a ratio of density differences that
is 1 for equal density differences.] When $ 0.8hk,nhk

nDr h 2 0.8hk k kTurbF 5 G 2 . (5.13)k k1 22g Dtk

In both limits
Turb]F Drk k5 , (5.14)

]G 2gk k

which is the same as the large Gk limit of its diffusive
counterpart. The final buoyancy flux through a layer is
then given by

Fk 5 min( , max( , )),max Diffusive TurbF F Fk k k (5.15)

where is defined by (4.3) and is defined bymax DiffusiveF Fk k

(4.4). The entrainment parameterization given by (5.15)
is depicted in Fig. 5 for one qualitatively illustrative
case. The partial derivative Fk with respect to Gk is
chosen to correspond with the definition of Fk:

Turb ]Fk Diffusive Turb max Diffusive Turbfor F , F , F . max(F , F )k k k k k]Gk ]F Diffusivek ]F k5 . (5.16)Diffusive Turb max Diffusive Turbfor F . F , F . max(F , F )k k k k k]Gk ]Gk 
max Diffusive Turb0 for F # max(F , F )k k k 

These definitions are then used with the vertically it-
erative Newton’s method–based scheme described in
(4.7).

The scheme described here is just one particular Rich-
ardson number–dependent scheme. Any implicit scheme
for which both the buoyancy flux within a layer and the
derivative of that flux with respect to the fluxes in neigh-
boring layers can be found efficiently could be used
equally well in isopycnal coordinate models with the
proposed framework. Many proposed parameterizations
of Richardson number–dependent mixing, however,
would involve solving a quartic equation (Pacanowski
and Philander 1981) or a higher-order polynomial with-
out an analytic solution. Yu and Schopf (1997) have

compared a number of Richardson number–dependent
mixing schemes and find that the exact parameterization
at small Richardson numbers has very little impact on
the flow in the equatorial Pacific, provided that mixing
is large at small Richardson number and that there is
an abrupt change in the mixing rates near an appropriate
critical Richardson number. The current scheme satisfies
this condition.

6. An entraining gravity current

The recent DYNAMO ocean model intercomparison
project found that while geopotential coordinate models
and sigma coordinate models exhibited excessive en-



1414 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 5. Entrainment within a time step as parameterized by (5.15)
as a function of the initial layer thickness, normalized by d 5 0.8hk,
the critical thickness for turbulent entrainment. This example has Gk

5 0, D Dt 5 d, and kkDt 5 0.001d.estU k

FIG. 6. Isopycnal depths and velocities (alongchannel to the right, upslope upward) as a function
of time and depth for an entraining gravity current on a slope that increases up to 1% over the
first half day, initially with (a) 50 layers or (b) 8 layers. The backward scheme is used for each
layer with one full iteration through the layers to calculate the entrainment. The physical system
is identical in the two figures and is described fully in the text.

trainment in the denser portions of the East Greenland
current, downstream of Denmark Strait, an isopycnal
coordinate ocean model exhibited dramatically insuffi-
cient entrainment (DYNAMO Group 1997). This weak
entrainment leads to deep flow around the tip of Green-
land that is both much denser and with a much smaller
volume flux than in the real world, despite a reasonable
flow through Denmark Strait. Over time, this and a sim-
ilar lack of entrainment in other dense water flows over
sills could lead to substantial deviations of the deeper
watermass properties throughout the world from those
observed.

The value of the new time integration scheme is dem-
onstrated with a qualitative simulation of an entraining
gravity current. The parameters chosen here are similar
to those used by Price and Baringer (1994) in their
streamtube model of the Mediterranean water overflow.
A single-column model is used, and it is assumed to
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move along with the flow, while all horizontal effects
are neglected. The interface between each layer is as-
sumed to be parallel to the specified bottom slope, which
increases linearly with time over ½ day up to a value
of 0.01, while the upper layer is at rest, so the horizontal
pressure gradients increase linearly with density. Ini-
tially there is a 100-m-thick layer of fluid resting on the
bottom that is 2 kg m23 denser than the interior fluid.
The fluid accelerates from rest subject to Coriolis ac-
celeration with f 5 7.29 3 1025 s21, bottom drag due
to a near-bottom viscosity of 2 3 1022 m2 s21, and an
interior background vertical viscosity of 1024 m2 s21 in
addition to turbulent Prandtl number 1 entrainment. En-
trainment is parameterized by (5.12) and (5.13) or a
background diapycnal diffusion of 1024 m2 s21 (which-
ever is greater). (So in this simulation the Prandtl num-
ber is always between 2 for entrainment due to the back-
ground diffusion and 1 for turbulent entrainment.) A
time step of 1 h, a reasonable value for a moderately
high resolution ocean simulation, is used in all of these
experiments except in one very high resolution case,
which is essentially converged in both vertical and tem-
poral resolution. The results from the single-column
model are qualitatively similar to three-dimensional
tests. The single-column demonstration is presented
here because it isolates the effects of diapycnal diffusion
and the Richardson number entrainment from more
complicated spatially varying processes.

As the fluid accelerates down the slope, there is ini-
tially intense entrainment, but the velocities are arrested
by the Coriolis force, and subsequent bursts of entrain-
ment occur at about the same phase of the inertial os-
cillation. This rapid adjustment is seen quite clearly in
an example with 50 layers using the vertically iterative
implicit entrainment scheme described in the previous

two sections (Fig. 6a). Almost all of the entrainment
occurs within the first day or two, both in this example
and in entraining gravity currents in the real ocean (Price
and Baringer 1994). Fifty layers is much more resolution
than would be reasonable in a simulation of the large-
scale ocean circulation, but it is not unreasonable to
expect that there would be at least six layers between
the density at which the Mediterranean water flows
through the Strait of Gibraltar and the ambient Atlantic
water. With only 8 layers, the results are remarkably
similar to those from the 50-layer simulation of the same
physical process (Fig. 6b). While some details, such as
the later inertial oscillation driven entrainment in the
middle of the stratified transition between the bottom
boundary layer and the interior, are muted with the
coarse resolution in density, the most important aspects
of the higher-resolution version have been captured to
the extent that the vertical resolution allows. The results
from these demonstrations of the implicit, vertically it-
erative Richardson number entrainment scheme are sim-
ilar to those reported by Price and Baringer (1994) both
for a specially developed streamtube model and to the
observed downstream evolution of the Mediterranean
water plume.

There are a few instances in Fig. 6a where a layer
becomes quite thin. These points are a result of only
using one vertical iteration; with four iterations they do
not occur anywhere in this test. When not enough it-
erations are used for the solution to converge, it is nec-
essary to limit the fluxes to guarantee that there will be
no negative thickness layers. If the estimate of the fluxes
after the final, Nth, iteration are given by from (4.7),NF k

it can be shown from (2.9) that layers thinner than e
(which may be exceedingly small or even 0) will be
precluded by the corrective fluxes given by the two
vertical passes:

C C C Ch 2 e F F 2 F h 2 e Fk21,0 k21 k21 k22 k21,0 k21C NF 5 min F , Dr max 1 1 , 1 and (6.1)k k k21/2 1 2[ ]Dt Dr Dr 2Dt Drk21/2 k23/2 k21/2

C C Ch 2 e F F 2 Fk11,0 k11 k11 k12CC CF 5 min F , Dr 1 1 , (6.2)k k k11/21 2[ ]Dt Dr Drk11/2 k13/2

with in the uppermost layers and in the bottom-C CCF Fk k

most layers given by
C I C I CC CF 5 F , F 5 F , F 5 F , and1 1 2 2 N21 N21

CC CF 5 F . (6.3)N N

The fluxes that are actually used are . These cor-CCF k

rections will rarely be necessary, and even then the grace
with which this scheme subsequently handles these van-
ishingly thin points is an indication of the robustness
of this scheme.

The thickening bottom boundary layer in Fig. 6 is
driven by interior shears due to bottom drag arresting
the bottommost layer. In a three-dimensional flow, the
bottom drag leads to a downslope Ekman transport that
tends to thin the bottom boundary layer on the upslope
side of a plume. In the real ocean much of the mixing
within the bottom boundary layer is due to small-scale
turbulence, parameterizable with a friction velocity
(Weatherly and Martin 1978). This can be accommo-
dated in isopycnal coordinate models quite easily by



1416 VOLUME 128M O N T H L Y W E A T H E R R E V I E W

FIG. 7. Density profiles after 3.5 days in the same simulation as
depicted in Fig. 6 with several different time integration schemes and
varying resolutions with the backward vertically iterative scheme
developed in this manuscript. The time step is 1 h in each case except
for the 491-layer iterative scheme simulation, where it is 2 min. The
iterative scheme is described by (5.15), (5.16), and (4.7), while the
noniterative backward scheme is the same except for the vertical
iteration described by (4.7), and the clipped forward scheme is a
simple forward in time discretization subject to the constraint Fk ,
Dr kBackground/Dt. The 491-layer case uses 10 vertical iterations (moreÏ
than enough to be fully converged at each time step), while the 50-
and 8-layer iterative scheme cases use just a single vertical iteration.

specifying the vertical profile of the diapycnal diffusiv-
ity. The potential energy increase due to diffusive en-
trainment by a layer is related to the diapycnal diffu-
sivity of that layer by the simple expression

]
(PE ) 5 k gDr , (6.4)k k k]t

which is independent of the layer thickness, neighboring
layer entrainment rates, or any other property of the
flow. So if a turbulent kinetic energy source at the bot-
tom is specified, the corresponding diffusivity (perhaps
accounting for the decay of turbulence away from the
bottom boundary) can be applied to each layer, starting
from the bottom, until enough layers are found to ac-
commodate that energy source while still obeying the
constraint to impose the boundary conditions, (4.3).

This technique for depicting the effect of the bottom
source of turbulent kinetic energy will work well when
the vertical resolution is sufficiently fine and the strat-
ification is sufficiently high that the two bottommost
layers are largely contained within the region of en-
hanced near-bottom turbulence. With less stratification
or resolution, it is not possible to depict strongly bottom
trapped mixing (mixing within a density layer is by
definition unrepresentable in an isopycnal layer model),
and an appropriate bulk bottom boundary layer may
prove beneficial. Still, microstructure observations by
Polzen et al. (1997) indicate that the enhanced turbulent
kinetic energy conversion to potential energy extends
thousands of meters above the rough bathymetry on the
flanks of the Mid-Atlantic Ridge in the deep Brazil Ba-
sin. If these observations are characteristic of the entire
abyssal ocean, it is likely that a turbulent kinetic energy–
based parameterization of diapycnal diffusion will work
well in an isopycnal coordinate model with adequate
and judiciously chosen vertical resolution, and it may
not prove necessary to have a separate bulk bottom
mixed layer for many large-scale simulations.

The density profiles after 3 days show that the ver-
tically iterative time integration scheme developed here
is much more accurate than other alternatives, as seen
in Fig. 7. One case with absurdly high resolution in
density and time (491 layers and a 2-min time step)
using 10 vertical iterations is essentially converged.
With the vertical iteration scheme (even with just one
iteration) both the case with 50 layers and the case with
8 layers agree with the converged case. Another cal-
culation (not shown) using the vertical iteration scheme
with 50 layers and a 6-h time step is virtually indistin-
guishable from the case with 50 layers and a 1-h time
step. A simple forward Euler time integration with the
most generous flux limit that guarantees positive definite
layer thickness entrains at a negligibly slow rate; the
density at the bottom has not changed at all after 3 days,
while in the true solution it is 60% of the way to the
interior density. The backward scheme without the ver-
tical iteration also substantially underpredicts the

amount of entrainment at this point, but at least it qual-
itatively resembles the converged solution, and that
semblance improves with shorter time steps or fewer
layers.

The utility of the diffusion scheme with the Richard-
son number–dependent mixing can also be demonstrated
with simulations from a fully three-dimensional prim-
itive equation isopycnal-coordinate ocean model. Water
is initially all in the lightest layer, except in a bay at
the top of a Gaussian slope in a reentrant channel. Within
the bay, a sponge strongly restores the density toward
a step profile with the bottommost 150 m of water 2 kg
m23 denser than the remaining 350 m of water. Nineteen
layers (20 interfaces), each differing in density from its
neighbors by 0.1 kg m23, separate the lightest and dens-
est layers. The dense water flows out of the bay at a
rotating hydraulics controlled rate of about (g20Dr/r)
(150 m)2/ f ø 3.4 3 106 m3 s21 and flows both down
and along the slope. The horizontal resolution, 22 km,
is not excessively high, but does permit adequate res-
olution of the slope and of the internal deformation
radius of order 50 km. The 1-h time step is appropriate
for this horizontal resolution. The maximum slope is
1%. While these parameters are not intended to exactly
reproduce any particular overflow, they are of a mag-
nitude to be qualitatively illustrative of several impor-
tant overflows.

The two simulations are identical except for the pa-
rameterization of diapycnal mixing. The one depicted
in Fig. 8a uses a background diapycnal diffusivity of 1
cm2 s21. The other simulation, shown in Fig. 8b, also
includes the Richardson number–dependent mixing.
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FIG. 8. Density anomaly of the water 10 m above the bottom after 50 days in an entraining
gravity current. In (a) a constant diapycnal diffusivity of 1024 m2 s21 is used. In (b) the Richardson
number–dependent entrainment described in section 5 is used as well. The thin horizontal lines
mark the isobaths of the Gaussian slope; the thick line marks the coast. The uncolored areas are
at the initial, uniformly light density. Dense water is formed by a sponge in the bay in the
northeast. The channel is reentrant, and the slightly dense fluid in the northwest corners of the
basin is flowing eastward from the bay.

Both use a single iteration of the vertically iterative time
stepping scheme advocated in this manuscript, with a
backward Euler estimate of the diffusive entrainment
by a single layer.

Without the Richardson number–dependent mixing,
a plume of nearly undiluted overflow water rapidly de-
scends to the bottom of the slope. This is essentially
the same behavior as was found with the Miami Iso-
pycnic Coordinate Ocean Model in the representation
of the flow over the Denmark Strait in DYNAMO (DY-
NAMO Group 1997). The mixing that does take place
is due to the explicit mixing parameterization and the
spreading and thinning of the dense layer due to the
divergent Ekman transport. This simulation, while not
reproducing the ocean’s behavior, does demonstrate the
utility of the proposed time stepping scheme with a
constant diffusivity in a difficult situation (the behavior
at kDt/h2 ø 1 is important in this simulation) in a full
three-dimensional ocean GCM. Halving the time step
causes only very minor changes in the result. This sim-
ulation also illustrates one great virtue of isopycnal
models relative to other types of models for simulating

gravity currents: there is not excessive numerical en-
trainment—all entrainment must be parameterized ex-
plicitly.

With the Richardson number–dependent mixing, the
dense water plume rapidly entrains to about four times
its initial volume. The volume of dense water flowing
out of the bay is the same in both cases, due to the
robustness of the rotating hydraulic control, but essen-
tially no dense water reaches the foot of the slope. In-
stead there is a very thick plume of strongly diluted
water extending along the slope with the Richardson
number–dependent mixing. The behavior in this case is
qualitatively similar to that seen in the open ocean (Price
and Baringer, 1994). This simulation demonstrates that
this Richardson number–dependent mixing scheme al-
leviates the pathology in the representation of dense
water overflows found with the isopycnal coordinate
ocean model in DYNAMO.

It is actually very important for the large-scale ocean
circulation that the entrainment occurs with a sufficient-
ly short timescale. Entraining gravity currents drop
through the thermocline with a timescale of a few days
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(Price and Baringer 1994); if the time integration
scheme does not permit entrainment to occur within that
time, it is no longer possible for the gravity current to
entrain thermocline waters. With insufficiently rapid en-
trainment, the overflows that contribute to intermediate
or deep waters in the real world could easily wind up
at the bottom of the ocean. A numerical ocean model
that fills the abyssal Atlantic Ocean with Mediterranean
overflow waters and the abyssal Indian Ocean with Red
Sea overflow water would have limited credibility!

7. Conclusions

An implicit, vertically iterative time integration
scheme for the diapycnal diffusion equations for an is-
opycnal coordinate ocean model has been proposed
here. This scheme is stable with an arbitrarily large time
step, accurate for well-resolved layers (kDt/h2 K 1),
and well behaved for thinner layers. This scheme is
potentially much more efficient than the proposed
scheme of Hu (1996a) because it can be implemented
in two vertical passes through a column, and it does not
impose a potentially unphysical limit on the intensity
of mixing. This scheme is also more accurate than the
entrainment scheme of Oberhuber (1993) for long time
steps relative to the layer thickness divided by the en-
trainment rate because it permits interactions between
many layers within a single time step. (Without any
interactions between layers, the backward scheme is
equivalent to Oberhuber’s scheme.) The McDougall and
Dewar (1998) treatment of separate temperatures and
salinities and nonlinearities of the equation of state in
isopycnal coordinate ocean models is entirely compat-
ible with this technique. Repeated iteration in the ver-
tical can improve the accuracy of the results, but even
a single vertical iteration gives qualitatively reasonable
results that are extremely accurate when kDt/h2 K 1.
The technique described here is qualitatively accurate
in all situations that have been examined and is suffi-
ciently efficient to be generally useful in isopycnal co-
ordinate ocean models.

It should be reiterated that diapycnal mixing in an
isopycnal coordinate model is only complex when strat-
ification is large and mixing is intense. In the vast ma-
jority of the ocean’s volume, the intrinsic timescales of
diapycnal mixing are extremely long, and even the sim-
plest time stepping scheme for diapycnal mixing works
well. The approach suggested here is quite accurate in
this limit, but it is substantially more costly than the
simplest scheme.

The new implicit and vertically iterative time inte-
gration scheme works well with an appropriate Rich-
ardson number–dependent entrainment parameteriza-
tion, while nonimplicit, noniterative time integration
schemes are useless for accurate portrayal of entraining
gravity currents with reasonable length time steps and
modest to good density resolution. The important en-
trainment in gravity currents occurs with a timescale of

only a few days (Price and Baringer 1994), and any time
integration scheme that does not permit the entrainment
to occur within that time will lead to qualitatively in-
accurate watermass properties throughout the deep
ocean. While it has not been demonstrated here, the
same Richardson number–dependent entrainment
should also be qualitatively reasonable in other regions
of strong mixing driven by the resolvable scale shears,
such as in the Equatorial Undercurrents.

The DYNAMO Group (1997) finds that their iso-
pycnal coordinate ocean model lacks diapycnal mixing
in the water just downstream of dense water overflows
and concludes that ‘‘an improved representation of the
bottom boundary layer in this regime should be of high-
est priority in the future development of all models.’’
The Richardson number entrainment scheme described
here is just such an improvement.

Bottom boundary layers are important for the larger-
scale ocean circulation primarily as sinks of momentum
(and energy and potential vorticity and other related
quantities) and for mixing that determines the watermass
properties that fill the abyssal interior. Unlike the surface
boundary layer, the exact temperature and salinity of a
well-homogenized bottom boundary layer are not im-
portant for most questions of climatic interest. It is en-
tirely possible that an ocean model would have a sat-
isfactory depiction of bottom boundary layer processes
without attaching a separate bottom boundary layer
model, provided that an appropriate level of mixing and
an appropriate momentum sink are specified.

An appropriate level of near-bottom mixing cannot
be specified in geopotential coordinate models without
some sort of explicit bottom boundary layer model.
Winton et al. (1998) have shown that unless the hori-
zontal resolution of a geopotential coordinate ocean
model is finer than the bottom boundary layer thickness
divided by the bottom slope, vasty excessive convective
bottom mixing occurs in a dense downslope flow with-
out an explicitly parameterized bottom boundary layer.
Beckmann and Döscher (1997) and Killworth and Ed-
wards (1999) have all developed explicit bottom bound-
ary layer parameterizations of varying complexity to be
appended to geopotential coordinate ocean models, with
a principle goal of controlling nonphysical diapycnal
mixing. The fact that, in contrast, an isopycnal coor-
dinate ocean model inherently has too little mixing
means that it is possible to achieve an equally satisfac-
tory result by adding diapycnal mixing in appropriate
situations, but without all of the complications [such as
having to unmix detrained fluid, thereby violating the
second law of thermodynamics (Bleck et al. 1992)] of
adding an explicit, variable density boundary layer mod-
el to the bottom of an isopycnal coordinate ocean model.

Isopycnal coordinate ocean models will never be as
accurate as sigma coordinate models for simulating the
structure of the bottom boundary layer. While a sigma
coordinate model can enforce very high resolution near
the bottom and incorporate high-order turbulence clo-
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sure schemes (Blumberg and Mellor 1987), the reso-
lution in isopycnal coordinates is automatically expelled
from unstratified fluid. But isopycnal coordinates are in
some ways well suited for describing the watermass
modifications that are important for the large-scale
ocean density structure. The important dense overflows
are typically much denser than the open ocean waters
at the sill depth. If there is no resolution in density
between the water flowing over a sill and the ambient
interior water, this is only due to the a priori assertion
in setting up the simulation that the distinction between
these watermasses is not significant. In some ways an
isopycnal coordinate model with Richardson number–
dependent mixing and a specified bottom turbulent ki-
netic energy source is ideal for depiction of the effect
of the bottom boundary layer on the large-scale ocean
circulation; mixing in the absence of stratification is
relatively unimportant, while stratified regions are au-
tomatically well resolved by the migrating isopycnal
layers.
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