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from millennial variations of the thermohaline circulation
to the rapid timescales of surface gravity waves. Large-An explicit time integration of the primitive equations, which are

often used for numerical ocean simulations, would be subject to a scale ocean circulation models typically eliminate the fast-
short time step limit imposed by the rapidly varying external gravity est oscillations through use of the primitive equations.
waves. One way to make this time step limit less onerous is to split Sound waves are removed by assuming that flow is incom-
the primitive equations into a simplified two-dimensional set of

pressible, while the hydrostatic approximation to the verti-equations that describes the evolution of the external gravity waves
cal momentum equation eliminates the need to solve aand a much more slowly evolving three-dimensional remainder.

The two-dimensional barotropic equations can be rapidly integrated three-dimensional elliptic equation for pressure or resolve
over a large number of short time steps, while a much longer time the timescales associated with vertically propagating grav-
step can be used with the much more complicated remainder. Unfor- ity waves. The fastest remaining timescales are associated
tunately, it has recently been demonstrated that an inexact splitting

with horizontal propagation of external gravity waves, withinto the fast and slow equations can lead to instability in the explicit
a speed of about ÏgD, where g is the gravitational acceler-integration of the slow equations. Here a more exact splitting of

the equations is proposed. The proposed split time stepping scheme ation and D is the depth of the ocean. In the deep ocean,
is demonstrated to be stable for linear inertia–gravity waves, subject this speed is typically on the order of 225 m/s. The next
to a time step limit based on the inertial frequency and internal fastest timescales are associated with internal gravity wave
gravity wave speeds. Q 1997 Academic Press

propagation or horizontal advection, both with speeds of
order a few meters per second. There is a strong incentive
to use a time stepping scheme with time steps that are1. INTRODUCTION
determined by the slower internal timescales, rather than
by the fast timescales of external gravity waves.The primitive equations used in numerical simulations

There is a long history of removing the external gravityof the ocean circulation are frequently split into a rapidly
wave modes in ocean models by replacing the free surfaceevolving, simple set of equations describing surface gravity
with a rigid lid. This effectively makes the external gravitywaves and the more slowly evolving remainder. This ap-
waves infinitely fast, and the effect of the external gravityproach can allow a great increase in the efficiency of numer-
waves is reproduced by solving a two-dimensional ellipticical simulations of the large-scale ocean circulation. Unfor-
equation at every time step. The velocities associated withtunately, this splitting cannot in general be done exactly.
the external mode in this case are exactly vertically uni-Higdon and Bennett [7] have recently shown that the split
form, and it is easy to exactly split the internal and externaltime stepping scheme of Bleck and Smith [2] is unstable
gravity wave modes. While this approach allows a numeri-at all wavenumbers due to coupling between external and
cal simulation to take long time steps based on the internalinternal gravity wave modes. This note derives a family of
timescales, with irregular bathymetry or coastlines or withsplit explicit time stepping schemes that is stable at all
large numbers of islands relaxation methods can convergewavelengths, subject to a CFL condition based on the inter-
slowly and a large fraction of the computer time is spentnal gravity wave speed and the Coriolis parameter. With
solving the two-dimensional elliptic equation. Also, a rigidthese schemes, internal gravity waves and inertial oscilla-
lid distorts the properties of large-scale barotropic Rossbytions are subject to frequency dependent damping that is
waves and complicates inclusion of a fresh water flux sur-controlled by the values of two free parameters.
face boundary condition and assimilation of sea surfaceThe ocean has many dynamically important timescales,
height data.

Another approach is to eliminate the gravity waves alto-
gether by using the simplified quasigeostrophic equations.* E-mail: rwh@gfdl.gov.
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However, the assumptions leading to the quasigeostrophic between the split modes as the cause of the instability
in the Bleck and Smith [2] split time-stepping scheme.equations do not hold for many interesting cases, such as

flow over large amplitude topography or when isopycnals The barotropic mode in the Bleck and Smith [2] schemes
does not resolve the rapid variations of the verticaloutcrop into the surface mixed layer.

A popular alternate approach, used by Bleck and Smith average of several of the linear terms in the momentum
equations. Here we propose a different approach to[2] with an isopycnal coordinate ocean model, is to split

the governing equations into a simplified two-dimensional splitting the time integration that efficiently includes all
of the rapid variations in the vertical average of theset of equations describing the evolution of the external

gravity wave field and a remainder that evolves more linear momentum terms in the two-dimensional baro-
tropic equations.slowly. The simple external equations can rapidly be inte-

grated over many time-steps, while the much more compli- An appropriate starting point is the inviscid, unforced
primitive equations in isopycnal layers:cated three-dimensional remainder can safely take long

time steps dictated by the internal dynamics. A similar
split time stepping scheme has been used for a depth- ­un

­t
1 un · =un 1 f k̂ 3 un 5 2=Mn , (2.1)coordinate ocean model by Killworth et al. [8] and Dukow-

icz and Smith [5] and for a terrain-following coordinate
model by Mellor and Blumberg [3]. Unfortunately, without Mn11 2 Mn

an11 2 an
5 pn11/2 , (2.2)

a rigid lid the velocities associated with the external modes
are not quite vertically uniform, and it is not possible to
split the equations exactly into external and internal ­

­t
(Dpn) 1 = · (un Dpn) 5 0, (2.3)

modes. Higdon and Bennett [7] demonstrate that the Bleck
and Smith [2] time stepping scheme for a two-layer system

where u is the horizontal velocity, f is the Coriolis parame-is linearly unstable at all wavelengths for any size time
ter, k̂ is a vertical unit vector, p is pressure, a is the specificstep. While Higdon and Bennett [7] demonstrate that this
volume (the inverse of density), and M ; ap 1 gz is theinstability is due to an inexact splitting between the internal
Montgomery potential. The subscripts indicate the layerand external modes, they do not offer a stable split time-
with an index that increases downward. A half-integerstepping scheme. De Szoeke and Higdon [4] propose an
subscript indicates the value at the interface between lay-alternative split time-stepping scheme that is stable at most
ers; Dpn 5 pn11/2 2 pn21/2 is the (positive) pressure thicknesswavelengths, but this scheme is also unstable at some wave-
of a layer. The specific volume, a, is a constant within eachlengths.
layer, but u, M, and p vary in the horizontal. See HigdonThe present paper offers a family of split time-stepping
and Bennett [7] or Bleck and Smith [2] for a more detailedschemes that are stable at all wavelengths for time steps
discussion of these equations.that resolve the inertial frequency and satisfy a CFL crite-

The Montgomery potential can be expressed directly forrion based on the internal gravity wave speed. Nonrotating
each layer (and is vertically constant within each layer,internal gravity waves are neutrally stable for one member
from the hydrostatic equation), but it is most easily foundof this family and subject to frequency-dependent dissipa-
by integrating from a known value. At the sea surface antion for the other members of the family. Inertial oscilla-
atmospheric pressure is assumed, but the sea surface heighttions are weakly damped with these schemes, subject to
must also be calculated. At the sea floor, the height relativethe control of a free parameter. The next section describes
to mean sea level, 2D, is known and the pressure is easilythe proposed separation of the rapidly evolving barotropic
calculated by summing the pressure thicknesses over allequations from the more slowly evolving vertically varying
the layers. The Montgomery potential for each layer isequations. In Section 3, the stability of a large number of
then given bycandidate schemes is assessed for linear, nonrotating two-

layer flow, sufficient conditions for the stability of a scheme
are derived, and a stable scheme is described. A stable

Mn 5 aN pB 2 gD 1 ON21

i5n
(ai 2 ai11)pi11/2 , (2.4)treatment of the Coriolis terms for the proposed scheme

is described in Section 4. Section 5 presents a nonlinear
time-stepping scheme for the primitive equations that is where N is the total number of layers and
consistent with the stable linear scheme described here.

pB 5 ON
n51

Dpn2. A NEW PROPOSED SPLIT TIME-STEPPING SCHEME

Higdon and Bennett [7] identify an inexact splitting
into barotropic and baroclinic modes and interaction is the bottom pressure.
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Following Higdon and Bennett [7], define the baro- the numerators are assumed to vary rapidly with time, so
(2.8) is a linear function of pB . This is one of the importanttropic velocities as the mass weighted vertical average

velocity, differences from the scheme of Bleck and Smith [2], which
treats the entire summation in (2.8) as a constant over the
barotropic integration. The addition or removal of massless

u 5
1

pB
ON
n51

un Dpn . (2.5) layers at the bottom does not affect the value of =M, even
though it changes aN . De Szoeke and Higdon [4] suggest
that inclusion of all of the rapid variations of the Montgom-

The sum of the layer continuity equations then gives an ery potential gradient in the barotropic integration is essen-
evolution equation for the bottom pressure, tial for limiting destabilizing interactions between the baro-

tropic and baroclinic modes. The present work supports
this suggestion.­

­t
pB 1 = · (upB) 5 0. (2.6)

The layer momentum equation can now be written as

The mass-weighted vertical average of the horizontal mo- ­un

­t
5

­u
­t

2 f k̂ 3 (un 2 u) 2 (=Mn)9 2 un · =un

(2.9)
mentum equations gives

1
1

pB
ON
n51

Dpn(un · =un) 2 ON
n51

un
­

­t SDpn

pB
D,­u

­t
1 f k̂ 3 u 1 =M 5 2

1
pB

ON
n51

Dpn(un · =un)

(2.7)

1 ON
n51

un
­

­t SDpn

pB
D. where the perturbation Montgomery potential gradients

are given by

The nonlinear momentum advection term on the right-
(=Mn)9 5 =Mn 2 =Mhand side of this equation, perhaps along with forcing

or viscous terms, is treated as a constant over the
integration of the barotropic equations. The evolution 5 = FON21

i5n
(ai 2 ai11) Spi11/2

pB
D pBG (2.10)

of the fast external gravity waves is described by (2.6)
and (2.7); all of the linear terms that vary with the rapid

2 ON21

n51
H(an 2 an11) Spn11/2

pB
D = FSpn11/2

pB
D pBGJ.gravity wave time scale appear on the left-hand side of

these equations.
The barotropic Montgomery potential gradients are

given by In (2.10) the ratios of an interface’s pressure to the bottom
pressure will not vary much with the rapid external gravity
wave time scales, while the bottom pressures in the numer-=M 5 =(aN pB 2 gD)
ators are taken from the integration of the barotropic equa-
tions (2.6) and (2.7). The layer continuity equations are1

1
pB

ON
n51
HDpn= FON21

i5n
(ai 2 ai11)pi11/2GJ.

modified to ensure that the time average barotropic veloc-
ity equals the vertical average of the velocities that are

5 =(aN pB 2 gD)

(2.8)
used to step the layer thicknesses:

1
1

pB
ON21

n51
[(an 2 an11)pn11/2=pn11/2]

­

­t
(Dpn) 1 = · (un Dpn) 1 = ·HFh

u 2ON
i51

ui SDpi

pB
DGDpnJ5 0,5 =(aN pB 2 gD)

(2.11)
1 ON21

n51
H(an 2 an11) Spn11/2

pB
D = FpB Spn11/2

pB
DGJ.

where

h

u is the time average of the barotropic velocities.
This serves to filter from the layer continuity equationsSince the velocities associated with long external gravity

waves are nearly uniform with depth, to good approxima- those external gravity waves with unresolvably high fre-
quencies. The mass in each layer is easily conserved withtion the ratios of the interface pressures to the bottom

pressure do not vary rapidly with external gravity wave this time splitting; with the Bleck and Smith [2] splitting
only the total mass in all the layers is conserved.time scales. In the final expression in (2.8), only the pB in
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3. LINEAR STABILITY ANALYSIS Higdon and Bennett [7], the left-hand side of the baro-
tropic equations, (3.1) and (3.2), are simultaneously inte-

To facilitate a Von Neumann stability analysis, we con- grated analytically. If the superscript represents the time
sider only the two-layer, flat-bottom case and introduce level of a variable and an asterisk denotes the result of
several definitions to make the linearization clear. Let a predictor time step, the discrete Fourier transformed
u 5 (Dp1u1 1 Dp2u2)/(Dp1 1 Dp2), u91 5 u1 2 u, pB 5 equations become
p̃B(1 1 h) 5 (Dp̃1 1 Dp̃2)(1 1 h), Dp91 5 2Dp̃1 1
Dp1/(1 1 h), and Dp92 5 2Dp̃2 1 Dp2/(1 1 h), where the

ih* 5 ihn cos T 1 (un/c0) sin T
variables with tildes are the constant pressure thicknesses
that the layers would have at rest. The linearized versions 2 iG(1 2 cos T)(Dp91/Dp̃1)n, (3.7)
of (2.6), (2.7), (2.9), and (2.11) can be written as

(u/c0)* 5 (u/c0)n cos T 2 ihn sin T
­h
­t

1 = · u 5 0, (3.1) 2 iG sin T(Dp91/Dp̃1)n, (3.8)

­u
­t

1 f k̂ 3 u 1 c2
0=h 5 2Gc2

0=(Dp91/Dp̃1), (3.2) (u91/c1)* 5 (u91/c1)n 2 it[(1 2 a)hn 1 ah*]

2 it(Dp91/Dp̃1)n, (3.9)­u91

­t
5 2f k̂ 3 u91 2 c2

1=(h 1 Dp91/Dp̃1), (3.3)

i(Dp91/Dp̃1)* 5 i(Dp91/Dp̃1)n
­

­t
(Dp91/Dp̃1) 5 2= · u91 , (3.4)

1 t[(1 2 b)(u91/c1)n 1 b(u91/c1)*], (3.10)

ihn11 5 ihn cos T 1 (un/c0) sin T 2 (iG)(1 2 cos T)where c0
2 ; a2 p̃B 1 Da(Dp̃1)2/p̃B , c1

2 ; Da Dp̃1 Dp̃2/p̃B , and
G ; (Dp̃1/Dp̃2)(c1

2/c0
2).

[(1 2 c)(Dp91/Dp̃1)n 1 c(Dp91/Dp̃1)*], (3.11)The Coriolis parameter complicates the analysis of the
schemes, so in the interest of brevity assume that f 5 0, (u/c0)n11 5 (u/c0)n cos T 2 ihn sin T 2 iG sin T
which effectively eliminates one of the horizontal dimen-
sions and the velocity in that direction from the problem. [(1 2 c)(Dp91/Dp̃1)n 1 c(Dp91/Dp̃1)*], (3.12)
A stable treatment of the Coriolis parameter is described
in the next section. (u91/c1)n11 5 (u91/c1)n 2 it[(1 2 d)hn 1 dhn11]

It can now be assumed that the wavevector is in the
2 it[(1 2 z)(Dp91/Dp̃1)n 1 z(Dp91/Dp̃1)*],x-direction without loss of generality. Assuming periodic

boundary conditions, the wavenumbers that can be repre- (3.13)
sented on a discrete C-grid are quantized by

i(Dp91/Dp̃1)n11 5 i(Dp91/Dp̃1)n

k 5 [4 sin2(fm/M)/Dx2 1 4 sin2(fn/N)/Dy2]1/2, (3.5)
1 t[(1 2 e)(u91/c1)n 1 e(u91/c1)n11]. (3.14)

where m and n are integers from (2M/2 to M/2) and
(2N/2 to N/2) and M and N are the number of gridpoints
in the x- and y-directions. (On a C-grid the zonal velocities These equations use the definitions T ; c0k Dt and t ;
are displaced half a grid point to the east of the thickness c1k Dt. Any interpolation between the old and latest values
grid points, while the meridional velocities are displaced of the variables can be used through the choice of the
half a grid point to the north of the thickness points.) The constants a, b, c, d, z, and e. Inclusion of six free parame-
largest wavenumber that can be resolved is ters significantly complicates these equations, but a stabil-

ity analysis with these free parameters reveals the stable
kmax ; 2(1/Dy2 1 1/Dx2)1/2. (3.6) two-step predictor–corrector time-stepping schemes that

evaluate Eqs. (3.1) through (3.4) in the order given here.
The full range of these parameters have been explored, butIf (3.1) through (3.4) are Fourier transformed in space, the

finite difference representation of the gradients can be in the interest of simpler expressions, the results presented
here set c 5 0 and a 5 d. The stable scheme suggestedreplaced by their Fourier transform, (ikx̂).

A large family of time-stepping schemes for (3.1) later is found by setting a 5 d 5 1/2, c 5 0, e 5 1, with
b and z left as free parameters.through (3.4) based on a generalization of the forward–

backward scheme can now be explored (see [6] for a de- Matrix notation can be used to rewrite (3.10) through
(3.14) with c 5 0 and a 5 d asscription of the forward–backward scheme). Following
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where « is a small perturbation. The perturbed roots are
found by starting from the unperturbed roots and following
the roots as the perturbation is added to the coefficient of3

1 2et 0 0

0 1 dt(1 2 bzt 2) 0

0 0 1 0

0 0 0 1
43

i(Dp91/Dp̃1)

u91/c1

ih

u/c0

4
n11

l2, but the coefficients of l3, l, and l0 (C3 , C1 , and C0)
are unchanged.

First consider the case where C0 5 1, C3 5 C1 and all
four roots of the unperturbed case have unit magnitude.
Assuming that the perturbed roots still have unit magni-
tude, the real part of the perturbed roots must satisfy

53
1 (1 2 e)t 0 0

2t(1 2 bzt 2) 1 2 zt 2 2t(1 2 d)(1 2 bzt 2) 0

2G(1 2 cos T) 0 cos T sin T

2G sin T 0 2sin T cos T
4 aR 1 bR 5 ãR 1 b̃R (3.19)

and

aRbR 5 ãRb̃R 1 «/4, (3.20)3
i(Dp91/Dp̃1)

u91/c1

ih

u/c0

4
n

. (3.15)

where the tildes mark the unperturbed roots, while the
perturbed roots have no tildes. The solutions are

The eigenvalues of the product of the inverse of the matrix
aR , bR 5 AshãR 1 b̃R 6 [(ãR 2 b̃R)2 2 «]1/2j. (3.21)on the left-hand side of (3.15) and the matrix on the right-

hand side are given by the quartic equation for l,
The solutions to (3.21) are inconsistent with our assump-
tion that the roots have unit magnitude, either if they[l2 2 l(2 cos T) 1 1] 3 hl2 2 l[2 2 (z 1 e)t 2

are complex or if they have magnitude greater than 1. A
1 bzet4] 1 [1 1 (1 2 z 2 e)t 2 1 bz(1 2 e)t4]j positive perturbation causes the (assumed) real part of the

perturbed solutions to become complex when the real parts2 Gt2(1 2 bzt 2)(1 2 cos T) 3 [l3 de 1 l2(d 1 e 2 de)
of the unperturbed roots coincide. When the solutions to

1 l(1 2 de) 1 (1 2 d 2 e 1 de)] 5 0. (3.16) (3.21) are complex, one pair of the perturbed roots will
have magnitude greater than 1, and the time-stepping

The time-stepping scheme is linearly stable if all of the scheme will be unstable. The solutions to (3.21) are always
roots of the quartic equation in (3.16) have magnitude less real with a negative perturbation, and a negative perturba-
than or equal to 1. tion does not cause the roots to have a magnitude greater

To illustrate the desired properties of (3.16), consider the than 1 as long as
product of two quadratic equations with complex conjugate
pairs of roots. If the roots have magnitudes iai and ibi u«u , 4(1 2 ãR)(ãR 2 b̃R) as ãR R 1,

(3.22)and real parts aR and bR , the product of the quadratic
equations is u«u , 4(1 1 ãR)uãR 2 b̃Ru as ãR R 21,

(l2 2 2aRl 1 iai2)(l2 2 2bRl 1 ibi2) with similar conditions as b̃R approaches 1 or 21. (By
assumption, uãRu # 1 and ub̃Ru # 1.)5 l4 2 2(aR 1 bR)l3 1 (iai2 1 ibi2 1 4aRbR)l2 (3.17)

Now consider the case when C0 , 1 in (3.18) (that is,
22(aRibi2 1 iai2bR)l 1 iai2ibi2 5 0. the product of the magnitude of the roots is less than 1).

The effect of the perturbation in (3.18) can be determined
by looking at dC2/d(ibi2) when the coefficients of l3, l, andNow suppose that a quartic equation cannot be factored
l0 are the constants C3 , C1 , and C0 . These three constraintsexactly, but that it can be written as
require that

l4 2 C3l
3 1 C2l2 2 C1l 1 C0

iai2 5
C0

ibi2 , aR 5
C3C0 2 C1ibi2

2C0 2 2ibi4 , bR 5
C1ibi2 2 C3ibi4

2C0 2 2ibi4 .5 l4 2 2(ãR 1 b̃R)l3 1 (iãi2 1 ib̃i2 1 4ãRb̃R 1 «)l2

(3.18)

2 2(ãRib̃i2 1 iãi2b̃R)l 1 iãi
2
ib̃i2

These expressions can be substituted into the expression
for C2 to give5 (l2 2 2ãRl 1 iãi2)(l2 2 2b̃Rl 1 ib̃i2) 1 «l2 5 0,



STABLE SPLIT TIME STEPPING SCHEMES 59

where it is assumed that uaRu # iai and ubRu # ibi to be
C2 5 iai2 1 ibi2 1 4aRbR 5

C0

ibi2 1 ibi2

(3.23)
consistent with the assumption that complex conjugate
pairs of roots are being perturbed. The numerator of the
first term in the final expression of (3.25) can now be1

C3C1C0ibi2 2 (C2
3C0 1 C2

1)ibi4 1 C3C1ibi6

(C0 2 ibi4)2 .
written as

Taking the derivative of (3.23) with (ibi2) gives
(16 2 C3C1/C0)(1 1 j)2 1 8j2 1 8j3 1 j4

$ 8(1 1 j)2 2 4(j2 1 2j 1 2)(1 1 j) (3.28)dC2

d(ibi2)
5 2

C0

ibi4 1 1

1 8j2 1 8j3 1 j4 5 4j2(1 1 j) 1 j4.
1

[C3C1(C2
0 1 6C0ibi4 1 ibi8) 2 2(C2

1 1 C2
3C0)(C0ibi2 1 ibi6)]

(C0 2 ibi4)3 .
Since by definition j . 21, both terms inside of the braces(3.24)
in the final expression of (3.25) are always positive. The
derivative in (3.25) is positive if ibi . iai (j . 0) andIntroducing the definition j 5 21 1 ibi2/C1/2

0 (or ibi2 5
negative if ibi , iai (j , 0). This means that a positiveC1/2

0 (1 1 j)), (3.24) becomes
perturbation in the original quartic equation will increase
the magnitude of the larger pair of roots (and decreasedC2

d(ibi2)
5

j(2 1 j)
(1 1 j)2 2

1
C3

0j
3(2 1 j)3 the magnitude of the smaller pair of roots) and could make

the time-stepping scheme unstable if the unperturbed roots
3 [C3C1C2

0(8 1 16j 1 12j2 1 4j3 1 j4) are not sufficiently damped. A negative perturbation brings
the magnitude of the roots together and makes all of the2 C3/2

0 (C2
1 1 C2

3C0)(4 1 8j 1 6j2 1 2 j3)]
roots damped. The time-stepping scheme is stable if the
perturbation is always negative, the unperturbed roots are5

j(2 1 j)
(1 1 j)2 1

(C1 2 C1/2
0 C3)2(4 1 8j 1 6j2 1 2j3)

C3/2
0 j3(2 1 j)3

stable, and the perturbation goes to 0 when the imaginary
part of either set of roots goes to 0.

2
C3C1j

C0(2 1 j)3 No choice of parameters will make (3.16) exactly factor-
able independent of wavelength (T or t). However, if there
is no coupling term (involving G) in the l0 term of (3.16)

5 j H(16 2 C3C1/C0)(1 1 j)2 1 8j2 1 8j3 1 j4

(1 1 j)2(2 1 j)3 and the coupling terms in the l3 and l terms are equal,
(3.16) can be approximately factored with an additional
l2 term, as described in (3.18). (There is actually a less

1
(C1 2 C1/2

0 C3)2[4(1 1 j)2 1 2j2(1 1 j)]
C3/2

0 j4(2 1 j)3 J. restrictive criterion for (3.16) to be approximately factored,
and this leads to other stable schemes, but this restrictive(3.25)
criterion leads to a versatile scheme for which incorpora-

Some manipulation is required to show that the numerator tion of the Coriolis terms is straightforward.) These re-
of the first term inside of the braces in the final expression strictions require that d 5 1 and e 5 As or that e 5 1 and
of (3.25) is always positive. Note that d 5 As. With the second of these solutions (e 5 1 and

d 5 As), (3.16) can be written as
j 5 21 1 ibi2/C1/2

0
(3.26)

[l2 2 l(2 cos T) 1 1] 3 hl2 2 l[2 2 (z 1 1)t 2 1 bzt45 21 1 ibi2/(iai ibi) 5 ibi/iai 2 1.

1 (Gt 2/2)(1 2 bzt 2)(1 2 cos T)] 1 [1 2 zt 2]j (3.29)From the definitions of C3 , C1 , and C0 ,
2 l2Gt 2(1 2 bzt 2)(1 2 cos2 T) 5 0.

C3C1/C0 5
4(aR 1 bR)(ibi2aR 1 iai2bR)

iai2ibi2
With this scheme, the perturbation to the exact factoring
is negative as long as t 2 # 1/(bz), and goes to zero when

5 4 Siai
ibi

aR

iai
1

bR

ibiDSibi
iai

aR

iai
1

bR

ibiD
(3.27)

the real part of the unperturbed barotropic roots goes to
1 or 21, meeting the requirement for all of the roots to
be stable. (The baroclinic roots are always complex in the

5 4 F a2
R

iai2 1
b2

R

ibi2 1
aR

iai
bR

ibi Siai
ibi

1
ibi
iaiDG range of interest.) This scheme is stable at all wavenumbers

up to a limit determined by a baroclinic gravity wave
CFL condition.# 8 1 4 S 1

1 1 j
1 1 1 jD5 8 1 4

j2 1 2j 1 2
1 1 j

,
The stability of the proposed family of schemes is most
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FIG. 1. Magnitude of the four eigenvalues as a function of wavenumber for the Bleck and Smith [2] time stepping scheme for two layers with
Da/a2 5 0.01, Dp̃1/p̃Bot 5 0.25, and Dp̃2/p̃Bot 5 0.75. Only two lines are visible at most wavelengths because the roots are in complex conjugate
pairs. Only positive wavenumbers are shown because the curves are symmetric about 0. Instability results when the magnitude of an eigenvalue is
greater than 1.

clearly demonstrated by plotting the magnitude of the four constraint is t 2
max , 4 1 8z(2b 2 1) 1 O(z2). Damping

may either restrict or extend the range of stable timeeigenvalues as a function of wavenumber. The four roots
of (3.16) are calculated from the analytic expression for steps. On a C-grid, these schemes are stable provided

thatthe roots of a quartic equation and have been checked
for accuracy as described by Abramowitz [1]. Very high
resolution in the wavenumber is used when two roots are

Dt #
1

[(1 1 z)2 1 4bz]1/2c1(1/Dx2 1 1/Dy2)1/2 , (3.32)near each other, ensuring that all spikes have been found.
A stability plot of the Bleck and Smith [2] scheme is shown
in Fig. 1. There are broad regions where this scheme is

or, more accurately in the limit of small z, provided thatunstable, as evidenced by eigenvalues with magnitude
greater than one, as well as spikes of greater instability
where the baroclinic and barotropic roots or the two baro-

Dt #
1 1 2z(2b 2 1) 1 O(z2)

c1(1/Dx2 1 1/Dy2)1/2 . (3.33)tropic roots nearly coincide. The vertical line at c1k Dt 5
2 occurs where the unperturbed baroclinic roots become
stable and unstable real roots.

If the neutrally stable scheme (z 5 0) had been shown,
With a weakly dissipative member of the proposed fam-

Fig. 2 would have been a straight line at a magnitude of
ily of time stepping schemes, all wavenumbers are stable

1 out to an abscissa of 2. The vertical lines in Fig. 2 occur
up to a critical wavenumber, as seen in Fig. 2. Without the

when the two pairs of eigenvalues nearly coincide and there
coupling terms (i.e., if G 5 0), (3.29) becomes

is strong interaction between barotropic and baroclinic
gravity waves.

[l2 2 l(2 cos T) 1 1]
(3.30) De Szoeke and Higdon [4] have found a neutrally stable

scheme that is close to the scheme described by (3.10)3 hl2 2 l[2 2 (z 1 1)t 2 1 bzt4] 1 [1 2 zt 2]j 5 0.
through (3.14) with b 5 e 5 0, d 5 z 5 1, and a irrelevant.
In de Szoeke and Higdon’s scheme the barotropic equa-All of the roots of (3.30) are complex and have magnitude

less than or equal to 1 as long as z $ 0 and Dt is small tions ((3.2) and (3.1)) are integrated analytically assuming
that the baroclinic pressure term varies linearly betweenenough that
the value based on (Dp91/Dp̃1)n and the value based on
(Dp91/Dp̃1)*. A scheme with a constant baroclinic pressure24 1 [4bz 1 (1 1 z)2]t 2 2 2bz(1 1 z)t4 1 b2z2t6 # 0

(3.31) term with the same mean value is obtained from (3.10)
through (3.14) by setting c 5 As. However, this difference
causes de Szoeke and Higdon’s scheme to be unstablefor all resolved wavenumbers. A simpler, more restrictive

form of this last constraint is that t 2
max # 4/[(1 1 z)2 1 at some wavelengths. With their scheme, the analogous

equation to (3.29) is4bz]. When z is small, a more accurate form of this
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FIG. 2. Magnitude of the four eigenvalues for the scheme described in (3.7) through (3.14) with d 5 0.5, z 5 0.01, e 5 1, and b 5 1. As in Fig.
1, there are two layers with Da/a2 5 0.01, Dp̃1/p̃Bot 5 0.25, and Dp̃2/p̃Bot 5 0.75. With these parameters this scheme is linearly stable for all time
steps up to 2.02/c1kmax .

[l2 2 (2 2 t 2 1 Gt 2)l 1 1] Even the use of a dissipative barotropic or baroclinic time
stepping scheme or both is not sufficient to ensure stability
of the overall split scheme.3 Fl2 2 S2 cos T 2

sin T
T

Gt 2D l 1 1G (3.34)

4. THE CORIOLIS TERMS
2 Gt4(1 2 G)

sinT
T

l2 5 0,
The Coriolis terms may be included in the baroclinic

momentum equations using the original velocity values inwhile if they had used c 5 As, their characteristic equation
the predictor momentum equation, (3.9), and some inter-would have been
polation between the original and predicted velocity values
in the corrector momentum equation, (3.13). This is exactly[l2 2 (2 cos T)l 1 1]
the same approach suggested by de Szoeke and Higdon

3 hl2 2 [2 2 t 2 1 (Gt 2/2)(1 2 cos T)]l 1 1j (3.35) [4]. That is, (3.9) becomes

2Gt 2(1 2 cos2 T)l2 5 0,
(u91/c1)* 5 (u91/c1)n 1 f(v91/c1)n

(4.1)and the scheme would have been stable. The representa-
tion of the barotropic and baroclinic gravity waves with 2 it [(1 2 a)hn 1 ah*] 2 it(Dp91/Dp̃1)n,
the de Szoeke and Higdon scheme is more accurate than
for the schemes with characteristic equations (3.29) or where f 5 f Dt, and there is a meridional velocity equation,
(3.35), but the perturbations are not always negative. The
perturbations are positive when (2N 2 1)f , T , 2Nf,
and there are unstable roots when the real part of all the (v91/c1)* 5 (v91/c1)n 2 f(u91/c1)n, (4.2)
roots are nearly the same.

The importance of the exact choice of a splitting scheme
while (3.13) becomescan be seen in the eigenvalues of a scheme that is not a

member of a stable family. The scheme presented in Fig.
3 differs from the scheme in Fig. 2 only in its choice of (u91/c1)n11 5 (u91/c1)n 1 f[(1 2 c)(v91/c1)n 1 c(v91/c1)*]
the time levels of the bottom pressure used to force the

2 it [(1 2 d)hn 1 dhn11] (4.3)baroclinic velocity. Although the product of the magnitude
of the eigenvalues is exactly the same as in the stable

2 it [(1 2 z)(Dp91/Dp̃1)n 1 z(Dp91/Dp̃1)*],scheme in Fig. 2, this scheme is unstable at many wavenum-
bers determined by the barotropic wave speed. Without a
careful stability analysis, it is unlikely that a time splitting where c is a free parameter between 0 and 1. The equation

for v9n11
1 isscheme will just happen to be stable at all wavenumbers.
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FIG. 3. Magnitude of the four eigenvalues for the scheme described in (3.7) through (3.14) with d 5 1, z 5 0.01, e 5 1, and b 5 1. Again,
there are two layers with Da/a2 5 0.01, Dp̃1/p̃Bot 5 0.25, and Dp̃2/p̃Bot 5 0.75. This scheme is linearly unstable at wavelengths determined by the
external gravity wave speed. Only the coupling terms in this scheme differ from the scheme in Fig. 2.

stable as long as c # As, Dt # (2c 2 1)1/2/(cf ), and as long(v91/c1)n11 5 (v91/c1)n

(4.4) as Dt is small enough that
2 f[(1 2 c)(u91/c1)n 1 c(u91/c1)*].

24(f2 1 t 2) 1 [4bz 1 (1 1 z)2]t4 1 4(c 1 zb)t 2f2

(4.6)
(There are no pressure terms in the equations for v91 , since 2 2bz(1 1 z)t6 2 4bzct4f2 1 b2z2t8 # 0
only gradients in the x̂-direction are being considered.)
The barotropic equations also include Coriolis terms, as for all resolved wavenumbers. If we introduce the variable
seen in (2.7). s 5 c1kmax , a more restrictive version of this last constraint

The stability of the scheme including the Coriolis terms is that
is evaluated exactly as was the scheme without these terms.
The algebra is more complicated, since the determinant
gives a sixth-order polynomial, but with a constant Coriolis Dt # H 4( f 2 1 s 2)

s 2[4bz( f 2 1 s 2) 1 4cf 2 1 (1 1 z)2s 2]J1/2

. (4.7)
parameter two of the roots are always 1, corresponding to
steady geostrophically balanced flow. In the interest of

In the limit of small z, a more accurate version of the lastbrevity the intermediate steps are omitted here. The equiv-
constraint isalent of (3.29) (the characteristic equation for the scheme

with d 5 As and e 5 1) including the Coriolis terms is

Dt # H 4( f 2 1 s 2)
s 2(4cf 2 1 s 2) F1 1

2zs 2

4cf 2 1 s 2 (4.8)(l 2 1)2([l2 2 l(2 cos T) 1 1]

3 hl2 2 l[2 2 (1 1 z)t 2 1 bzt4 2 2cf2 S2b( f 2 1 s 2)
4cf 2 1 s 2 2 1DGJ1/2

.
2 (Gt 2/2)(1 2 bzt 2)(1 2 cos T)] (4.5)

1 [1 2 zt 2 1 (1 2 2c)f2 1 c 2f4 1 z(c 2 b)f2t 2]j
The stability of this scheme for a particular value of the

2 l2Gt 2(1 2 bzt 2)(1 2 cos2 T)) 5 0, Coriolis parameter is depicted in Fig. 4. Baroclinic inertial
oscillations with even the longest wavelengths are subject

where T has been redefined as T ; Dt(c2
0k2 1 f 2)1/2. The to damping.

coupling (G) terms are the same as they were when the
Coriolis parameter was neglected (although this is not true 5. STABLE TIME–STEPPING SCHEME
for some other schemes). Again, the perturbation to the
exact factoring is negative, and does not destabilize the Only the linear stability of the proposed time-stepping

scheme has been evaluated here, but a time-steppingscheme, as long as t 2 # 1/(bz).
Neglecting the coupling terms, the roots of (4.5) are scheme including all of the nonlinear terms which is
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FIG. 4. Magnitude of the four eigenvalues for the scheme including the Coriolis terms with f Dt 5 0.5, d 5 0.5, j 5 0.01, e 5 1, and b 5

c 5 0.6. As in Fig. 1, there are two layers with Da/a2 5 0.01, Dp̃1/p̃Bot 5 0.25, and Dp̃2/p̃Bot 5 0.75. With these parameters the scheme is linearly
stable for all time steps up to 1.92/c1kmax .

consistent with the proposed linear scheme is included
u* 5 um 2 Etm

1Dt

tm Hf k̂ 3 u(t) 1 =[aN pB(t) 2 gD]here for clarity. When nonlinear terms are included, the
stability becomes much more difficult to assess, and the
result depends strongly on the horizontal discretization.

1 ON21

n51
(an 2 an11) Spk11/2

pB
Dm

= FpB(t) Spk11/2

pB
DmGAny claim of nonlinear stability for this scheme would

go well beyond the scope of the present note. Explicit
damping of some sort will probably be necessary to make

1 ON
n51
SDpn

pB
Dm

um
n · =um

n J dt, (5.3)the following scheme stable for flows with nonnegligible
nonlinearities.

In the following scheme, four of the free parameters
where the integrals symbolically represent a number ofin (3.7) through (3.14) are fixed at a 5 d 5 As, c 5 0,
partial time steps. The time average mass fluxes from thee 5 1, while b and z are left as free parameters. In
barotropic integrations are also calculated for later use:addition, this scheme assumes that c 5 b and only a

partial time step b Dt is taken for the predicted velocity,
rather than interpolating between the original and pre-

upB
_

5
1
Dt

Etm
1Dt

tm [u(t)pB(t)] dt. (5.4)dicted velocities in the final step. The predicted velocities
are used in the nonlinear momentum advection terms
in (5.11) and (5.12) to avoid an obvious instability, subject

The predicted total (barotropic plus baroclinic) layer veloc-to the time step limit Dt # (2b 2 1)1/2/(bkmaxU), where U
ity isis the maximum velocity realized. The predicted pressure

thicknesses would have been used in the thickness advec-
tion terms of (5.12), had it not been assumed that a u*n 5 um

n 1 b(u* 2 um) 2 b Dtfk̂ 3 (um
n 2 um)

positive definite thickness advection scheme will be used
for the continuity equations.

2 b Dt S= FON21

i5n
(ai 2 ai11) Spi11/2

pB
Dm (pm

B 1 p*B)
2 GBy definition, at the start of a time step

2 ON
n51
H(ai 2 ai11) Spi11/2

pB
Dm

(5.5)pm
B 5 ON

n51
Dpm

n , um 5 ON
n51

um
n SDpn

pB
Dm

. (5.1)

The barotropic equations are integrated with a series of 3 = FSpi11/2

pB
Dm (pm

B 1 p*B)
2 GJD

short time steps

2b Dt Fum
n · =um

n 2 ON
i51
SDpi

pB
Dm

(um
i · =um

i )G.p*B 5 pm
B 2 Etm

1Dt

tm = · [u(t)pB(t)] dt, (5.2)
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The pressure thickness is stepped using a velocity con-
um11

n 5 um
n 1 (um11 2 um) 2 Dtfk̂ 3 Fu*n 2 ON

i51
SDpi

pB
Dm

u*i Gstructed from the predicted layer velocities and the time
mean of the barotropic velocities,

2 Dt F= HON21

i5n
(ai 2 ai11) F(1 2 z) Spi11/2

pB
Dm

ũ*n 5 u*n 1
1
Dt

Etm
1Dt

tm u(t) dt 2 ON
i51

u*i SDpi

pB
Dm

, (5.6)

1 z Spi11/2

pB
D*G (pm

B 1 pm11
B )

2 J
which will remove much of the mismatch between the

2 ON
i51
S(ai 2 ai11) Spi11/2

pB
Dm

(5.11)barotropic divergence as calculated by (5.2) and the sum
of the layer divergences. The equation for the predicted
thickness then is

3 = HF(1 2 z) Spi11/2

pB
Dm

Dp*n 5 Dpm
n 2 Dt= · (ũ*n Dpm

n )

(5.7) 1 z Spi11/2

pB
D*G (pm11

B 1 pm
B)

2 JDG
2 Dt= ·FSupB

_
2 ON

i51
ũ*i Dpm

i DSDpn

pB
DmG.

2 Dt Fũ*n · =u*n 2 ON
i51
SDpi

pB
Dm

(ũ*i · =ũ*i )G.

In practice, a positive definite thickness advection scheme
must be used, and the final term in (5.7) will be applied Defining ũm11

n as
as a final correction to ensure that the sum of the layer
pressures is the bottom pressure calculated by (5.3). The
time levels of the pressure thicknesses inside of the diver- ũm11

n 5 um11
n 1

1
Dt

Etm1Dt

tm
u(t) dt 2 ON

i51
um11

i SDpi

pB
Dm

, (5.12)
gences in (5.7) will effectively be determined by the posi-
tive definite thickness advection scheme. Note that u*n is

the next time step’s pressure thicknesses areeffectively defined for time tm 1 b Dt, while Dp*n , p*B , and
u* are all defined for time tm11 ; tm 1 Dt.

The barotropic equations are now integrated again with Dpm11
n 5 Dpm

n 2 Dt= · (ũm11
n Dpm

n )

(5.13)
slightly different nonlinear forcing terms,

2 Dt= ·FShupB 2 ON
i51

ũm11
i Dpm

i DSDpn

pB
DmG.

pm11
B 5 pm

B 2 Etm
1Dt

tm = · [u(t)pB(t)] dt, (5.8)

Again, a positive definite thickness advection scheme will
be used in (5.13), with the correction to ensure that theum11 5 um 2 Etm

1Dt

tm Hf k̂ 3 u(t) 1 =(aNpB(t) 2 gD)
bottom pressure agrees with the barotropic calculation
in (5.8).

Finally the barotropic velocity must agree with the verti-1 ON21

n51
(an 2 an11) Spk11/2

pB
Dm

= FpB(t) Spk11/2

pB
DmG

cal average of the layer velocities, while the sum of the
layer pressure thicknesses must agree with the bottom pres-
sure. The pressures should already be consistent because of1 ON

n51
SDpn

pB
Dm

ũ*n · =ũ*nJ dt. (5.9)
the final correction term in (5.13). However, the barotropic
velocities will not be consistent with the average of the
layer velocities, in part because of the nonlinear term inThe time mean thickness fluxes from this second barotropic
(2.7) which has been neglected so far:integration are also calculated:

­u
­t

1 ? ? ? 5 ? ? ? 1 ON
n51

un
­

­t SDpn

pn
D. (5.14)h

upB 5
1
Dt

Etm
1Dt

tm [u(t)pB(t)] dt. (5.10)

This is accomplished quite simply by replacing the pre-
viously calculated barotropic velocity withThe next time step’s layer velocities are
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amplitude topography and only modest amounts of ex-
um11 5 ON

n51
um11

n SDpn

pB
Dm11

. (5.15) plicit dissipation.
Various ocean models have used time splitting with time

filtering or heavily dissipative barotropic integrations to
A similar step might have been necessary even if the non- eliminate weak instabilities (Bleck and Smith [2], Killworth
linear velocity–thickness change correlation term had been et al. [8], Dukowicz and Smith [5], Blumberg and Mellor
explicitly included in the barotropic integration, depending [3]). In many of these instances the time filtering is already
on how viscous or adiabatic effects had been included. present to suppress the splitting instability of the leapfrog

time integration scheme. Tatsumi [9] demonstrates that
time filtering can effectively damp instabilities that would

6. CONCLUSIONS otherwise plague a model with split integration. In the
case of the Bleck and Smith [2] scheme, the fact that theSplitting the time-stepping operator into barotropic and
instability occurs even at the longest wavelengths may re-baroclinic parts allows great efficiency improvements in
quire extremely heavy time filtering.the integration of free surface primitive equation numerical

The split time-stepping scheme presented here offers anocean models. Unfortunately, such splitting often creates
efficient, stable method for integrating primitive equationlinear instability due to interactions between external and
ocean models. This scheme requires explicit dissipationinternal gravity wave modes. Higdon and Bennett [7] re-
only to control nonlinear instabilities and ensure that im-cently demonstrated this type of linear instability in the
portant boundary currents are well resolved.time-splitting scheme proposed by Bleck and Smith [2] for

an isopycnal coordinate ocean model. The present work ACKNOWLEDGMENTS
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