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1. Introduction

Hallberg (1997) used a combination of quasigeo-
strophic ray tracing and primitive equation numerical
simulations to study the propagation of topographic and
planetary Rossby waves around an ocean basin with
slowly varying but arbitrary topography. When the to-
pographic and planetary vorticity gradients are not par-
allel to each other, the classical baroclinic and barotropic
modes are replaced by modes whose vertical structure
varies strongly with the orientation of the wavevector.
The low-frequency motions are more aptly described in
terms of surface- or bottom-intensified modes. Ray trac-
ing suggests that the surface- and bottom-intensified mo-
tions should be coupled in localized regions because of
the changing physical nature of a single branch of the
dispersion relation. At low frequencies and long wave-
lengths, Hallberg (1997) found that the coupling was
confined to regions where the topographic slopes be-
come nearly meridional. But the zonal changes in the
orientation of the slopes were essential to this coupling.
The assumptions leading to the WKB approximation are
strongly violated in the coupling locations in the ex-
amples considered by Hallberg (1997), and WKB theory
does not provide a useful estimate for the strength of
the coupling, either between surface- and bottom-inten-
sified motions or between the two branches of the dis-
persion relation. At low frequency, an adiabatic con-
straint does give an estimate for the strength of the
coupling. Hallberg (1997) quantitatively verified this
estimate for the strength of the coupling, as well as the
location of the coupling, with a series of primitive equa-
tion numerical simulations.

Vanneste (2001) points out that a well-established
extension of WKB theory can be used to estimate the
strength of coupling between wave modes. Vanneste
then reexamines the strength of coupling between wave
modes in the special case of meridionally varying, me-
ridionally sloping topography. Vanneste argues, based
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on expressions that apply to this special case and the
assertion that this extension of WKB theory is generally
applicable to the ocean, that the estimates for the cou-
pling strength between surface- and bottom-intensified
motion in Hallberg (1997) are incorrect.

In this reply, a more appropriate, but still analytically
tractable, physical model is proposed to describe the
coupling regions for low-frequency topographic and
planetary waves. This alternate simple model is ex-
amined using essentially the same techniques as in Van-
neste (2001). It is explicitly demonstrated that the WKB
approximation is not justified in these regions. But the
extension of WKB theory cited by Vanneste indicates
the likelihood of strong (but not total) coupling between
modes; with an appropriate model, these techniques do
not contradict the original Hallberg (1997) estimate of
the coupling strength between modes (and between lay-
ers). This coupling strength has already been verified
in a series of primitive equation numerical simulations,
whose only assumption is that the aspect ratio is small
(as is true of the ocean). The physical argument for
estimating the strength of coupling in Hallberg (1997)
is clarified in response to (erroneous) criticisms in Van-
neste (2001). In this reply, it is shown that while the
mathematical techniques applied by Vanneste are quite
general and valuable, the physical conclusions that he
draws regarding the ocean circulation stem from a very
specific physical model, and the physical description
from Hallberg (1997) of localized coupling between sur-
face- and bottom-intensified low-frequency flow and be-
tween wave modes in the ocean is valid.

2. Rossby waves over zonally varying topography

Vanneste (2001) considers only the case where to-
pographic slopes are purely meridional and vary only
in the meridional direction. This is the most mathe-
matically tractable orientation of the topography, and it
has been extensively discussed by Veronis (1980), for
example. It is also a relatively uninteresting limit. In
this one special limit, at any location each of the two
branches of the dispersion describes a single physical
mode [as can be seen in Figs. 1a and 4c of Hallberg
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(1997)]. The mode conversion that Vanneste describes
does not apply to low-frequency long waves since these
propagate zonally in this special case. By contrast, for
nonmeridional topographic slopes, a single branch of
the dispersion relation describes both surface- and bot-
tom-intensified motions at different orientations of the
wavevector. In short, the special case described by Van-
neste (2001) is very different from the general case
discussed in Hallberg (1997).

The vertical structure of mixed topographic–plane-
tary waves in a two-layered fluid depends strongly on
the relative magnitudes of the potential vorticity gra-
dients perpendicular to the wavevector (Hallberg 1997).
Since the typical length scale of topographic slopes is
much less than the radius of the earth, topographic po-
tential vorticity gradients at the margins of an ocean
basin are much larger than planetary gradients. The ratio
of the lower-layer topographic and planetary vorticity
gradients over continental margins is (Reartha tan(u))/H2,
typically of order 30 in midlatitudes (for slope a 5 0.01,
lower-layer thickness H2 5 2 km, and latitude u 5 458).
So, even slowly changing orientations of topography
with respect to the wavevector can be expected to lead
to abrupt changes in the vertical structure associated
with a wave mode. Furthermore, in the ocean the com-
plicated coastlines essentially guarantee that every to-
pographic ray will encounter the regions where signif-
icant coupling between wave modes and between sur-
face- and bottom-intensified motions will occur.

Low-frequency, long planetary waves are of primary
importance for understanding the ocean circulation, as
evidenced by the prevalence of theories based on the
planetary geostrophic equations, which essentially con-
sider only waves in this limit. Hallberg (1997) described
mode conversion and coupling between surface- and
bottom-intensified flow in the low-frequency long-wave
limit. The coupling occurs near the point where the
zonal planetary vorticity gradient goes from being pos-
itive to negative (or, in other words, in regions of me-
ridional slopes). The changes along a ray in the relative
orientation of the planetary and topographic vorticity
gradients are important to the coupling of low-frequency
long waves. This can be clearly illustrated in a model
with a zonally varying zonal slope.

The two quasigeostrophic vorticity equations can be
combined to give a quartic equation in the zonal wave-
number k. This equation is too complicated to give any
physical insight. But, in the coupling regions, low-fre-
quency waves can be qualitatively described as having
long zonal wavelengths compared to the deformation
radius. This yields a quadratic equation for k. With this
approximation, the two equations are

2] ] c ]c1 1222 l (c 2 c ) 1 b 5 0 (2.1)1 1 2 1,y2[ ]]t ]y ]x

2] ] c ]c ]c2 2 2222 l (c 2 c ) 1 b 2 b 5 0 (2.2)2 2 1 2,y 2,x2[ ]]t ]y ]x ]y

near the coupling regions. The notation here is the same
as in Hallberg (1997), except that the zonal and merid-
ional components of b gradients are explicitly separated.
By assumption the layer deformation radii ln and

df f dHnb 5 2n,y dy H dyn

are constant, but

f dH2b 5 22,x H dx2

is a linear function of x. These assumptions are reason-
able for a local approximation to the northern or south-
ern end of a circular, bowl-shaped basin, but they should
apply equally well to the pertinent area for low-fre-
quency coupling in an arbitrary basin.

Assuming a wavelike structure cn(x, y, t) 5 Cn(x)
exp {i[# k(x) dx 1 ly 2 vt]}, where l and v are constants,
but k and Cn can vary slowly in x (to the extent that
the WKB approximation holds), (2.1) and (2.2) can be
manipulated to give

22b (k 2 k )C 5 vl C ,1,y 1 1 1 2

22b (k 2 k )C 5 vl C . (2.3)2,y 2 2 2 1

Here

2 22(l 1 l )1k [ 2v ,1 b1,y

2 22(l 1 l ) b2 2,xk [ 2v 1 l (2.4)2 b b2,y 2,y

are the long zonal wavenumbers that the waves would
have without coupling between the layers. Equations
(2.3) can be combined to give a quadratic equation for
k, the solutions of which are

1
2 2 2 2k 5 [k 1 k 6 Ï(k 2 k ) 1 4v /(l l b b ) ].1 2 1 2 1 2 1,y 2,y2

(2.5)

One of the criteria for the WKB approximation to hold
is that (k22dk/dx K 1) (Lighthill 1978). The only var-
iable appearing on the right-hand side of (2.5) that is
not constant (by assumption) is k2. So,

dk dk 1 (k 2 k )2 2 15 1 6 ,
2 2 2 2[ ]dx dx 2 Ï(k 2 k ) 1 4v /(l l b b )1 2 1 2 1,y 2,y

(2.6)

where

dk l db l2 2,x5 5 , (2.7)
dx b dx R2,y C

and RC is the radius of curvature of the topography,
assuming that topographic potential vorticity gradients
are much larger than planetary gradients.
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Over topography that slopes up toward the equator,
the second term inside the square root in (2.5) is neg-
ative, and the entire argument can become negative.
Since , this occurs roughly a dis-2 2Ïb 1 b k b2,x 2,y 1,y

tance

2 2v (1 1 l l )1s ø R (2.8)Cmax) )v 2ll1 1

from the point where the topographic slope is due south-
ward. Here

maxv 5 b l /21 1,y 1 (2.9)

is the maximum Rossby wave frequency that can be
obtained in the upper layer without coupling with the
lower layer. The closest distance occurs when l 5 1/l1,
for which wavenumber

v
s 5 R (2.10)Cmax) )v1

from the point where the topographic slope is due south-
ward. This is the point where the mode conversion
would occur, and at this point dk/dx is infinite, while k
5 (k1 1 k2)/2 is finite. WKB theory is obviously de-
generate at this point, although this transition is accom-
modated by the theory described by Flynn and Little-
john (1994) and cited by Vanneste (2001).

Further, the physical separation between wavelike so-
lutions in the x direction with the same value of l is

bv 1 1,y
Ds 5 2R . (2.11)C max !v ll b1 2 2,y

The integral of the imaginary part of the wavenumber
over the separation between the wavelike solutions pro-
duces (not surprisingly) the same estimate for the trans-
mission of wave activity as do the formulas of Flynn
and Littlejohn (1994).

The transitions are much less abrupt over topography
that slopes up poleward. The transition occurs where k2

ø k1. At this point

v 1
k 5 k 611 2!l l b b1 2 1,y 2,y

b1 v 1 v 1,y2 25 2 (1 1 l l ) 61max max[ ]!2l v 2l v b1 1 2 1 2,y

b1 v l 1,y12 25 2 1 1 l l 71max1 2!2l v l b1 1 2 2,y

1 v
2 2ø 2 (1 1 l l ) 5 k and (2.12)1 1max2l v1 1

dk 1 dk 1 l db l2 2,x5 5 5 . (2.13)
dx 2 dx 2 b dx 2R2,y C

The criterion for the validity of WKB theory is then

22
]k 1 v l

22 2 2k 5 (1 1 l l )1max1 2]x 2l v 2R1 1 C

2maxv 2ll l1 1 15 K 1. (2.14)
2 2 21 2v (1 1 l l ) R1 C

For sufficiently low frequencies, WKB theory does not
apply, although the inapplicability of the theory is less
decisive than in the case when topography slopes up
toward the equator.

The strength of transmission between modes can be
estimated for this physical model as it was in Vanneste
(2001), and these estimates support the physical de-
scription in Hallberg (1997). Equation (2.3) can be cast
in matrix form, as in Vanneste (2001), giving

22b (k 2 k ) 2vl C1,y 1 1 1DC 5
22[ ][ ]2vl b (k 2 k ) C2 2,y 2 2

D D C 011 12 15 5 . (2.15)[ ][ ] [ ]D D C 021 22 2

The transmission coefficient from the expressions of
Flynn and Littlejohn [1994, their Eq. (4.12)] can be
expressed (again as in Vanneste) as T 5 exp(22pn),
where (in the special case that D12 and D21 are inde-
pendent of wavenumber or position)

)D D 2 D D12 21 11 22 )n 5 . (2.16)
2 )]D ]D ]D ]D11 22 22 11 )21 2! ]x ]k ]x ]k )x5x ,k5k0 0

Equation (2.16) is evaluated at the wavenumber and
position where the coupling would be expected to occur,
namely at the point x0 where k1 5 k2 [ k0. For either
the coupling in the north or the south,

22 22 22 bv l l R v 1,y1 2 Cn 5 5 . (2.17)
2 max1 2 ) )|b b (]k /]x)| 4l |l| v b1,y 2,y 2 2 1 2,y

Typical values for the various quantities in (2.17) might
be RC 5 1000 km (for a basin roughly the size of the
Argentine Basin; a much smaller radius of curvature is
warranted in many locations, and this would give stron-
ger coupling between modes), l2 5 50 km, l 5 1/l2,
and b1,y/b2,y 5 1/30. With these values,

1
max 2n 5 (v /v ) , (2.18)16

and the transmission coefficient becomes

max 2T ø exp[2(v/v ) ],1 (2.19)

It has already been assumed that frequency under con-
sideration is smaller than , so the transmission co-maxv1

efficient may be quite close to 1. At frequencies not
dramatically less than , both transmission betweenmaxv1
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modes and mode conversion would be expected to be
significant. For any values of the various constant co-
efficients, the coupling between modes is nearly com-
plete for sufficiently low-frequency waves. All this is
exactly as described in Hallberg (1997).

3. Clarification of the mass-conservation
transmission estimate

Vanneste’s (2001) claim that significant transmission
should be considered exceptional simply does not apply
to low-frequency waves in an ocean basin with arbitrary
topography. For sufficiently low frequencies or for suf-
ficiently abruptly varying topographic orientations,
WKB theory is inapplicable to the coupling over zonally
varying topography. The very special case of meridi-
onally varying, meridionally sloping topography, upon
which Vanneste is basing this claim, does not give in-
sight into the more general case. Vanneste further sug-
gests that the estimate of Hallberg (1997) for the
strength of coupling is incorrect since it disagrees with
his assertion that coupling should be weak. Here validity
of the mass conservation argument of Hallberg (1997)
is clarified.

Linear quasigeostrophic waves do transport mass.
[This is not the same as causing a significant displace-
ment of individual fluid parcels (see Hallberg and Rhi-
nes 1996).] If they did not, they could not excite any
geostrophic flow. The ageostrophic convergence of mass
is intimately connected with the excitation of geostroph-
ic motion, and, in the limit that wavelengths are long,
a perfectly sensible mass balance can be obtained at
scales that are much shorter than that wavelength.

The velocities associated with low-frequency Rossby
waves tend to be aligned with isopleths of potential
vorticity (PV). Flows across PV isopleths create the
restoring forces that lead to Rossby waves, and these
across-PV-isopleth flows must be relatively weak in
low-frequency waves. While it is true that there is no
net mass flux when averaging over a wave period, along-
contour gradients in the convergence of mass fluxes
‘‘even over just a fraction of a wave period’’ (Hallberg
1997, p. 986) will lead to cross-contour geostrophic
flows. For oscillatory forcing with a given frequency,
it is inconsistent to have convergence of along-PV-con-
tour mass fluxes (and the resulting baroclinic Mont-
gomery potential gradients) with spatial scales along the
contour that are much shorter than the wavelength along
the contour of topographic or planetary waves with that
frequency. Unless there is coupling between modes,
these small-scale Montgomery potential gradients will
occur when

1 ]
(C ) $ O(1). (3.1)1) )kC ]x1

It can be shown from conservation of wave activity, and
starting from expressions in the previous section and in

Hallberg (1997) (after much tedious algebra) that, in the
case where l1 5 l2 and at the coupling point (where
k1 5 k2 and C1 5 6C2),

dc1 ] 1 1 d Cg 2(C ) ø 2 71) ) ) 1 2 )[ ]kC ]x 2k c dx dx C1 g 1

b 1 b 1 dk2,y 1,y2 25 (l l 1 1 7 1) .1 2) 1 2 )4b k dx1,y

(3.2)

[The two branches of the dispersion relation take on the
two signs in (3.2)]. Since typically | b2,y | k | b1,y | , (3.2)
can be approximated [also using (2.14)] as

2max 2 2 b1 ] v ll (l l 1 1 7 1) l 2,y1 1 1 1(C ) ø1 2 2 2) ) )1 2 1 2)kC ]x v 2(1 1 l l ) R b1 1 C 1,y

2max bv 1 1 l 2,y1 1ø 7 .)1 2 1 2 1 2)v 4 8 R bC 1,y

(3.3)

The final expression applies when ll1 5 1, which is a
typical meridional length scale. Equation (3.3) shows
that this mass conservation argument becomes appli-
cable essentially when (2.17) indicates that significant
transmission should occur. From (3.3), relatively small-
scale Montgomery potential gradients would occur
without coupling between the modes for sufficiently
low-frequency waves at the point where mode conver-
sion would occur. For these waves, coupling between
the modes prevents the convergence of mass in either
isopycnal layer, and the strength of the coupling can be
estimated from this constraint, as described in Hallberg
(1997).

This argument applies to low-frequency motions and
it predicts the strongest transmission for the lowest fre-
quencies or for relatively short waves (in the cross-slope
direction). Hallberg (1997) stated exactly this, and these
are exactly the criterion for strong transmission from
(2.17). In essence, Hallberg (1997) qualified this ar-
gument to apply in instances where WKB theory be-
comes inapplicable. This argument is not contradicted
by the work in Vanneste (2001). Similar behavior is
found from either the mass-flux conservation argument
or from mode conversion theory. Hallberg (1997) has
demonstrated the value of his theory for predicting the
strength of transmission and mode conversion with
primitive equation numerical simulations in idealized
ocean basins in instances where WKB theory would be
expected to fail. Further, the mass-flux conservation the-
ory may be particularly useful as it permits a rough
estimate of coupling strength in the real ocean based
only on observations of velocity structures.

4. Conclusions

Nonmeridional variations in topography have quite a
different effect on Rossby wave propagation from the
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very special case of meridionally varying meridional
slopes. The criticism by Vanneste (2001) of the work
in Hallberg (1997) is inaccurate, simply because that
critique is based on exactly the wrong physical model.
Order 1 transmission occurs between low-frequency
wave modes, and is virtually inevitable as these waves
propagate around the complex bathymetry of the real
ocean. Sufficiently low-frequency waves strongly vio-
late the assumptions behind WKB theory in the coupling
regions, but the extensions to WKB theory cited by
Vanneste (2001) support the strong coupling between
modes described by Hallberg (1997), when applied to
an appropriate physical model. Mode conversion (and
associated coupling of surface- and bottom-intensified
motion) is relatively weak for low-frequency motions,
but is stronger at frequencies approaching the maximum
baroclinic planetary wave frequency. That transmission
between modes and the coupling between low-frequen-
cy surface- and bottom-intensified motion occur where
the topographic slope becomes nearly meridional, but
the variations of the orientation of the slope along a ray
are essential in that process.

The theory discussed here and in Hallberg (1997) may
ultimately prove useful for explaining a variety of oce-
anic observations, such as, perhaps, the observation
from satellite altimetry that baroclinic Rossby waves
are much stronger to the west of the Hawaiian Ridge
and Emperor Seamount chain than they are to the east
(Chelton and Schlax 1996). Similar behavior has been
seen in numerical models (e.g., Gerdes and Wübber

1991), but explanations have typically been cast in terms
of bottom torques or the joint effect of baroclinicity and
relief (JEBAR: Mertz and Wright 1992). Explicit con-
sideration of the properties of wave modes may provide
much clearer explanations. But, progress in such an ex-
planation is unlikely without consideration of nonmer-
idional topography and non-WKB effects.
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