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ABSTRACT

Substantial bottom topography in a basin with planetary vorticity gradients strongly affects the vertical structure
of the linear topographic and planetary Rossby waves that spin up the ocean circulation. There is no barotropic
mode with large amplitude topography and stratification. It is shown that the lowest frequency two-layer qua-
sigeostrophic waves that exist with stratification, planetary vorticity gradients, and large-amplitude bottom
topography are more strongly concentrated in the vertical than Burger number 1 scaling would indicate (for
most orientations of the wavevector) except where the bottom slope is nearly meridional. This concentration
increases with decreasing frequency. Ray tracing in an ocean basin suggests that the two layers are linearly
coupled in regions with parallel or antiparallel topographic and planetary vorticity gradients, but elsewhere small
amplitude motion in the two layers is largely independent. Continuity within isopycnal layers implies that most
of the circulation remains within isopycnal layers, even in the regions of linear coupling. The strength of
surface(bottom)-intensified flow driven by coupling to bottom(surface)-intensified flow is approximately twice
as strong as the surface(bottom) projection of the bottom(surface)-intensified flow. Primitive equation simulations
concur with the quasigeostrophic results and indicate that the localized linear coupling between surface- and
bottom-intensified flow pertains to a continuous stratification.

1. Introduction

Most theories of the deep circulation either describe
directly forced flow (Stommel and Arons 1960; and oth-
ers) or flow driven by nonlinear eddy stirring of the
deep ocean (Rhines and Holland 1979). Anderson and
Gill (1975) demonstrate that linear planetary waves in
a flat-bottomed ocean basin tend to concentrate all of
the wind-driven flow at the surface. Anderson and Kil-
worth (1977) extend these arguments to include merid-
ional topography in the middle of the ocean (but still
with a vertical eastern boundary and neglecting merid-
ional variations) and find that the same result holds.
Stommel and Arons prescribe the distribution of up-
welling and a compensating localized source to a single
active deep layer and determine the abyssal circulation
this forcing implies. The circulation they find has pole-
ward flow in the ocean interior balanced by intense west-
ern boundary currents. Kawase (1987) describes the
evolution of a source-fed abyssal flow into the final state
described by Stommel and Arons, and finds that most
of the evolution of the flow can be described in terms
of the free waves of the flat-bottom 1½-layer ocean he
examines. In the present paper, it is found that the com-
bination of large amplitude topography, stratification,
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and planetary vorticity gradients causes the vertical
structure of the low-frequency wave modes to change
dramatically as waves propagate around an ocean basin.
This changing vertical structure causes bottom-inten-
sified flow to be driven by linear coupling with the
surface circulation.

Topography can have a tremendous effect on the deep
ocean response if it creates regions of closed potential
vorticity (PV) contours. In the case of a source-driven
flow in a 1½-layer model (with either a widely distrib-
uted sink or slow filling of the layer), Kawase and Straub
(1991) find a strong cyclonic response over PV contours
that are closed because of either a bottom rise or de-
pression. Similarly, Kawase (1993) finds a very strong
response to a localized mass source in a 1½-layer model
with a rising bottom around the edges of a basin, com-
pared with an analogous flat-bottom simulation, when
the topography is large enough to create closed PV con-
tours. In a multilayer quasigeostrophic simulation with
topographically closed PV contours in the deepest layer,
Thompson (1995) finds that a strong deep flow along
the closed PV contours is excited by eddy stirring from
above. Because steady flow along closed PV contours
is a free mode, it is easily excited by almost any forcing,
with the sense of motion determined by the forcing
mechanism.

In a flat-bottomed ocean, the vertical and horizontal
structure of wave modes are separable. Waves can be
separated into a barotropic mode with vertically uniform
horizontal velocities and countable baroclinic modes
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with zero vertical average horizontal velocities. Unfor-
tunately, the vertical and horizontal structure of the free
modes in the ocean are not separable when there is large-
amplitude bottom topography. People often persist in
analyzing the depth-integrated or depth-averaged ve-
locities, even though such a field is not a dynamical
mode of the system with bottom topography. This leads
to the inclusion of a ‘‘JEBAR’’ or bottom torque ‘‘forc-
ing’’ term, based on the baroclinic flow as well as the
depth-averaged velocity (e.g., Mertz and Wright 1992).
This term is the result of insisting on examining a field
that is not a dynamical mode of the system and is not
directly due to any kind of external forcing. There is
no barotropic mode with stratification and topography.

The coupling between layers explored here is the di-
rect result of the changing vertical structure of a wave
mode as that wave propagates around an ocean basin.
Sometimes, when the bottom slope is nearly meridional
or when the wavevector is perpendicular to the isobaths,
the vertical structure of the wave modes resembles that
of the classic barotropic and baroclinic modes. In other
places and for other wavevectors, the wave modes tend
to be strongly bottom intensified or have exceedingly
small velocities at the seafloor. The wave mode descrip-
tion of the circulation breaks down when the vertical
structure changes abruptly. The changing vertical struc-
ture of a mode leads to a net horizontal transport con-
vergence in each layer, but the resultant pressure gra-
dients along the layer PV contours are radiated away
by Rossby waves described by the other mode with a
shorter timescale than the period of the waves. This
coupling between the wave modes effectively keeps
most of the circulation in the same isopycnal layers.
Both the coupling between layers and the coupling be-
tween different wave modes occurs predominantly in
the northern and southern portions of an ocean basin
where the bottom slope is nearly meridional. All of the
mechanisms described here apply to inviscid, adiabatic,
infinitesimal amplitude circulation; no frictional or non-
linear mechanisms are evoked.

The present study uses the properties of the waves
that arise in a stratified ocean with topography and plan-
etary vorticity gradients to examine the possibility that
the deep flow may be partially driven by linear coupling
to the surface flow. Since no nonlinear effects are con-
sidered, the response to a change in forcing can be de-
scribed as the superposition of oscillations with a con-
tinuous range of frequencies, as can be seen by Laplace
transforming the linear equations of motion in time.
Each of the frequencies evolves independently, so the
behavior of linear waves is a strong indication of the
linear, inviscid ocean dynamics.

A brief reprise of past studies of stratified topographic
waves is a useful introduction to the waves examined
here. Rhines (1970) examines the effect of a meridional
bottom slope on the plane waves that arise in a contin-
uously stratified fluid. On an f plane, only a single sub-
inertial edge- or bottom-trapped wave mode occurs. For

sufficiently steep topography or strong stratification
such that N tan(a)/f k 1 (where a is the angle between
the seafloor and horizontal), this mode becomes an in-
ternal Kelvin wave (Allen 1980). At wavelengths much
longer than (NH/f), this single mode is a barotropic to-
pographic Rossby wave. At shorter wavelengths L, this
wave is a bottom-trapped topographic Rossby wave with
a vertical decay scale of (fL/2pN), or Burger number 1
scaling. Rotation and stratification are of equal impor-
tance for flow satisfying Burger number 1 scaling. For
sufficiently long wavelengths Burger number 1 scaling
gives a vertical decay scale greater than the depth of
the ocean; stratification is unimportant for the dynamics
of those waves. Each of these waves propagate pseu-
dowestward (to the left of the upslope direction in the
Northern Hemisphere). On a b plane, baroclinic Rossby
waves with a horizontal velocity antinode at the surface
also occur. The vertical structure of the solutions is one
mode with a cosh structure (centered at the surface) and
many modes with a cosine structure (also centered at
the surface). With a bottom depth that decreases pole-
ward, the planetary vorticity gradient is reinforced by
the topography and the cosh mode is barotropic at long
wavelengths and bottom intensified at shorter wave-
lengths. The gravest cosine mode is surface intensified
even at the longest wavelengths. For a bottom with an
equatorward upslope, the planetary vorticity gradient is
opposed by the topography. For gentle topography [such
that (af/bH) , 1, where a is the slope of the bottom]
the gravest cosine mode becomes barotropic at long
wavelengths while the cosh mode is bottom intensified.
For steeper topography the cosh mode becomes baro-
tropic at long wavelengths while the cosine modes are
surface intensified.

Straub (1994) has examined the effects of nonmeri-
dional topography on the plane waves in a uniformly
stratified ocean on a b plane. With nonmeridional to-
pography, the (bottom intensified) mode with the cosh
vertical structure and the (surface intensified) mode with
the gravest cosine vertical structure combine to form a
single, continuous mode at various orientations of the
wavenumber vector. The higher cosine modes have a
horizontal velocity node at the bottom, except when the
flow is nearly aligned with the topography when they
have an antinode. The vertical structure on either side
(in wavenumber space) of the line with the antinode
makes a transition of p in the phase of the bottom rel-
ative to the surface. (A horizontal velocity antinode is
always found at the surface because of the rigid-lid ap-
proximation.) The behavior of the waves with uniform
stratification, planetary vorticity gradients, and bottom
topography found by Straub (1994) is qualitatively very
similar to the behavior found here for a two-layer strat-
ification.

In the present paper, the free waves that occur with
arbitrarily oriented topographic gradients, stratification,
and the planetary vorticity gradient are examined to
determine their implications for the large-scale ocean
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circulation. Models with two layers are used in this
study because they are simple enough to solve for the
local waves easily, but are complicated enough to cap-
ture some the leading order effects of both topography
and stratification. The behavior with even this simple
addition of stratification is much richer than 1½-layer
systems, where the vertical structure of the flow is spec-
ified a priori. The full range of motions pertinent to
planetary scale flows with isopycnals intersecting slop-
ing topography requires the full primitive equations.
Still, most of the pertinent motions are well described
by a quasigeostrophic balance, suggesting that a deter-
mination of the local dispersion relations for quasi-
geostrophic waves is useful. For infinitesimal pertur-
bations to a two-layered resting fluid, these dispersion
relations can easily be determined and used to trace the
paths of the rays associated with the gravest waves,
which spin up the steady flow. Arguments based on
continuity within isopycnal layers are used to predict
the strength of coupling between surface- and bottom-
intensified flow and the direction of the flow driven by
the coupling. The predictions from the local quasigeo-
strophic theory are verified with primitive equation sim-
ulations.

2. The linear locally valid dispersion relation

Quasigeostrophy has frequently been used to provide
valuable insight into large-scale ocean motions that can
only be fully described by the much more complicated
primitive equations. This insight extends even to mo-
tions that clearly violate the assumptions underlying
quasigeostrophy. The close correspondence between
materially conserved quasigeostrophic PV and Ertel’s
scalar PV in the Navier–Stokes equations causes qua-
sigeostrophic theory to apply to such large Rossby num-
ber phenomenon as fronts, isolated eddies, and insta-
bility. The atmosphere is full of large Rossby number
flow, but many quasigeostrophic ideas still hold. With
a layered model, quasigeostrophy requires that the to-
pography should be small compared with the layer
thicknesses. In the present case, this assumption holds
only in a small horizontal neighborhood about a point.
This neighborhood of validity is often smaller than the
wavelength of the waves of interest! Still, the locally
valid quasigeostrophic dispersion relation provides use-
ful indications of the dynamics controlling the actual
flow, as described by the primitive equations.

The linear quasigeostrophic vorticity equations for
two layers are

]
2 22(= c 2 l (c 2 c )) 1 b ·(ẑ 3 =c ) 5 0 (2.1)1 1 1 2 1 1]t

]
2 22(= c 2 l (c 2 c )) 1 b ·(ẑ 3 =c ) 5 0. (2.2)2 2 2 1 2 2]t

Equations (2.1) and (2.2) suppose that there are two
layers with negligibly small horizontal velocities un 5

ẑ 3 =cn, thicknesses hn, and PVs qn ø f/hn, separated
by an interface with reduced gravity g9, with a rigid-
lid upper surface. 5 g9hn/f2 is an internal deformation2ln

radius based on the thickness of layer n. The PV gradient
times the thickness of each layer are written as bn 5
hn=qn ø =f 2 (f/hn)=hn. In the limit of negligible ve-
locities (and hence isopycnal slopes), the PV gradients
in the two layers differ because the lower layer PV
depends on the variable bottom topography.

The locally valid quasigeostrophic dispersion relation
based on (2.1) and (2.2) is easily found if a wavelike
structure is assumed, so that the velocity streamfunc-
tions become

c (x, y, t) 5 c exp(k·x 2 vt)n n

[ c exp(kx 1 ly 2 vt), (2.3)n

where v is the frequency and k 5 kx̂ 1 lŷ is the hor-
izontal wavenumber. Several definitions make the final
expression for the dispersion relation and vertical struc-
ture simpler. For a total horizontal wavenumber K2 5
k2 1 l2, vn 5 [ẑ·(2k 3 bn)]/(K2 1 ) is the frequency22ln

of Rossby waves based on the PV gradient and defor-
mation radius of layer n. Here R2 5 (K2 1 1)21(K22l1

1 1)21, a measure of the wavelength compared with2l2

the layer deformation radii, goes from 0 (the short-wave
limit) to 1 (the long-wave limit). Horizontal plane wave
solutions to (2.1) and (2.2) with form (2.3) must satisfy

(v 2 v1)(v 2 v2) 2 (K2 1 1)21(K2 1 1)21v2 5 0 or2 2l l1 2

(1 2 R2)v2 2 (v2 1 v1)v 1 v1v2 5 0. (2.4)

The solutions to (2.4) give the dispersion relation for
horizontal plane waves

1
v 5 [v 1 v1 222(1 2 R )

2 26 Ï(v 1 v ) 2 4(1 2 R )v v ].1 2 1 2

(2.5)

The two solutions described by (2.5) will be referred to
as the positive and negative branch of the solution de-
pending on the sign of the radical sign. Equation (2.5)
is only valid if the properties of the basin vary slowly
on scales of the wavelength. Although this is not gen-
erally true in the simulations, the results of this analysis
appear to make valid predictions for the full equations
in a two-layer basin with large amplitude topography.
The ratio of the velocity streamfunctions of the two
layers associated with plane waves of frequency v sat-
isfying (2.5) is

2 2c 5 (K l 1 1)(1 2 v /v)c2 1 1 1

2 2or c 5 (K l 1 1)(1 2 v /v)c . (2.6)1 2 2 2

These equations are not novel. For example, Veronis
(1980) derives essentially the same equation as (2.5)
without the limitation of assuming a rigid lid. Veronis
only briefly examines the effect of nonparallel topo-
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FIG. 1. Frequencies predicted by the dispersion relation, (2.5), for the lower-layer PV gradient five times as large as the upper-
layer gradient and the two PV gradients are (a) parallel or (b) rotated by 458. The negative branch of the dispersion relation is
shown by dotted lines, while the positive branch is shown by solid lines. The lower layer is half as thick as the upper layer.
The wavenumbers are scaled by the inverse of the upper-layer deformation radius l1. Four equally spaced frequencies (0, 0.15,
0.3, and 0.45 b1l1) are contoured for each branch of the solution, although in (b) the negative branch does not have frequencies
as high as the largest contour value. The 0 frequency contours of the two branches coincide in (a).

graphic and planetary vorticity gradients; the added
complexity that arises with nonparallel gradients makes
the present study interesting.

There is some redundancy in (2.5): the same solutions
are described either by considering both branches of the
dispersion relation only when they have positive fre-
quency, or by considering only one branch of the so-
lution and retaining both positive and negative fre-
quencies. The reason for this redundancy is that, with
plane waves, the same solution is obtained if the sign
of both the frequency and wavenumber are reversed.
Here both branches are considered, retaining only pos-
itive frequencies. With this convention, the positive
branch of (2.5) always has flow in the two layers in the
same sense, while the negative branch has opposing flow
in the two layers.

One interesting limit is found when planetary vortic-
ity is held constant so that b1 5 v1 5 0. The two
solutions to (2.5) are exactly v 5 0 and v 5 v2/(1 2
R2). The zero frequency solution is a geostrophically
adjusted flow with velocities entirely in the upper layer.
The nonzero frequency mode is a topographic Rossby
wave and has a ratio of velocity streamfunctions of

C1 5 C2/(K2 1 1).2l1 (2.7)

This limit is revealing because the analogous continu-
ously stratified case on an f plane has an exponentially
bottom-trapped wave mode with a vertical decay scale
given by (fL/N), where f is the Coriolis parameter, N is
the buoyancy frequency, and L is the inverse of a typical
horizontal wavenumber of the waves (Rhines 1970).

Equation (2.7) is therefore the discrete layer analog of
a Burger number 1 scaling vertical structure. Coastal-
trapped waves would also appear in this limit, but are
excluded by the assumption of a plane wave horizontal
structure and the neglect of horizontal variations in the
PV gradients and deformation radii. The f-plane limit
is also of particular interest because only topographic
potential vorticity gradients can be generated using stan-
dard laboratory techniques.

The long and short wave limits are discussed by Hall-
berg (1995). In the short wave limit the two solutions
are concentrated in one of the layers, with a frequency
that is very nearly the frequency that each layer would
have independently (that is v1 or v2). In the long wave
limit the two modes are a nearly barotropic mixed to-
pographic/planetary Rossby wave and a surface (or bot-
tom) intensified baroclinic Rossby wave closely resem-
bling the Rossby wave in a 1½-layer model. The long
wave limit is only reached for waves with very much
longer wavelengths than the internal deformation radius.

At most wavenumbers, the dispersion relation gives
frequencies that are either consistent with those of either
bottom-trapped topographic Rossby waves (the larger
set of circles in Fig. 1) or with surface-intensified plan-
etary Rossby waves (the smaller set of circles in Fig.
1). When the layer PV gradients are parallel, the positive
and negative branches of the dispersion relation each
describe one of these physical modes; the circles de-
scribing the topographic waves are entirely solid lines
in Fig. 1a, corresponding to the positive branch of the
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FIG. 2. The ratio of lower- to upper-layer velocities for the waves with the dispersion relation depicted in the right panel
of Fig. 1. Contours indicating upper-layer intensification are dashed, while the solid contours indicate lower-layer intensification.
The heavy solid lines mark equal magnitudes in the two layers. The dashed–dotted arcs mark the 100 and 10 or 0.1 and 0.01
contours given by Burger number 1 scaling. The unlabeled contours in the negative branch plot are 210 and 2100; the
unlabeled dotted contour in the positive branch plot is 0.001.

dispersion relation, while the circles describing the plan-
etary wave dispersion relation are entirely dotted lines,
corresponding to the negative branch. However, when
the upper and lower PV gradients are not parallel, both
the topographic and planetary dispersion curves are de-
scribed by both the positive and negative branches of
the dispersion relation. This can be seen most clearly
in the 0.15 b1l1 contours of Fig. 1b. The top-right por-
tion of the smaller 0.15 b1l1 circle (describing a surface-
intensified Rossby wave) is from the positive branch of
the dispersion relation (a solid line), while the bottom-
left portion of this circle is from the negative branch of
the dispersion relation (a dotted line). Most of the larger
0.15 b1l1 circle (describing a bottom-intensified topo-
graphic Rossby wave) is from the positive branch (a
solid line) but the portion of the larger circle inside of
the smaller circle is from the negative branch (a dotted
line). The simple correspondence between branches of
the dispersion relation and qualitatively distinct motions
when the layer PV gradients are parallel does not hold
when the layer PV gradients are not parallel.

The vertical structure of the local modes also behaves
quite differently between the cases where the layer PV
gradients are or are not parallel. With parallel layer PV
gradients the vertical structure is a function of wave-
length only [in that case v1/v2 is a function of wave-
length only, and so are v/v1 and C2/C1 by (2.5) and
(2.6)]. By contrast, the vertical structure of the local
modes is strongly dependent on the orientation of the
wavevector when the layer PV gradients are not parallel,
as seen in Fig. 2. Not surprisingly, at those wavenumbers

where the positive branch contours are the large circles
(topographic Rossby waves) in Fig. 1b, the vertical
structure of this branch is bottom intensified (solid con-
tours in Fig. 2), while the vertical structure is surface
intensified at wavelengths where this mode corresponds
to planetary Rossby waves (the smaller circles in Fig.
1b). Figures 2 and 1b also show that at low frequencies,
the long waves are much more surface or bottom in-
tensified than indicated by the Burger number 1 scaling
found for f-plane waves.

The positive and negative branch dispersion curves
(the solid and dotted curves in Fig. 1b) osculate at
regions of common wavenumber and frequency, and the
branch of the solution describing the surface- and bot-
tom-trapped mode switches, as seen by the heavy lines
in Fig. 2. If there are spatial variations in the bottom
slope, there can be linear coupling between the positive
and negative branches of the dispersion relation at the
wavenumbers where the osculation occurs. The disper-
sion curves at a single frequency but for angles between
the PV gradients of 358 and 458 are superimposed in
Fig. 3. The positive branch with a 458 angle and the
negative branch at a 358 angle have essentially the same
frequencies at a wavenumber of about (23.5, 3) in Fig.
3. If locations having these angles are within a few
wavelengths, the WKBJ approximation breaks down
and the two branches of the dispersion relation can be
linearly coupled. Coupling between the branches of the
dispersion relation is most likely at the wavenumbers
where the two branches osculate because at these wave-
lengths relatively small differences in the bottom slope
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FIG. 3. As in Fig. 1 except that the domain is limited to longer
wavelengths, only the 0.15 b1l1 contours are shown, and the fields
for 358 and 458 angles between the PV gradients are superimposed.
The solid and dotted lines are the contours from the positive and
negative branches with a 458 angle between the layer PV gradients;
the dashed and dashed–double–dotted lines are from the positive and
negative contours with a 358 angle.

and orientation can cause the two branches to coincide
in frequency and wavenumber normal to the gradients
of the slope direction and magnitude. At the lowest
frequencies and longest wavelengths, the osculation be-
tween the two branches of the dispersion relation occurs
when the layer PV gradients are nearly parallel or an-
tiparallel.

Rotating the layer PV gradients with respect to each
other mimics the changes sustained by a ray as it prop-
agates around the basin. When the two layers’ PV gra-
dients are neither parallel nor antiparallel, both branches
of the dispersion relation are needed to describe either
layer’s mode throughout wavenumber space, as seen in
Figs. 1 and 4. When the layers’ PV gradients are rotated
to become more antiparallel, more of the solution is
described by just the positive branch of the dispersion
relation, as seen in the upper panels of Fig. 4. Even-
tually, when the PV gradients are antiparallel, the entire
solution is described by only the positive branch. As
the negative branch solutions are restricted to more lim-
ited regions of wavenumber space by progressively
more nearly antiparallel PV gradients, the maximum
frequency obtained by the negative branch decreases.

A locally valid quasigeostrophic description leads to
a relatively simple dispersion relation that describes sur-
face-trapped planetary Rossby waves and bottom-
trapped topographic Rossby waves. At certain wave-
numbers, these otherwise distinct motions merge, and
the branches of the dispersion relation describing each

type of motion switch. The locally valid quasigeostroph-
ic analysis suggests the possibility of linear coupling
both between surface- and bottom-intensified motions
and between the two local eigenmodes, but for most
orientations of the layer PV gradients and the wave
vector an accurate description of the vertical modes is
in terms of largely independent flow in the two layers.

3. Ray tracing of linear quasigeostrophic waves

Rays are a valuable tool for describing the response
of an ocean basin to forcing. They indicate the pathways
along which energy spreads. Also, rays indicate turning
points or critical layers where energy might be focused.
With the two-layer flows described here, the vertical
structure of the rays is also known. Ray tracing gives
a further indication of the vertical migration of energy.

The dispersion relation, (2.5), can be used for ray
tracing in the two-layer basin. The ray is found by si-
multaneously solving the set of equations

Dx ]v Dy ]v
5 , 5 ,

Dt ]k Dt ]l

Dk ]v Dl ]v
5 2 , and 5 2 , (3.1)

Dt ]x Dt ]y

where the material derivative is defined as the derivative
following the ray (Lighthill 1978). These equations are
integrated numerically. An analytically described basin
shape was used so the integrations could easily be per-
formed with arbitrarily high precision. These equations
exactly conserve frequency along a ray, and this prop-
erty is used to validate the numerical integration.

For the bowl-shaped basin in Fig. 5 [which is similar
to that used by Hallberg and Rhines (1996) in a study
of the spinup of the circulation in a basin with isopycnals
intersecting the sloping topography], ray paths are cal-
culated for a frequency of 5 3 1028 s21 (Fig. 6). The
internal deformation radius at the center of the basin is
77.4 km. These rays have a period of 1450 days and
are sufficiently grave to be representative of the waves
that spin up the steady flow following a change in the
forcing (even much higher frequency rays behave sim-
ilarly). The rays in this figure initially have wavelengths
longer than 100 km and are uniformly distributed in
wavenumber among the wavenumbers with the pre-
scribed frequency. This choice of the initial wave-
numbers ensures that all of the rays will start with a
westward or pseudowestward (for topographic waves)
group velocity. The starting points for the rays were
chosen to illustrate the behavior of the rays throughout
the basin. The density of the marks along the rays is
inversely proportional to the speed of the rays, while
the choice of mark indicates whether the vertical struc-
ture at that point is surface intensified or bottom inten-
sified or neither. The dashed line in Fig. 6 marks the
edge of a ‘‘forbidden region’’ for the negative branch
rays at this frequency. Outside of this curve, all of the
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FIG. 4. As in Fig. 1 except that the region is limited to longer wavelengths and the angle between the two layer PV gradients
is changed to 908, 1358, 1808, and 2258. The same four frequencies are contoured in each panel. The positive branch of the
dispersion relation is again contoured with solid lines, the negative branch with dotted lines.

negative branch solutions have lower frequency than the
rays. In the south of the basin, the upper- and lower-
layer PV gradients are in nearly opposite directions, and
the negative branch attains only very low frequencies,
as shown in Fig. 4. The positive branch rays can enter
the forbidden region.

Each of the panels of Fig. 6 shows the rays spreading
in two distinct groups: One group, with its signal con-
centrated in the upper layer, radiates nearly westward
from the forcing. The other group, with its signal con-
centrated in the lower layer, follows the topography
around the basin. Except where the planetary and to-
pographic vorticity gradients are nearly parallel or an-

tiparallel, these low-frequency rays are much more in-
tensified in one of the layers than would be predicted
by Burger number 1 scaling. The restoring force that
generates these waves is due to flow across topographic
or planetary vorticity contours. The lowest frequency
waves (for a given wavelength) have flow perpendicular
to PV gradients and wavevectors along PV gradients.
When the layer PV gradients are not parallel or anti-
parallel, the two layers require different orientations of
the wavevector for the lowest frequency waves. Low-
frequency waves accommodate these incompatible con-
straints on the direction of the wavevector by becoming
strongly concentrated in the layer with the weaker PV
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FIG. 5. Basin depth (in m) used for the ray tracing.

gradient perpendicular to the wavevector. The rays in
the center of the groups are most nearly aligned with
the upper- or lower-layer PV contours, have the longest
wavelengths, and propagate much more rapidly than
those on the edges of the group, as seen by the density
of the marks in Fig. 6. The lower-layer intensified rays
(which follow bottom-trapped topographic Rossby
waves) generally propagate more rapidly than the upper-
layer intensified rays (which follow planetary Rossby
waves).

Near the forbidden region in the south, all of the rays
encounter turning points. The negative branch rays can-
not enter the forbidden region, so the rays approaching
from the west have turning points to the west of the
edge of the forbidden region and similarly negative
branch rays approaching from the east have turning
points to the east of the edge of the forbidden region.
The positive branch rays are unimpeded by the forbid-
den region and have turning points inside of or even
beyond the forbidden region. Lower-layer intensified
rays approach the turning point from the west following
the lower-layer PV contours. The rays stop and then
propagate back to the west with most of their velocity
in the upper layer instead of the lower layer. With start-
ing points in the southeast of the basin, upper-layer in-
tensified rays approach the forbidden region from the
east, reach turning points near the forbidden region, and
then propagate eastward around the basin as lower-layer
waves. The symmetry between the rays with turning
points in the upper and lower panels is quite striking,
with one ray changing from describing surface-inten-
sified planetary Rossby waves to describing bottom-
trapped topographic Rossby waves and the other ray
undergoing the opposite change in almost exactly the
same place. If these rays have the same meridional
wavenumber (as is indeed the case), the rays might ex-
change energy at their mutual turning points, with neg-

ative branch solutions interacting strongly with positive
branch solutions.

In the northern part of the basin the rays also change
the layer in which their motion is concentrated. This
change is not associated with a turning point, as it is in
the south, because the pseudowestward direction of the
lower-layer intensified rays is westward with parallel
topographic and planetary vorticity gradients. There is
a slight change of direction as the rays are transformed
because the surface-intensified rays are less tightly con-
fined to be pseudowestward than are lower-layer inten-
sified rays of the same frequency and wavenumber. As
with the southern turning points, negative branch rays
change layers before the topographic and planetary vor-
ticity gradients are exactly parallel, while positive
branch rays are transformed later.

Rays with different frequencies behave similarly to
those shown in Fig. 6. Higher-frequency rays are less
tightly confined to pseudowestward paths and have a
larger forbidden region in the south. For frequencies
low enough for planetary Rossby wave solutions to ex-
ist, the rays will all have turning points at the edges of
the forbidden region in the southern part of the basin
and there is localized coupling between layers in both
the north and the south of the basin.

The rays shown in Fig. 6 indicate that linear coupling
between the layers is localized in two regions: the north-
ern and southern portions of the basin. This is where
the topographic and planetary vorticity gradients are
parallel or antiparallel. In both cases the predominant
expression of a ray switches layers. This change is clear-
er in the south because upper- and lower-layer inten-
sified rays propagate in opposite directions (westward
and eastward, respectively). In the northern part of the
basin the linear coupling is just as strongly localized,
but does not appear as strikingly in the ray paths since
both surface- and bottom-intensified long waves prop-
agate westward.

The local modes in the two-layer case may not be
typical in that their vertical structure is constrained by
the layers. However, these two-layer solutions do illus-
trate the qualitative behavior of the continuously strat-
ified case, which was described more fully by Rhines
(1970) and Straub (1994) for special orientations be-
tween the bottom slope and the planetary vorticity gra-
dient. In a continuously stratified rotating fluid, there is
one mode that is bottom trapped and an infinite number
of other modes in the vertical. These other modes are
essentially baroclinic Rossby waves that have a hori-
zontal-velocity node at the bottom, unless the flow is
almost exactly aligned with isobaths. An important con-
sequence of varying basin depth is that the various (lo-
cally orthogonal) modes are not globally independent,
and they can exchange energy linearly.

The positive branch solution from (2.5) corresponds
to the combined cosh and gravest cosine vertical struc-
ture mode found by Straub (1994) in a uniformly strat-
ified ocean. The negative branch solution corresponds
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FIG. 6. Ray paths in the bowl-shaped basin for rays of frequency 5 3 1028 s21, for rays started at four locations: 408N, 208E; 32.58N,
208E; 23.58N, 208E; and 278N, 208E. The line type indicates the vertical structure of the waves: A solid line is used where the rays are more
than three times as surface intensified as Burger number 1 scaling would indicate; a dashed–dotted line is used where the rays are more
than three times more strongly bottom-intensified than Burger number 1 scaling; and a dotted line is used otherwise. The rays go for 1500
days (or until they reach a point where the lower layer vanishes), and the position every 100 days is marked. A cross is used for the positive
branch rays, while a circle is used as the mark for the negative branch rays. The dashed line around the perimeter marks the region where the
maximum frequency of the negative branch is less than the frequency of the rays. The negative branch rays cannot go outside of this line.

to the first cosine structure mode with a node in the
interior of the fluid. The turning points and exchange
of roles between the positive and negative branch rays
seen in Fig. 6 are very likely to occur in a similar way
between the corresponding modes in a continuously
stratified fluid. Further, the location of the coupling be-
tween surface- and bottom-intensified flow should be
the same: in regions of parallel or antiparallel topo-
graphic and planetary vorticity gradients. The forbidden
region in the south of the basin here will also occur in

a continuously stratified case; in the continuously strat-
ified case the vertical structure of a mode can change
abruptly as a result of changing position and wavenum-
ber, and more vertical structure reduces the maximum
frequency obtained by a mode (Straub 1994).

4. The strength of coupling

There are numerous examples of physical systems
with several modes of oscillation in which the energy
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FIG. 7. Qualitative diagram of the coupling between layers and between rays for a lower-layer intensified
plume with limited cross-slope extent propagating toward the southern end of a basin. The incident and reflected
plumes are described by the same rays and are shown in cross sections of the flow normal to the direction of
propagation taken to the west of the transition. The transmitted plume is described by a different set of rays
and is shown in a cross section taken to the east of the transition. The vertical scale of the interface displacement
is greatly exaggerated. The circles around crosses indicate westward flow, circles with dots indicate eastward
flow. The size of the circles indicates the flow strength. North is up and to the right in each of the cross sections.

remains in one mode as the system is slowly changed
and the physical expressions of the modes are inter-
changed. For example, Allen and Romea (1980) de-
scribe the propagation of coastal-trapped waves along
the eastern boundary of an ocean. All along the coast
there is a single internal Kelvin wave at a given fre-
quency and a number of coastal-trapped waves. The
mode that describes the Kelvin wave in equatorial
regions describes the gravest coastal-trapped wave in
midlatitudes, and Allen and Romea (1980) show that
all of the energy that was in the internal Kelvin wave
in equatorial regions is found in the midlatitude graves
coastal-trapped wave in the limit of slow variations over
the course of a wavelength. The present case does not
follow this pattern of energy remaining predominantly
in a single mode.

The quasigeostrophic theories neglect divergent flow
relative to nondivergent flow. But in a layer with a mean
PV gradient there is a net transport associated with the
rotational flow. For example, Hallberg and Rhines
(1996) successfully use such an argument to predict the
strength of the nondivergent circulation that results from
buoyancy forcing in a primitive equation numerical
model. While the energy convergence in a ray within
one layer can easily be balanced by time changes, dis-
sipation, and energy flux between layers, mass flux con-
vergence must be balanced within a layer. Even over
just a fraction of a wave period, changes in layer depth
cannot easily balance convergence near the edge of the
domain because of the strong tendency for boundary
waves to level density surfaces at the boundary (Waj-
sowicz and Gill 1986). If a lower-layer intensified ray
propagates into a region and propagates out as an upper-
layer intensified ray, the mass transport of the ray in
each layer must be compensated by coupling with an-
other ray. Arguments based on this mass transport bal-
ance can be used to provide quantitative estimates of
the strength of coupling between rays and between lay-
ers.

The ray tracing of the previous section provides im-
portant clues of how the mass transports are balanced.
The across-slope wavenumber was approximately con-
served throughout a ray’s transition from lower-layer
intensified to upper-layer intensified (or vice versa).
Also, for each of the negative branch rays approaching
the forbidden region in Fig. 6 from one side, there is a
positive branch ray of comparable cross-slope wave-
length approaching from the other side, and vice versa.
This suggests that a balance might be found between
an incident wave in one layer, a reflected wave (on the
equatorward side of the basin, or a refracted wave on
the poleward side) from the same ray in the other layer,
and a transmitted ray from the other branch of the dis-
persion relation in the first layer.

Any linear flow may be described as the superposition
of waves; the spreading of a forced flow away from the
forcing follows the linear waves. The vertical structure
of the flow is determined by the free waves that con-
stitute the flow, and coupling between layers is caused
by migration of the energy of the free waves from one
layer to the other. The envisioned mass transport balance
for a plume propagating across a slope is qualitatively
illustrated in Fig. 7. The arguments that follow describe
coupling between waves, but apply equally to any linear,
locally unforced motion.

The net transport in each layer is proportional to the
strength of the rotational flow in each layer times the
ratio of the PV difference between opposed jets to the
mean PV between the jets (Hallberg and Rhines 1996).
The three waves have the same cross-slope structure,
so this constant of proportionality in each layer is the
same for all three waves and drops out of the problem.
Suppose that the lower layer cross-slope velocity struc-
ture is the same in each layer, save for a scaling factor
CI, CR, or CT for the incident wave, reflected wave
(described by the same rays as the incident wave), and
transmitted wave (with all of the rays in the incident
wave replaced by rays from the opposite branch of the
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dispersion relation). The upper-layer cross-slope veloc-
ity structure of the three waves will also be similar, but
with different scaling factors. If the incident wave is
concentrated in layer 2, with an expression in layer 1
that is weaker by a ratio rI, while the reflected wave is
expressed more strongly in layer 1 by a ratio 1/rR, and
the transmitted wave is expressed more strongly in layer
2 by a factor of 2rT, the mass transport balances within
the two layers at a turning point are

r c 1 c /r 5 2r c (4.1)I I R R T T

c 1 c 5 c (4.2)I R T

for layers 1 and 2. The ratios r are either all less than
1 in magnitude (if the incident wave is bottom inten-
sified) or all greater than 1 in magnitude (if the incident
wave is surface intensified) and are either all positive
or all negative by construction. Equations (4.1) and (4.2)
are easily solved for the ratios of the streamfunctions,
giving

c /r r 1 r c 1 2 r rR R I T T I R5 2 and 5 (4.3)
c 1 1 r r c 1 1 r rI R T I R T

when the topographic and planetary vorticity gradients
are antiparallel.

If the case at the poleward side of the basin is con-
sidered, the incident ray does not encounter a turning
point, and the ‘‘reflected’’ wave terms in (4.1) and (4.2)
must be moved to the right-hand side of the equations
(and reinterpreted as ‘‘refracted’’ wave terms). When
the topographic and planetary vorticity gradients are
parallel, the ratio of the streamfunctions are

c /r r 1 r c 1 2 r rR R I T T I R5 and 5 . (4.4)
c 1 1 r r c 1 1 r rI R T I R T

The ratios r are typically of comparable magnitude
and much less than 1 for low-frequency bottom-inten-
sified waves or much greater than 1 for low-frequency
surface-intensified waves. With this assumption, the
transmitted wave has velocities of comparable magni-
tude to those of the incident wave, while the reflected
wave’s velocities are smaller by a factor of r. For the
rays depicted in Fig. 6, which have values of r of order
0.05, the ratios of the reflected to incident streamfunc-
tions (in the layers in which the rays are intensified)
and transmitted to incident streamfunctions for the tran-
sition in the south are about 0.1 and 0.995.

The relative sense of the incident waves determines
the sense of both the circulations they excite. The in-
cident and transmitted waves have the same sense of
circulation in the layer in which they are concentrated,
but the opposite sense in the other layer. The incident
and reflected (or refracted) waves (which are on the
same ray, and are described by the same branch of the
dispersion relation) have circulation in the opposite
sense in both layers near a turning point (where the
topographic and planetary vorticity gradients are anti-

parallel), but in the same sense when the topographic
and planetary vorticity gradients are parallel.

The extent of coupling between layers is strongly
dependent on the frequency and scale of the motion. As
seen in Fig. 2, higher-frequency rays tend to be less
strongly localized in one layer and will exhibit stronger
coupling between layers than will lower-frequency
waves. The region of coupling is also less localized for
higher-frequency waves. For there to be any coupling
at all, though, the frequency must be less than the max-
imum frequency for internal planetary Rossby waves.
Above this frequency there are no surface-intensified
waves. Longer waves are also less strongly localized in
one layer than are shorter waves and will exhibit stron-
ger coupling between layers. Intimately tied to the cou-
pling between layers is coupling between the vertical
eigenmodes; coupling between the modes is responsible
for flow that remains surface or bottom intensified while
the linear waves change the layer in which they are
expressed.

5. Localized layer coupling in primitive equation
simulations

The possibility of localized coupling between bottom-
trapped motion and surface-intensified motion in a basin
with large amplitude topography, as is suggested by the
ray tracing, can be examined with primitive equation
model simulations. The ray tracing is based on the va-
lidity of the local quasigeostrophic representation of the
flow, but the WKBJ approximations are clearly not jus-
tifiable in this case. The predictions of ray tracing ar-
guments are often borne out, even though the WKBJ
approximation leading to the ray tracing is not valid.
By contrast, all of the assumptions leading to the prim-
itive equations are clearly valid for the large-scale mo-
tions of interest.

One difficulty with using primitive equation simu-
lations to explore the possibility of localized coupling
is that the wide range of motions are difficult to distin-
guish and the cause of those motions is difficult to de-
termine. In this section, several simulations that attempt
to clearly separate different sources of motion are pre-
sented. These simulations are initially at rest, and the
response to the impulsively applied forcing is trans-
mitted around the domain by the linear topographic and
planetary Rossby waves discussed before. The coupling
between layers indicated by the ray tracing is evident
in the evolution of these spinup simulations.

First, two-layer simulations are used for simplicity
and for direct comparison with the quasigeostrophic re-
sults from section 3. Next a four-layer simulation is
presented to demonstrate that the two-layer results are
qualitatively pertinent to an ocean with more general
stratification. The primitive equation model used is de-
scribed in the appendix of Hallberg and Rhines (1996)
and in more detail in Hallberg (1995). The ray tracing
suggested that coupling between layers occurs in lo-
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FIG. 8. The basin depth (in m) and log10 of the initial lower layer PV (in m21 s21) for the
experiments demonstrating coupling between the layers. The dashed–dotted circles mark the
forcing regions. The upper layer has a uniform depth of 750 m; the 750-m depth contour is
marked by the dotted line in the upper panel.

calized regions, and the primitive equation experiments
are found to support this hypothesis.

a. Two-layer simulations

The possibility that flow in one layer forces distinct
motions in the other layer is examined with a pair of
bowl-shaped basins set into a zonally reentrant channel.

The topography, shown in Fig. 8, is flat at the depth of
the interface between the layers, 750 m deep, while the
lower layer is entirely contained within the bowl-shaped
basins. The reduced gravity of the interface between the
layers is the same as in the ray tracing calculations. The
upper-layer PV contours are zonal, and the motions in
the upper layer are largely confined to the latitudes at
which they are generated. The simulations are forced
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FIG. 9. Selected ray paths showing the propagation of information in the channel with two basins shown in Fig. 8. The
balls mark the ray position every day. The color of the ball and the vertical position indicate the vertical structure of the
rays. Surface-intensified rays have dark balls and are plotted near the surface; bottom-intensified rays have light balls and
are plotted near the bottom. The ray is in the middle of the upper layer when the magnitude of the flow in the two layers is
equal. The connecting lines are white or black all along a ray.

by a uniform intensity transfer of mass from the upper
layer to the lower within one of the regions marked by
dashed–dotted contours in Fig. 8. The forcing is suffi-
ciently weak that the flow is well described by linear
dynamics. The lower-layer signals propagate around the
basin following the lower-layer PV contours, shown in
the lower panel of Fig. 8, while upper-layer intensified
signals propagate along the zonal upper-layer PV con-
tours. The topography in these large basins is much
steeper in the north than the south so that the lower-
layer PV gradients in the north and south are of com-
parable magnitude.

The propagation of waves around these basins is il-
lustrated in Fig. 9. The vertical structure is indicated by
the vertical position of the rays. The transitions of a ray
between describing upper- and lower-layer intensified
flow are clearly visible in the northern and southern ends
of the basins (where the topographic and planetary vor-
ticity gradients are aligned). Elsewhere in the basins,
the rays are extremely surface or bottom intensified.
Where the rays cross (in the north) or osculate (in the
south) there is strong coupling between rays, as dis-
cussed in section 4. All of the rays in Fig. 9 are from
the positive branch of the dispersion relation, and be-
tween the two basins these rays describe barotropic
waves (there is only one layer outside of the basins). In
the primitive equation experiments, the forcing excites
the rays where they pass through the northern or south-
ern end of the eastern basin.

These experiments are designed to clearly demon-
strate the coupling between layers. The basin itself is
large enough to physically separate the upper- and low-

er-layer signals. The distinct meridional separation be-
tween the directly forced beta-plume in the upper layer
(the response to the forcing in a reduced gravity model
of the upper layer alone) and the hypothesized coupling
driven flow makes the forcing of upper-layer flows by
the lower layer particularly clear. Without coupling be-
tween the layers, lower-layer flow would be confined to
the easternmost of the two basins, while the upper-layer
flow easily propagates westward over the western basin.
Any lower-layer flow in the unforced basin must be the
result of upper-layer motions exciting lower-layer flows.

When the forcing is in the north, the directly forced
upper-layer beta-plume is confined north of about 458N,
as seen in Fig. 10. There is also a weak upper-layer flow
above and parallel to the directly forced lower-layer
topographic beta-plume. The vertical scale of the bot-
tom-trapped flow is much smaller than Burger number
1 scaling (which suggests that H 5 fL/N) would predict,
in agreement with the findings from the ray tracing in
section 3, and with the findings of Straub (1994) based
on his study of linear quasigeostrophic motion on a
linearly stratified b plane with topography. This motion
is not indicative of coupling between the motions con-
centrated in the two layers; it is part of the same locally
defined vertical mode as the lower-layer flow. It spins
up following the lower-layer PV contours. Both the di-
rectly forced upper-layer beta-plume and the upper-layer
expression of the lower-layer intensified flow are anal-
ogous to flows that develop with purely meridional bot-
tom slopes and no coupling between modes.

In the southern part of the basin, there is a distinct
type of motion in the upper layer, as seen in Fig. 10.
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FIG. 10. The magnitude of the velocities in a reentrant channel at day 500 due to forcing in the
north of the eastern basin, marked by the dashed–dotted circle. The arrows indicate the sense of the
flow.

This circulation is upper-layer intensified and propa-
gates westward following the upper-layer PV contours,
but this flow does not originate in a region of external
forcing. Neither is it the upper-layer expression of low-
er-layer intensified flow since the upper-layer flow ex-

tends westward past the edge of the lower layer. This
upper-layer circulation is forced by coupling between
the layers. The ray tracing in section 3 suggested that
the coupling between the layers should be localized in
the south of the basin, where the topographic PV gra-
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FIG. 11. The magnitude of the velocities in a reentrant channel at day 500 due to forcing in the south
of the eastern basin, marked by the dashed–dotted circle. The arrows indicate the sense of the flow.

dient is antiparallel to the planetary vorticity gradient,
and in the northern part of the basin, where the topo-
graphic PV gradient is parallel to the planetary vorticity
gradient. No upper-layer flow radiates westward from
the eastern basin except the directly forced beta-plume
in the north and the weaker flow in the south, suggesting

that the coupling between layers does not take place
along the eastern or western sides of the basin.

With forcing in the south, coupling in the northern
part of the channel is clearly visible. The upper-layer
velocity, Fig. 11, shows an upper-layer flow extending
westward from the northern end of the basin. With a
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more equatorial forcing in this case, the larger Rossby
radius leads to much more dispersion of the directly
forced beta-plume, and the flow forced by coupling be-
tween the layers is more difficult to discern. Still, the
apparent upper-layer response is in the location indi-
cated by the ray tracing. In neither the simulation forced
in the north nor the simulation forced in the south is
there any indication of linear coupling from the lower
layer to the upper except where the upper- and lower-
layer PV gradients are nearly parallel (in the north) or
antiparallel (in the south).

The three forcing locations are used to test coupling
from the upper layer to the lower. These forcing loca-
tions generate upper-layer beta-plumes that cross the
unforced western basin either in the north, in the south,
or through the middle of the basin. The ray tracing
suggested the possibility of strong linear coupling in the
south and north, but weak (or no) linear coupling along
the eastern and western walls. If this description is cor-
rect, the cases forced in the north and south, shown in
Figs. 10 and 11, should show strong flow around the
edges of the unforced basin, while only the very center
of the unforced basin should respond to an upper-layer
beta-plume crossing the middle of the unforced basin.
Comparison of Fig. 12 with Figs. 10 and 11 reveals that
this is true. The magnitudes of the maximum velocities
in the lower layer in the unforced (western) basin in all
three cases are comparable, about 1024 m s21, but the
maximum velocities are clearly concentrated around the
edges of the basin in Figs. 10 and 11, while in Fig. 12
the maximum velocities are concentrated in the middle
of the basin.

That there is any motion in the lower layer of the
unforced basin is an obvious indication of the linear
coupling between upper- and lower-layer intensified mo-
tions with large amplitude topography. In the cases
where the forcing comes from an upper-layer plume
crossing either the northern or southern portions of the
basin, it is not surprising that the response is strongly
concentrated near the margins of the basin. The lower-
layer intensified flow is concentrated on the coupling-
forced PV contours, and these contours are primarily
dictated by the topography. The support for the idea that
the coupling between the layers is localized in regions
of parallel or antiparallel layer PV contours comes from
the case where the upper-layer flow crosses the middle
of the basin. The region of parallel or antiparallel layer
PV contours extends meridionally through the middle
of the basins. All of the lower-layer PV contours in the
unforced basin are crossed by the upper-layer flow, but
only the PV contours in the middle of the basin exhibit
a strong response. The upper-layer flow is broad enough
that it extends into the regions of parallel and antipar-
allel PV contours near the middle of the basin, and these
are the PV contours which develop a circulation.

The arguments of section 4 predict the sense of the
circulations driven by the coupling between the layers.
All of the mechanisms presented here are linear, and

reversing the sense of the forcing reverses the sense of
the flow everywhere.

The two-layer primitive equation model experiments
described here clearly demonstrate that the upper- and
lower-layer intensified motions are linearly coupled.
They further indicate that this coupling is localized near
regions of parallel or antiparallel planetary and topo-
graphic PV gradients, in concurrence with findings from
the quasigeostrophic ray tracing described in section 3.
Based on the strength of the flows driven by coupling
between layers in the primitive equation simulations,
the coupling causes on the order of 1% of the energy
to change layers in the regions of parallel or antiparallel
planetary and topographic PV gradients. This strength
of coupling agrees well with the arguments of section 4.

b. A four-layer simulation

Coupling between surface-intensified flow and bot-
tom-intensified flow should occur in the case of a con-
tinuously stratified ocean as well. In a continuously
stratified ocean with nonmeridional topography, the
same local mode describes bottom-trapped motion and
surface-trapped motion with no horizontal velocity
nodes (Straub 1994). The next mode has a cosine struc-
ture with one horizontal velocity node, but the structure
changes from having that node on the bottom to having
the node in the interior and almost a second node at the
bottom; that is, the phase difference between the top
and bottom changes by almost p for different orienta-
tions of the wavevector. The next mode still has two
nodes but almost attains a third for some wavevector
orientations (Straub 1994). Each of the cosine modes
osculates to the next higher cosine mode for wavev-
ectors nearly aligned with the topography, where the
wavenumber, frequency, and vertical structure of sub-
sequent modes is nearly identical. It is reasonable, then,
to expect that each of the vertical local modes in the
uniformly stratified ocean will be coupled with the next
mode. It is also reasonable to expect that the strongest
coupling between the uniformly stratified modes might
be localized in the same regions as the coupling between
the two-layer modes—namely, in regions of parallel or
antiparallel topographic and planetary vorticity gradi-
ents.

The prediction that the various vertical modes in a
continuously stratified ocean are coupled in regions of
parallel or antiparallel topographic and planetary vorticity
gradients can also be tested with primitive equation sim-
ulations. With four layers, there are three modes with a
horizontal velocity node at the bottom in addition to the
bottom-intensified topographic mode for most orienta-
tions of the wavevector. In this simulation the reduced
gravity of each internal interface is half the value used
in the preceding two-layer simulations. The bottom to-
pography, shown in Fig. 13, is flat at the level of the
interface between the second and third layers except in
a bowl-shaped basin, and the domain is zonally reentrant.
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FIG. 12. The magnitude of the velocities in a reentrant channel at day 500 due to forcing in the east of
the eastern basin, marked by the dashed–dotted circle. The arrows indicate the sense of the flow.

The thickness of each layer is initially a quarter the max-
imum basin depth. Over the flat bottom the only vertical
modes are the classic barotropic and first baroclinic
modes.

The buoyancy forcing, over the flat bottom just to the
east of the basin, projects almost entirely onto the first

baroclinic mode. It takes about 700 days for the baro-
clinic beta-plume generated by the forcing to reach the
eastern edge of basin. By this time, the weaker direct
barotropic response from the forcing has spread
throughout the domain. Along the northern portion of
the basin, the baroclinic beta-plume is coupled with the
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FIG. 13. Basin depth, in m, for the four-layer simulation. The dashed–dotted circle marks the
forcing location.

bottom-intensified flow and with the graver surface-in-
tensified mode. The coupling between surface-intensi-
fied modes is evident in the first panel of Fig. 14 in the
strong circulation extending westward from the north-
eastern portion of the basin, rather than from the forcing
region. The lower layers are driven by coupling with
the surface circulations in the north of the basin and
propagate quickly around the basin. The velocities in
the lower layers are roughly a tenth as large as the
baroclinic velocities are in the baroclinic circulation to
the east of the basin; the barotropic velocities to the
west of the basin are similarly of order a tenth as strong
as the directly forced baroclinic flow. In the south of
the basin, the bottom-trapped flow drives surface-inten-
sified flow. Figure 14 shows both barotropic and baro-
clinic signals radiating westward from the southern end
of the basin. Again, the surface intensified flow in the
south has velocities about a tenth as large as the lower-
layer velocities that drive them. This primitive equation
simulation strongly suggests that the surface- and bot-
tom-intensified flow are linearly coupled in regions of
parallel or antiparallel topographic and planetary vor-
ticity gradients with a continuous stratification, as well
as in the case of homogenous layers with abrupt density
gradients.

6. Conclusions

Linear waves are relevant to the dynamics of the flow
in an ocean basin because they determine how the ocean
circulation responds to changes in forcing. Large am-
plitude topography greatly complicates linear Rossby
waves by creating mixed topographic-planetary waves.
The circulation in a basin with large amplitude topog-
raphy can be decomposed locally into vertical modes,
but these modes are linearly coupled if the orientation
of the bottom slope varies. These modes do not cor-

respond to the classic barotropic and baroclinic modes
when there is a sloping bottom, and their vertical struc-
ture depends strongly on the orientation of the wave-
vector when the bottom slope is not purely meridional.
A local quasigeostrophic representation of the flow in
two layers with bottom topography and planetary vor-
ticity gradients is used to examine the interaction be-
tween layers in planetary-scale flows. The resulting dis-
persion relation is the solution to a quadratic equation
and consists of two branches. The local dispersion re-
lation shows that when the planetary and topographic
vorticity gradients are not exactly parallel, upper- and
lower-layer intensified waves are both described by both
branches of the dispersion relation. Put differently, the
gravest surface intensified planetary Rossby wave and
the topographic Rossby wave are actually a part of the
same mode, while the next gravest vertical mode can
predominantly describe either surface or bottom flow.
The low-frequency waves tend to be much more ver-
tically concentrated than would be indicated by Burger
number 1 scaling. The exception to this enhanced ver-
tical intensification is for wavevectors where the to-
pographic and planetary PV gradients have comparable
projections normal to the wavevector. At these wave-
numbers the two wave modes osculate with one another.
For parallel layer PV gradients, the two branches de-
scribe the classic barotropic baroclinic modes. When
the layer PV gradients are antiparallel, the entire dis-
persion relation is described by just one branch of the
dispersion relation.

The locally valid dispersion relation for two layers
in a basin with topography is used to trace groups of
rays with a specified frequency starting from the same
point. These low-frequency rays spread from the source
in two distinct groups; one group is strongly upper-layer
intensified and heads generally westward, nearly tangent
to the upper-layer PV contours, while the other group
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circles the basin along the lower-layer PV contours.
Both groups of rays comprise rays from both of the
branches of the dispersion relation. As a ray propagates,
it encounters changing layer thicknesses and bottom
slopes, and its projection onto the two layers changes.
Eventually the rays reach a point in the basin where the
two branches of the dispersion relations osculate to each
other. At this point the modes are linearly coupled, and
energy is freely exchanged. A single ray can change
from being primarily expressed in one layer and fol-
lowing that layer’s PV contours to being primarily ex-
pressed in the other layer and following its PV contours.
This change can happen quite suddenly at turning points
where the topographic and planetary vorticity gradients
are in opposite directions, or more gradually where the
two gradients are aligned, and provides a linear mech-
anism for coupling between the two layers’ flows. The
ray tracing suggests that the most intense coupling of
low-frequency surface- and bottom-trapped waves is lo-
calized in regions of nearly parallel or antiparallel plan-
etary and topographic vorticity gradients. This local-
ization is especially acute for very low frequencies.

The coupling between surface- and bottom-intensified
flow is due to the changing vertical structure of the wave
modes as they propagate around an ocean basin. Where
the coupling occurs, the wave modes resemble the clas-
sic barotropic and baroclinic modes, which have sig-
nificant expression throughout the water column. Else-
where, the wave modes are surface or bottom intensi-
fied.

The linear coupling between surface- and bottom-
intensified flows only occurs when large amplitude to-
pography, the planetary vorticity gradient, and stratifi-
cation are all taken into account. Without bottom to-
pography the vertical and horizontal structure of the
planetary waves are separable, and the textbook case of
linearly independent barotropic and baroclinic vertical
modes is found. In the absence of planetary vorticity
gradients, the only solution with nonzero frequency is
bottom-intensified (or barotropic) topographic Rossby
waves. Of course, if density stratification is neglected,
there is only a single vertical mode, which has a dis-
persion relation set by a simple combination of the to-
pographic and planetary vorticity gradients. The cou-
pling between surface- and bottom-intensified flow, de-
scribed in the present study, arises from the complex
interplay of large amplitude topography, stratification,
and the planetary vorticity gradient in determining the
dynamics of the free waves.

Experiments with a numerical primitive equation
model confirm the hypothesized spatially localized cou-
pling between surface- and bottom-intensified flow in
regions of parallel and antiparallel planetary and to-
pographic vorticity gradients. These experiments dem-
onstrate that energy can pass either upward or downward
in such places. By definition rays cannot split, but there
is no such constraint on the energy. There is a net mass
transport associated with a ray within each layer, but

persistent horizontal convergence is not sustainable. To-
pographic or planetary Rossby waves radiate away any
pressure gradient along a PV contour; the net mass trans-
port convergence in each layer where one ray changes
layers is balanced by a net mass transport divergence
in the same layer due to another ray with the same
frequency. These continuity arguments suggest that the
surface intensified flow that will be excited by a bottom-
intensified flow is approximately twice as strong as the
surface projection of the bottom-intensified flow, and
similarly for the excitation of bottom-intensified flow.
Since the very low frequency waves are extremely sur-
face or bottom intensified, the strength of the coupling
between layers decreases with decreasing frequency.
The localized coupling suggested by the ray tracing, and
the magnitude of the coupling based on these continuity
arguments, are strongly supported by the primitive equa-
tion experiments.

One qualitative explanation for the localization of the
coupling is that when the vorticity gradients of the two
layers are in very different directions, there is a very
weak expression of lower-layer intensified low-frequen-
cy flow in the upper layer, and vice versa. The low-
frequency flow is very much more intensified near or
away from the bottom boundary than would be predicted
by the Burger number 1 scaling that is found for f-plane
topographic waves (Rhines 1970). The restoring force
for the bottom-trapped topographic Rossby waves is the
topographic vorticity gradient due to the bottom bound-
ary. In fact, on an f plane this is the only restoring force
that leads to subinertial waves. [Kelvin waves are ex-
cluded by the bottom topography and even relatively
weak (or realistic) stratification; they are replaced by
the bottom-trapped topographic Rossby waves (Rhines
1970).] When variations of the Coriolis parameter are
included, the planetary vorticity gradients act on the
interior fluid as well. The bottom topography is typically
such a strong restoring force that flow right at the bottom
must be aligned with the isobaths, but when isobaths
are not zonal any interior flow along isobaths is subject
to a significant restoring force due to the planetary
vorticity gradient. Conversely, low-frequency surface-
trapped flow must be nearly zonal, but any flow across
the bottom topography will be subject to a strong re-
storing force. The two incompatible constraints are ac-
commodated by the free low-frequency waves becom-
ing extremely bottom-intensified or having exceeding-
ly small bottom velocities. The surface- and bottom-
intensified flows are effectively detuned (Rhines 1977).
When the isobaths are nearly zonal, the two constraints
on the direction of low-frequency flow are consistent
and the flow is much less bottom or surface intensified.
Where the vertical distribution of energy of the sur-
face- and bottom-intensified modes with the same fre-
quency and nearly the same wavenumber coincide in
space, there is a possibility of coupling between the
modes.

The linear coupling between surface- and bottom-
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FIG. 14. The velocities at day 1000 of the four-layer simulation. The shading indicates the magnitude of the flow,
while the vectors indicate the direction of flow. The dashed–dotted circle marks the forcing location. The first panel
depicts the average velocity of the uppermost two layers.

intensified flow demonstrated in this paper has impli-
cations for our understanding of the reason for the abys-
sal flow. The ancient view of a ‘‘quiescent abyss’’ is
clearly wrong. Crude theories of a sluggish directly
forced abyssal circulation with the only strong flow at
the boundary give some qualitatively correct predictions
but may be misleading in ascribing a cause for the

boundary currents. It is only recently that hydrographic
sections with an accurate ‘‘level of known motion’’ have
become common. Velocities from earlier sections with
an assumed ‘‘level of no motion’’ (usually in the deep!)
are useless for describing the deep ocean circulation.
Recent observations with an ADCP-derived reference
velocity show a rich field of bottom-intensified topo-
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FIG. 14. (Continued) The second panel shows the velocity difference between the second and first layers. The
velocities of the third and fourth layers are shown in the last two panels.

graphic Rossby waves off the east coast of North Amer-
ica (Pickart 1995).

The most important consequence of the coupling, de-
scribed here, between surface- and bottom-intensified
flow lies in the possibility for variability in the (surface
intensified) wind-driven circulation to excite abyssal
flow. Extremely strong surface currents flow past to-
pography with an appropriate orientation in such places

as the Grand Banks and Cape Agulhas. It is entirely
possible that abyssal circulation excited in these places
might be quite important along the western margins of
the North Atlantic and southern Indian Oceans. It must
be emphasized that the coupling mechanism described
here only operates at frequencies less than the maximum
internal Rossby wave frequency. At high latitudes the
small Rossby radius and planetary vorticity gradient re-
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strict this coupling to very low frequencies. In more
tropical regions, the maximum Rossby waves frequency
is much higher, and the coupling even applies at annual
frequencies. The Gulf of Guinea may be one place where
a strong abyssal circulation is driven by the annual cycle
of the surface circulation. An important distinction of
the present coupling mechanism is that it is linear, as
opposed to other nonlinear eddy forcing mechanisms
for driving a deep circulation. This means that this cou-
pling of the abyssal circulation to the surface applies
anywhere where the topographic slope is in the right
direction, regardless of the strength of the surface cir-
culation and eddy field.

This study suggests a source for the deep flow in
addition to direct forcing and nonlinear eddy forcing.
It is possible that linear coupling between the surface
flow and bottom-trapped flow due to topography is re-
sponsible for some of the abyssal circulation in the
ocean. Because this forcing mechanism is linear, it can
drive flow in either sense. By contrast, direct forcing
due to upwelling always tends to drive cyclonic sense
flow around either an isolated depression or plateau (Ka-
wase and Straub 1991), and dissipation of topographic
Rossby waves tends to drive a pseudowestward flow
(Thompson 1995). Further, this study demonstrates that
this coupling is localized in regions of parallel or an-
tiparallel topographic and planetary vorticity gradients.
The fact that this mechanism for driving the deep flow
is linear and localized may help explain some of the
variability in the observed deep ocean circulation.
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