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Abstract

A series of idealised numerical simulations of dense water flowing down a broad uniform slope are pre-

sented, employing both a z-coordinate model (the MIT general circulation model) and an isopycnal coor-

dinate model (the Hallberg Isopycnal Model). Calculations are carried out at several different horizontal

and vertical resolutions, and for a range of physical parameters. A subset of calculations are carried out at

very high resolution using the non-hydrostatic variant of the MITgcm. In all calculations dense water des-

cends the slope while entraining and mixing with ambient fluid. The dependence of entrainment, mixing

and down-slope descent on resolution and vertical coordinate are assessed. At very coarse resolutions the
z-coordinate model generates excessive spurious mixing, and dense water has difficulty descending the

slope. However, at intermediate resolutions the mixing in the z-coordinate model is less than found

in the high-resolution non-hydrostatic simulations, and dense water descends further down the slope.
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Isopycnal calculations show less resolution dependence, although entrainment and mixing are both

reduced slightly at coarser resolution. At intermediate resolutions the z-coordinate and isopycnal models

produce similar levels of mixing and entrainment. These results provide a benchmark against which future

developments in overflow entrainment parameterizations in both z-coordinate and isopycnal models may

be compared.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dense water formed through cooling or evaporation in marginal seas (e.g. the Greenland–
Iceland–Norwegian sea, the Mediterranean, the Red sea) or on coastal shelves (e.g. the Arctic
and Antarctic shelves) enters the general ocean circulation by flowing over topographic features,
such as straits and sills (e.g. the Denmark Straits, Faroe Bank Channel, Gibraltar Straits,
Bab-el-Mandab) and down the continental slope. These density driven currents flowing down
topography are known as overflows. As the water descends it entrains ambient fluid, which
mixes with the dense water, modifying the tracer properties and increasing the volume of the
dense water mass (Price and Baringer, 1994). The overflow waters, modified by entrainment, in-
clude North Atlantic Deep Water (Dickson and Brown, 1994), Mediterranean Overflow Water
(Price et al., 1993), and Antarctic Bottom Water (Gordon et al., 1998), and ultimately fill much
of the abyssal ocean. Accurate representation of overflows and the entrainment they produce is
therefore vital for correctly representing these deep water masses in ocean general circulation
models.

It is now well known that different model formulations have different levels of success in rep-
resenting overflows (Griffies et al., 2000). Of particular importance is the model�s vertical discreti-
zation (Willebrand et al., 2001). Terrain-following coordinate models (e.g. the Princeton Ocean
Model, http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/, the Rutgers Ocean Modeling
System (Haidvogel et al., 2000)) have the ability to concentrate resolution near the bottom bound-
aries, and hence can resolve overflow processes well, provided the vertical resolution is sufficiently
fine. However, when topography is steep they have problems with pressure-gradient errors
(Haney, 1991), although these are reduced but not eliminated by recent improved numerical
schemes (Ezer et al., 2002; Shchepetkin and McWilliams, 2003). Isopycnal coordinate models
(e.g. HIM (Hallberg and Rhines, 1996), MI-COM, http://oceanmodeling.rsmas.miami.edu/mi-
com/) have no difficulties accurately representing topography, and are able to concentrate resolu-
tion in regions of large density gradients (often found at the interface between overflow waters
and ambient fluid). In addition the diapycnal mixing and entrainment associated with the overflow
can be explicitly parameterized (Hallberg, 2000; Papadakis et al., 2003). While isopycnal models
and related hybrid coordinate models (e.g. HYCOM, http://oceanmodeling.rsmas.miami.edu/
hycom/; Poseidon, http://www.scs.gmu.edu/climate/poseidon/) are increasingly being employed
for climate studies, the majority of the established climate models (e.g. CCSM, http://www.ccsm.
ucar.edu/; MOM, http://www.gfdl.noaa.gov/fms/pubrel/j/mom4/doc/mom4_manual.html) use
height as their vertical coordinate. Height or z-coordinate models have particular difficulties in

http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
http://oceanmodeling.rsmas.miami.edu/micom/
http://oceanmodeling.rsmas.miami.edu/micom/
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representing overflows accurately. Unless both vertical and horizontal resolution are fine enough to
resolve the overflow adequately:
Dz < h and Dx < h= tan a; ð1Þ
respectively, where h is the thickness of the overflow, and a is the topographic slope angle, z-coor-
dinate models are unable to transport dense fluid down the slope without excessive entrainment
(Winton et al., 1998). These resolution requirements, especially for horizontal resolution, are
about an order of magnitude higher than currently affordable for global climate models.

In all 3 model formulations, the processes responsible for entrainment are not resolved for cli-
mate scale simulations, and hence must be parameterized. In terrain-following and isopycnal
coordinate models this is a relatively simple process of employing an appropriate diapycnal mix-
ing parameterization. Currently several isopycnal coordinate models employ the empirical gravity
current entrainment parameterization
W e ¼ 0:1DU 0:8�Ri
1þ5Ri Ri < Ric

W e ¼ 0 Ri > Ric
ð2Þ
with Ric = 0.8, due to Ellison and Turner (1959), derived from non-rotating laboratory simula-
tions of dense gravity currents on a slope in a uniform ambient fluid. Ellison and Turner
(1959) use the bulk Richardson number Ri = Dbh/(DU)2 where Db is the buoyancy anomaly of
the gravity current, h is its depth and DU is the velocity difference between the gravity current
and overlying fluid. In the implementation of this formula into isopycnal models such as HIM,
a gradient Richardson number is used: Ri = N2/(du/dz)2. Terrain-following coordinate models
have tended to use turbulence closure schemes such as that due to Mellor and Yamada (1982).

In z-coordinate models a two-stage process is required to correctly represent overflow entrain-
ment in coarse resolution models. First, a numerical scheme must be introduced to eliminate spu-
rious mixing as dense fluid moves down topography. This ranges from crude ‘‘plumbing’’ models
(Beckmann and Doscher, 1997; Campin and Goose, 1999), connecting grid-cells above and below
a topographic step, to full bottom-boundary layer models (Killworth and Edwards, 1999; Song
and Chao, 2000) which resemble a terrain-following coordinate region appended to the z-coordi-
nate model. Second, the correct amount of entrainment has to be put back in, via a parameteri-
zation of small-scale processes (something only possible for the full bottom boundary layer
models). For example, Killworth and Edwards (1999) employs a frictional bottom boundary layer
model to determine the entrainment.

Currently there is an ongoing effort to evaluate these different methods of representing entrain-
ment in overflows, and improve entrainment parameterizations to include additional physics, such
as modifications of entrainment due to rotation and ambient stratification (the Gravity Current
Entrainment Climate Process Team, http://www.cpt-gce.org). As part of this ongoing effort, we
present here a comparison of numerical simulations of entraining overflows, employing a z-coor-
dinate numerical model (MITgcm, http://mitgcm.org) without any bottom boundary layer model,
and an isopycnal coordinate model (HIM, http://www.gfdl.noaa.gov/rwh/HIM/HIM.html). Most
of the z-coordinate model simulations have sufficient resolution, as defined by criterion (1), to
enable the plume to flow downslope without excessive entrainment, and in addition, like most
z-coordinate simulations today, employ partial cell topography (Adcroft et al., 1997). The highest

http://www.cpt-gce.org
http://mitgcm.org
http://www.gfdl.noaa.gov/rwh/HIM/HIM.html


72 S. Legg et al. / Ocean Modelling 11 (2006) 69–97
resolution z-coordinate model simulations are non-hydrostatic and hence able to explicitly cap-
ture the largest-scale mixing processes responsible for entrainment. Our aims are: (a) to provide
benchmark calculations, in the form of the highest resolution non-hydrostatic simulations, against
which current and future parameterizations of entrainment can be compared; (b) to quantify how
entrainment and diapycnal mixing in a z-coordinate model depends on resolution; (c) to provide a
fair comparison between an isopycnal model (with explicit parameterization of diapycnal mixing)
and z-coordinate model. The focus of this article is principally on the treatment of entrainment in
overflows by models, rather than on the physical processes responsible for the entrainment, which
are examined in detail in Girton and Legg (in preparation).
2. Model formulation

We employ one representative each of two different classes of model: the MITgcm, which uses
height as the vertical coordinate, and the Hallberg Isopycnal Model (HIM). MITgcm (Marshall
et al., 1997a,b) is unique in allowing comparison between calculations at both very coarse and
very high resolution. At the highest resolutions non-hydrostatic physics are employed, and pro-
cesses responsible for mixing are at least permitted, if not fully resolved. At the lowest resolutions,
the model is hydrostatic, and convective adjustment is employed where needed to remove static
instability. The model employs a conventional Arakawa C-grid at high resolutions, and the C–
D scheme described in Adcroft et al. (1999) at coarse resolutions. At all resolutions partial step
topography (Adcroft et al., 1997), a linear free-surface formulation, Laplacian friction (with a vis-
cosity appropriate to the grid spacing), and quadratic bottom drag of Cd = 2 · 10�3 are employed.
A direct discretization method with flux limiting is employed for tracers (Pietrzak, 1998), which
both prevents the appearance of spurious oscillations while preserving fronts, and introduces
numerical diffusion where needed for stability. Consequently we set the explicit tracer diffusion
to zero, so that the background stratification is not eroded.

HIM solves the hydrostatic primitive equations in isopycnal coordinates. Even with the split-
explicit time stepping scheme used here (Hallberg, 1997), HIM exactly conserves the mass of each
isopycnal layer in the absence of explicitly parameterized diapycnal mixing. Diapycnal mixing is
included using a weak background diffusivity of 10�4m2 s�1 (of little significance to the result of
these simulations) and the gradient-Richardson number mixing parameterization described by
Hallberg (2000) derived from the bulk Richardson number entrainment parameterization of
Turner (1986) and Ellison and Turner (1959), as well as a new bottom boundary mixing para-
meterization described in Appendix A. Topography is represented as a continuously varying field,
and the pressure gradient discretization has in the past proven skillful for representing flows with
isopycnals intersecting topography (Hallberg and Rhines, 1996). A biharmonic Smagorinsky vis-
cosity is used as the momentum closure in the horizontal (Griffies and Hallberg, 2000). Bottom
stress is parameterized with a quadratic drag law with Cd = 2 · 10�3 and a background velocity
of 5 cm s�1. Tracers are advected along isopycnals with a monotonic and conservative flux-form
scheme, following Easter (1993), and there is no explicit isopycnal tracer diffusion.

The idealized overflow scenario we have chosen to examine is shown in Fig. 1 and follows clo-
sely the scheme originally proposed by the Dynamics of Overflow Mixing and Entrainment
(DOME) working group (http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html). A

http://www.rsmas.miami.edu/personal/tamay/DOME/dome.html
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Fig. 1. Schematic showing the model domain, with the dense inflow entering in a flat bottomed embayment, which then

opens onto the northern side of a uniform slope.
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dense inflow is injected into the northern end of a flat-bottomed embayment of depth 600 m, and
width 100 km, with a prescribed density and inflow speed. The embayment is 50 km long in the z-
coordinate calculations and 100 km long in the isopycnal calculations. The embayment opens at
its southern end onto a uniform slope to the south of angle a, which reaches a maximum depth of
3600 m, at which point there is a flat bottom.

The form of the dense inflow has been chosen (a) to be in geostrophic balance; (b) to have a
maximum Froude number Fr ¼ U=

ffiffiffiffiffiffiffiffiffiffiffiffi
ðDbhÞ

p
of 1 (where U is the velocity scale, Db is the buoyancy

anomaly and h is the thickness of the dense layer), such that Umax ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Db0h0

p
where Db0 is the

buoyancy anomaly of the inflow, and h0 is the maximum height of the inflow above the bottom
of the embayment; (c) to have a gradient Richardson number Ri = N2/(du/dz)2 that is everywhere
locally greater than 1/3 (well above the critical value), to minimize mixing in the embayment. The
dense inflow has its maximum depth h0 and maximum velocity at the right-hand wall (when look-
ing downstream), and the inflow depth h decays exponentially with a lengthscale given by the
deformation radius Lq ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Db0h0

p
=f
hðxwÞ ¼ h0 expð�xw=LqÞ ð3Þ
where xw is the distance from the right-hand wall of the embayment. The above conditions are
met by an inflow which has a buoyancy and velocity structure given by
bðxw; zÞ ¼ minðb0 � Db0ð1� F ðz�ÞÞ; b0 � N 2zÞ ð4Þ

vðxw; zÞ ¼ �U 0 expð�xw=ŁqÞð1� F ðz�ÞÞ ð5Þ
where
U 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Db0h0

p
ð6Þ
and
z�ðxw; zÞ ¼
ðz� hðxwÞ � heÞ

hðxwÞ
ð7Þ
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with he the bottom depth of the embayment and
Table

Value

Dime

Inflow

Inflow

Ambi

Corio

Topo

Dime

Inflow

Emba

Emba

Emba

Maxim

Drag
F ðz�Þ ¼ 1 for z� P Rim
2�Rim

F ðz�Þ ¼ 1
Rim

z�

z�þ1
þ 1

2
for � Rim

2þRim
< z� < Rim

2�Rim

F ðz�Þ ¼ 0 for z� 6 � Rim
2þRim

ð8Þ
Rim is the minimum gradient Richardson number associated with the interface between the dense
inflow and overlying water (set to Rim = 1/3). b0 is the buoyancy value at the surface. The buoy-
ancy structure is therefore set to b = b0 � Db0 in most of the inflow, and to b = b0 � N2z in the
overlying fluid, with a transition zone of a width and form designed to keep the gradient Richard-
son number above Rim. The velocity structure given by Eq. 5 is in fact in perfect geostrophic
balance with the buoyancy only if N2 = 0, but since Db0 is large compared to N2h0, the discrepancy
is not large. Ignoring the finite thickness of the interface, when W� Lq the inflow transport
is T in ¼ Db0h

2
0=ð2f Þ.

These conditions were chosen so that the structure of the inflow changes as little as possible
within the embayment. For example, the Fr = 1 criterion was found to be necessary to prevent
a Kelvin wave from propagating along the right-hand wall at a speed larger than the inflow speed,
which causes excessive numerical entrainment in the first few grid points, to make up the necessary
mass flux.

Within this basic structure, we have carried out simulations for six different combinations of
parameters, described in Table 1. Case 1, which we term the reference case (Ref), has both rota-
tion and ambient stratification. Case 2 (0.5Db0) and Case 3 (0.1Db0) differ from Case 1 only in the
value of the background stratification, and the buoyancy anomaly of the inflow (one half and one
tenth that of the reference case respectively); the density of the inflow matches the ambient density
at the bottom of the slope in each case. Case 4 (no f) is as for Case 1, but with no rotation. Case 5
(0.5 slope) is as for Case 1, but with half the magnitude of topographic slope. Case 6 (noN2) is as
for Case 1 but without ambient stratification. Our rationale in choosing these different scenarios is
1

s of dimensional parameters

nsional parameter Case 1

Ref

Case 2

0.5Db
Case 3

0.1Db
Case 4

no f

Case 5

0.5 slope

Case 6

no N2

buoyancy anomaly Db0 (ms�2) 0.019 9.5 · 10�3 1.9 · 10�3 0.019 0.019 0.019

velocity amplitude U0 (m/s) 2.4 1.7 0.75 2.4 2.4 2.4

ent stratification N (10�4 s�1) 23 16 7.2 23 23 0

lis parameter f0 (s
�1) 10�4 10�4 10�4 0 10�4 10�4

graphic slope tan a 0.01 0.01 0.01 0.01 0.005 0.01

nsional parameter Value

height h0 (m) 300

yment width W (km) 100

yment depth he (m) 600

yment length Le (km) 50

um depth H (m) 3600

coefficient Cd 2 · 10�3
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that we wish to examine how the models behave under a reasonable, but by no means exhaustive,
variety of parameters. Case 4 (no f) without rotation, allows us to compare with much of the lab-
oratory literature on entraining gravity plumes, most of which does not consider rotation. Case 6
(noN2), without ambient stratification, allows us to compare with the recent laboratory experi-
ments of Lane-Serff and Baines (1998) and Cenedese et al. (2004). Cases 2, 3 and 5 allow us to
examine a little of the parameter space in the same regime as Case 1 (stratified and rotating)
but with different degrees of rotational control, and different values of deformation radius.

For no f without rotation, the inflow height is constant with xw at h = h0, and the inflow velocity
is given by
Table

Nond

Nond

Froud

Relati

Stretc

Relati

N/f

Drag
vðxw; zÞ ¼ �U 0ð1� F ðz�ÞÞ ð9Þ

independent of xw. The total inflow transport in the non-rotating nof ðT in ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDb0h0Þh0W Þ

p
is

therefore considerably greater than in the rotating cases where v and h decrease away from the
western wall.

Given the controlling parameters Db0, U0, h0, N
2, f0,a, W, he, Le, H, mh, mv and Cd, a total of 11

non-dimensional parameters are needed to fully describe the flow. However, given our six cases,
we are obviously not exploring this parameter space in its entirety.

A particular choice of non-dimensional parameters appropriate to the rotating scenario is given
in Table 2. Additional non-dimensional parameters needed to complete the set are the frictional
Ekman number mv=ðh20f0Þ and the ratio mh/mv, both of which vary with resolution, and the geomet-
rical ratios which are held fixed: h0/he = 0.5, Le/W = 2.0, H/he = 6. (The Reynolds number U0h0/mh
is also an important parameter, but is not independent of the parameters listed. Just as Ekman
numbers for the simulations are larger than in the real ocean, so are the Reynolds numbers con-
siderably smaller. By the above measure, in the z-coordinate calculations Re varies from 1400 for
the highest resolution simulation down to 14 for the lowest resolution calculation. The isopycnal-
coordinate calculations use a variable horizontal viscosity, so Re is not a well-defined external
parameter.) The principal parameters we vary are the stretching parameter: C ¼ Lq tan a=h0; the
channel width relative to the deformation radius: W/Lq; the Ekman numbers and the ratio N/f.
Case 4 (no f) with zero rotation lies at one extreme for the rotation dependent parameters, while
noN2 lies at one extreme for the parameters dependent on ambient stratification (e.g. relative
buoyancy anomaly, N/f). For comparison with other studies, we note that Cenedese et al.
(2004) find that eddies are replaced by laminar flow for frictional Ekman numbers >0.1, while
Lane-Serff and Baines (1998) find that C > 0.1 is necessary for the development of eddies
2

imensional parameter definitions and values for the different scenarios

imensional parameter Case 1

Ref

Case 2

0.5Db
Case 3

0.1Db
Case 4

no f

Case 5

0.5 slope

Case 6

no N2

e number U0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDb0h0Þ

p
1 1 1 1 1 1

ve buoyancy anomaly Db0/(N
2h0) 12 12 12 12 12 1

hing parameter Lq tan a=h0 0.8 0.5 0.26 1 0.4 0.8

ve width W =Lq ¼ Wf 0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDb0h0Þ

p
4.1 5.9 13.2 0 4.1 4.1

23.0 16.2 7.2 1 23.0 0

Ekman number CdDb0 tan a=ðf 2
0 h0Þ 0.127 0.063 0.0127 1 0.063 0.127
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(although they do not consider C > 1.0, when we might expect rotational effects to diminish).
(Note that although Lane–Serff and Baines define their stretching parameter slightly differently,
for our model set up with h0 = he � h0, the two definitions give the same value.)

Our particular choice of dimensional parameters for the suite of simulations was selected to
cover the values that are typical of oceanic overflows such as the Denmark Straits Overflow,
the Mediterranean Outflow, the Red Sea Outflow, and some of the Antarctic overflows, although
with the linear background stratification and linear slope the correspondence between these ide-
alized simulations and the real observations is not expected to be especially close. Given these
parameters, we find that a domain of the order of Lx · Ly · Lz = 1000 km–2000 km ·
600 km · 3600 m is necessary to capture the full mixing, descent to neutral stability level and
detrainment of the plume from the topography. The precise values of the domain size in fact vary
with resolution, since the amount of mixing, and hence neutral buoyancy level, is found to be a
function of resolution. With the z-coordinate model we have carried out simulations at four dif-
ferent resolutions, as listed in Table 3, along with accompanying values of mh and mv, and resolu-
tion dependent non-dimensional parameters. At the very highest resolution, D x = Dy = 500 m,
Dz = 30 m, only three simulations are performed, for cases 1, 4, and 6, while at the other resolu-
tions all six cases are calculated. For the higher resolutions of Dx = 500 m and Dx = 2.5 km,
stretched grids are employed in the horizontal, so that the resolution coarsens approaching the
Eastern, Western and Southern boundaries, allowing larger domains so that boundary effects
on the overflow are minimized, while focusing resolution on the active part of the flow. Note that
even at the highest resolution, we are far from achieving what might be estimated to be necessary
to fully resolve the dominant straining flows responsible for mixing at the interface between over-
flow and ambient fluid—if the horizontal length scale of mixing was of the order of the vertical
depth of the plume (e.g. 300 m), we would like a horizontal resolution of order 30–50 m, consid-
erably less than the 500 m we employ. This however, would be impossible to achieve while simul-
taneously capturing the full descent of the plume to neutral stability level, and the mesoscale eddy
activity associated with the plumes, given current computing resources. Isopycnal model calcula-
tions are carried out with horizontal resolutions of Dx = 10 km and 50 km, with 25 evenly spaced
isopycnal layers between the surface density and the overflow maximum density. In isopycnal
Table 3

The cases run at each resolution and for each model type, and dimensional and non-dimensional resolution dependent

parameters

Dx · Dz,Dbl 500 m · 30 m

MIT gcm

2.5 km · 60 m

MITgcm

10 km · 144 m

MITgcm

50 km · 144 m

MITgcm

10 km · Db/24
HIM

50 km · Db/24
HIM

Case 1 (Ref) X X X X X X

Case 2 (0.5Db) – X X X X X

Case 3 (0.1Db) – X X X X X

Case 4 (no f) X X X X X X

Case 5 (0.5 slope) – X X X X X

Case 6 (no N2) X X X X X X

mh (m
2 s�1) 5.0 · 10�1 5.0 5.0 · 101 5.0 · 101 Variable Variable

mv (m
2 s�1) 1.0 · 10�2 5.0 · 10�2 5.0 · 10�1 5.0 · 10�1 10�4, 5 · 10�1 10�4

Ek ¼ mv=ðh20f0Þ 0.0011 0.0055 0.055 0.055 0.000011, 0.055 0.000011

mh/mv 50 100 100 100 Variable Variable
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calculations, the background vertical viscosity is 10�4 m2 s�1, but where Ri is small very high val-
ues of mv are used.

Boundary conditions are as follows. In both model formulations, no-slip and no-flux boundary
conditions are applied at the topography. The no-slip boundary condition adds an additional
stress in the bottom grid cell on top of that implied by the quadratic bottom drag: the total stress
is of the form
si;3 ¼ 2
mv
Dz

þ Cd

ffiffiffiffiffiffiffiffiffiffi
2KE

p� �
vi ð10Þ
where KE is the horizontal kinetic energy at that point, and (v1,v2) = (u,v), the horizontal velocity
vector. (See the documentation of the MITgcm, http://mitgcm.org, for more details.) At the
Northern boundary of the embayment a prescribed inflow open boundary condition is prescribed.
In most simulations with the z-coordinate model an Orlanski radiative boundary condition is ap-
plied at the Western open boundary, in order to allow the dense plume to escape the domain (with
rotation the plume propagates principally to the West along the topography), while at the South-
ern and Eastern boundaries there is a vertical wall. For the non-rotating simulations (no f), the
Southern boundary is open, with the Orlanski radiative boundary condition (Orlanski, 1976),
and the Eastern and Western boundaries are vertical walls, since without rotation the plume prop-
agates directly south. In the isopycnal-coordinate simulations, there is a net input of mass and the
sea level slowly rises throughout the simulation (the basin is made large enough that this trend in
the sea level does not appear to affect the quasi-equilibrium state). Along the eastern and western
walls, a sponge-layer is used to damp the density structure back toward the ambient state and
remove the passive tracer that marks the plume.
3. Results: non-hydrostatic simulations

We will first describe the features of the flow in the three highest resolution non-hydrostatic
simulations, for Cases 1 (Ref), 4 (no f), 6 (no N2), respectively. In all our simulations we distinguish
between the overflow water and the ambient fluid by use of a passive tracer, whose concentration s
is zero in the ambient fluid, and unity in the inflow dense water. Dilution of the tracer concentra-
tion therefore helps to illustrate the mixing in of ambient fluid, while we can easily define the
boundary of the overflow by a surface such as s = 0.01. (This choice of cutoff is somewhat arbi-
trary, but the results are not sensitive to the precise value so long as it is small but non-zero.)

3.1. Case 1 (Ref): with rotation and ambient stratification

Fig. 2 shows snapshots of the tracer concentration (a) at the layer just above the bottom topo-
graphy, and (b) in a vertical slice near the inflow. Qualitative features of note are the deflection of
the dense fluid in the along-slope direction induced by rotation, and the growth of large amplitude
eddies, as expected from previous studies (Jiang and Garwood, 1996; Lane-Serff and Baines, 1998,
2000; Cenedese et al., 2004). From Fig. 2(a) we see that most of the tracer dilution occurs just after
the overflow enters the slope, with little mixing to the west of x = �150 km. Further to the west
there is stirring generated by large amplitude eddies, but this does not appear to modify tracer

http://mitgcm.org


Fig. 2. Passive tracer concentration s at a time 13 days after the initiation of the dense inflow, for Case 1 (Ref), at a

resolution of Dx · Dz = 500 m · 30 m, simulated by the non-hydrostatic MITgcm: (a) s just above the topography, as a
function of horizontal distance, with buoyancy contours overlain; (b) s in a vertical slice at x = �50 km, near the inflow.

s has a value of zero in the ambient fluid, and s = 1 in the inflow. The same tracer color scale is used in all subsequent

similar images.
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concentrations significantly. The superimposed buoyancy contours show that once the overflow
water has spread cross-slope to about y = �150 km it has reached its neutral buoyancy level (there
are no buoyancy contours separating high s overflow fluid from the zero s ambient fluid). Fig. 2(b)
demonstrates the small-scale structures near the inflow responsible for mixing. While of a scale
greater than the gridscale, it is likely that these are only a poorly resolved version of shear insta-
bility, so we refer to these simulations as ‘‘mixing-permitting’’ rather than ‘‘mixing-resolving’’.
Nonetheless this resolution is the maximum possible with current computing facilities: a total
of nx · ny · nz = 888 · 600 · 120 grid points were used, and the calculation required 30,000 h
of CPU time running on 480 processors of the GFDL NOAA SGI Origin supercomputer.

By defining all fluid with s > 0.01 as the overflow, we can calculate the total transport in the
along-slope direction as
T ðxÞ ¼
Z
A
U dy dz : where A is such that s > 0:01 ð11Þ
and U is the zonal velocity. Fig. 3(a) shows the instantaneous along-slope transport as a function
of along-slope distance for several different times, with the time-mean transport overlain. (These
values are not significantly altered by choosing a somewhat higher or lower threshold tracer con-
centration to define the plume.) We see that for locations to the east of x = �400 km, an approx-
imately steady-state is reached, although with large temporal fluctuations associated with the eddy
activity. To the west of x = �400 km the flow is still evolving as the overflow water moves out of
the domain.

Fig. 3(b) shows the entrainment coefficient deduced from the time-mean transport, for the re-
gion west of the inlet entrance at x = �50 km. The entrainment coefficient is diagnosed as
aEðxÞ ¼
d
dx T ðxÞ
LU

ð12Þ
where L is the length of the interface between overflow water (s > 0.01) and ambient water in the
(y,z) plane, and U is the average velocity defined by



Fig. 3. For Case 1 (Ref), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-hydrostatic MITgcm:

(a) the total along-slope transport in the overflow fluid (identified by s > 0.01), as a function of along-slope distance

(with the center of the inlet at x = 0). Several instantaneous values of transport are shown (at time intervals of

1.16 days), with the mean of these values overlain as a thick solid line and (b) the entrainment coeffcient diagnosed from

the time-mean transport, for the region west of the inlet entrance at x = �50 km, as a function of along-slope distance.

The small segment in red from �180 km < x < �50 km corresponds to the entrainment deduced from a linear fit to the

actual time–mean transport between those points.
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U ¼
R
A U dy dz

A
ð13Þ
We see that the entrainment coefficient is only finite and positive over a distance
�200 km < x < �50 km, beyond which entrainment is zero to within the error set by the large
fluctuations, and then negative (detrainment) in the region where a steady-state has not yet been
reached. While this calculation only gives entrainment for the region west of x = �50 km, much of
the mixing (as shown in Fig. 2(a)) occurs in the corner region bounded by y = 0 km and
x = �50 km, and it is likely that this is also a region of significant increase in transport and hence
entrainment. For this region we calculate a mean entrainment coefficient, defined as
aE ¼ T out
t � T in

t

U rms
t
S
t ð14Þ
where Tout is the transport s > 0.01 water through x = �50 km, Tin is the transport s > 0.01 water
through y = 0 km, S is the surface area of the s = 0.01 surface within this corner region, and Urms

is the rms horizontal velocity scale within the corner region. The time average t of all quantities,
once they have reached a statistically steady-state, is used. The average entrainment coefficient in
this corner region is then 8.6 · 10�4, of the same order of magnitude as the value just west of the
corner. We also calculated the average entrainment over the length of the inlet, and found it to be
negligible, so that mixing and entrainment both result only when the dense inflow encounters the
slope.

While entrainment, as defined above, indicates an increase in the volume flux of s > 0.01 water,
it does not give any information on the density of the entrained ambient fluid, and in particular
whether the entrainment occurs across or along isopycnal surfaces. To demonstrate diapycnal
mixing, we show in Fig. 4 the total amount of tracer, temporally averaged over the latter half



Fig. 4. The total tracer s as a function of along-slope distance and buoyancy class, time-averaged over the latter half of

the simulation, for Case 1 (Ref), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-hydrostatic

MITgcm.
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of the simulation, as a function of along-slope distance and buoyancy. At the inflow location
(x = 0) most tracer is found at a buoyancy of b < �0.018 m/s2. As the overflow moves along
the slope, the maximum in tracer moves rapidly to lighter buoyancy classes. After x = �200 km
the tracer maximum is at �0.01 < b < �0.009 m/s2, and beyond this there is no change in the loca-
tion of tracer in buoyancy space. Hence we deduce that all the diapycnal mixing occurred to the
east of x = �200 km. This coincides with the region of significant entrainment - hence the entrain-
ment is largely diapycnal. Along isopycnal entrainment by the eddies appears to be insignificant,
in terms of changing the net along-slope transport, perhaps because eddies serve to carry fluid off
shore, rather than increase its advection along-slope.

A snapshot of the local gradient Richardson number Ri = (db/dz)/[(du/dz)2 + (dv/dz)2] in a ver-
tical slice at y = �52 km (Fig. 5) shows that Richardson numbers are small (<0.25) near the bot-
tom from the inflow right to the western edge of the overflow. However, the superimposed
buoyancy contours show that it is only for x > �200 km that finite buoyancy stratification coin-
cides with the low Richardson numbers. Hence the entrainment and diapycnal mixing occur when
low Richardson numbers coincide with finite positive vertical buoyancy gradients.

3.2. Case 4 (no f): without rotation, with ambient stratification

We now compare the rotating Ref with the non-rotating no f. All parameters are kept the same
apart from Coriolis. The qualitative differences are large, as seen in the snapshots in Fig. 6. The
dense current flows straight down the slope, and retains a symmetric shape about the middle axis
of the inlet. A vertical section through the center of the dense flow (Fig. 6(a)) shows that there is
small-scale mixing over the upper half of the slope, diluting the tracer concentration and a small
overshoot beyond the neutral buoyancy level at depth. Following a rebound to neutral buoyancy
level which has the character of an internal hydraulic jump, and may be associated with a tran-
sition from supercritical to subcritical flow, the overflow water flows out directly southward as
a broad layer at its neutral buoyancy level. The three-dimensional character of the small-scale



Fig. 5. The instantaneous local gradient Richardson number defined by Ri = (ob/oz)/(oU/oz)2 in a vertical plane at

y = �52 km and a time of t = 13 days, for Case 1 (Ref), simulated at a resolution of Dx · Dz = 500 m · 30 m with the

non-hydrostatic MITgcm.

Fig. 6. Passive tracer concentration s at a time 13 days after the initiation of the dense inflow, for Case 4 (no f), at a

resolution of Dx · Dz = 500 m · 30 m, simulated by the non-hydrostatic MITgcm: (a) s in a vertical slice at x = 0, with

buoyancy contours overlain and (b) s in a vertical slice at y = �50 km, near the top of the slope.
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mixing is shown in the vertical cross-section taken near the top of the slope in Fig. 6(b). These
flow features are as expected from previous studies of non-rotating gravity currents (Baines,
2001; Ellison and Turner, 1959).

For the non-rotating case, we estimate entrainment from the transport in the cross-slope direc-
tion, since the flow does not alter its course from that of the initial inflow. Fig. 7(a) shows the
instantaneous cross-slope transport for several different times
T ðyÞ ¼
Z
A
V dxdz : where A is such that s > 0:01 ð15Þ
where V is the cross-slope velocity. The transport magnitude increases mono-tonically down
the slope, until neutral buoyancy is reached, when it remains approximately constant. The
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Fig. 7. For Case 4 (no f), simulated at a resolution of D x · Dz = 500 m · 30 m with the non-hydrostatic MITgcm: (a)

the total cross-slope transport in the overflow fluid (identified by s > 0.01), as a function of cross-slope distance (with

the beginning of the slope at y = 0 km). Several instantaneous values of transport are shown (at time intervals of 1.16

days), with the mean of these values overlain as a thick solid line and (b) the entrainment coefficient diagnosed from the

time-mean transport, as a function of cross-slope distance.
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entrainment deduced from the mean transport, shown in Fig. 7(b) shows a maximum at the top of
the slope, decreasing monotonically to zero at the neutral buoyancy level.

The total tracer, as a function of cross-slope distance and buoyancy class is shown in Fig. 8. As
in Ref, at the inflow, and until the top of the slope, most tracer is at a buoyancy of b < �0.018
m/s2. As the overflow descends down the slope, mixing moves the tracer maximum to lighter
buoyancy levels, and beyond y = �150 km most tracer is found in a broad band from
�0.01 < b < �0.005 m/s2.

The local gradient Richardson number, shown in a vertical plane through the center of the
plume (Fig. 9) shows that low Richardson numbers are found over the whole dense overflow until
Fig. 8. The total tracer s as a function of cross-slope distance and buoyancy class, time-averaged over the latter half of

the simulation, for Case 4 (no f), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-hydrostatic

MITgcm.



Fig. 9. The instantaneous local gradient Richardson number defined by Ri = (ob/oz)/(oU/oz)2 in a vertical plane at

x = 0 and a time of t = 13 days, for Case 4 (no f), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-

hydrostatic MITgcm.
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it reaches neutral buoyancy, when Richardson numbers rapidly increase to >0.25. Hence the re-
gion of entrainment and diapycnal mixing, from �150 km < y < 0 km coincides with the region of
low Ri, as expected if shear instability is the dominant cause of both mixing and entrainment.

3.3. Case 6 (no N2): with rotation, without ambient stratification

Finally we describe the features of a simulation with rotation, but without stratification. Qual-
itatively, as seen in Fig. 10, the flow resembles that of Ref, the dense water is deflected along the
slope, and the flow is dominated by eddies. The overflow fluid descends further down the slope
Fig. 10. Passive tracer concentration s at a time 13 days after the initiation of the dense inflow, for Case 6 (no N2), at a

resolution of Dx · Dz = 500 m · 30 m, simulated by the non-hydrostatic MITgcm: (a) s just above the topography, as a
function of horizontal distance and (b) s in a vertical slice at x = �50 km, near the inflow. s has a value of zero in the

ambient fluid, and s = 1 in the inflow.
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than in Ref, and much of this is in the form of thin, dilute sheets, in which Ekman flow probably
plays an important role. Again, most of the dilution of tracer, and hence mixing with ambient
fluid, takes place near the inflow where small-scale mixing is found (Fig. 10b). Dilution is even
more rapid than in Ref, and the final tracer concentration weaker. The lack of ambient stratifica-
tion means that the dense fluid never reaches a neutral buoyancy level, and hence never detrains
from the slope into the interior, hence the greater role for Ekman flow. As the dense water des-
cends the buoyancy anomaly does not diminish as in the ambient stratification of Ref, and so the
conversion of potential energy to kinetic energy is maintained.

Fig. 11(a) shows the instantaneous along-slope transport. In comparison with Ref, the trans-
port shows negligible increase in the along-slope direction after the corner region. Entrainment
deduced from this transport (Fig. 11(b)) therefore drops rapidly to zero away from the inlet.
The average entrainment in the corner region itself is 7.5 · 10�4, comparable to that of Ref.

The total tracer as a function of along-slope distance and buoyancy (Fig. 12) shows that, like
Ref, the tracer maximum moves rapidly from the buoyancy of the inflow b < �0.018 m/s2 to a
value of �0.006 < b < �0.004 m/s2, a lighter buoyancy level than in Ref. Hence despite the con-
tinued buoyancy difference between overflow water and ambient fluid, all diapycnal mixing ceases
after about x = �150 km. In comparison with Ref, entrainment and diapycnal mixing occur over
an even shorter distance.

To summarize these three high-resolution calculations: in both rotating cases the flow is pre-
dominantly along-slope, as would be expected following geostrophic adjustment on the slope,
the entrainment and mixing occur close to the inflow (before the flow has adjusted to move along
the slope), and the region of the flow dominated by eddies does not appear to be the location of
significant entrainment. The location of mixing is probably due to the sudden change in bottom
slope encountered as the dense fluid leaves the embayment, but the role of the embayment geo-
metry cannot be ruled out from the current simulations. The eddies may cause the entrainment
Fig. 11. For Case 6 (no N2), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-hydrostatic MITgcm: (a)

the total along-slope transport in the overflow fluid (identified by s > 0.01), as a function of along-slope distance (with the

center of the inlet at x = 0). Several instantaneous values of transport are shown (at time intervals of 1.16 days), with the

mean of these values overlain as a thick solid line and (b) The entrainment coefficient diagnosed from the time-mean

transport, for the region west of the inlet entrance at x = �50 km, as a function of along-slope distance.



Fig. 12. The total tracer s as a function of along-slope distance and buoyancy class, time-averaged over the latter half

of the simulation, for Case 6 (no N2), simulated at a resolution of Dx · Dz = 500 m · 30 m with the non-hydrostatic

MITgcm.
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to cease as the flow becomes more barotropic through the development of the eddies. (Girton and
Legg (in preparation) examines the role of eddies in modifying entrainment in greater detail.) In
contrast, in the non-rotating case, all flow is directed down the slope, and low Richardson num-
bers, with associated diapycnal mixing and entrainment, are associated with the entire plume up
until neutral buoyancy is reached. In both rotating and non-rotating cases, the entrainment and
diapycnal mixing are found in the same location (along-isopycnal entrainment is not significant),
and this location coincides with low Richardson numbers, and finite vertical buoyancy
stratification.

In all three cases, the bulk Richardson number near the top of the slope is between 0.4 and 0.5,
from which the Ellison–Turner formula would predict an entrainment coefficient of between
8 · 10�3 and 4 · 10�2. The entrainment coefficient at the top of the slope in no f lies within this
range, but that in the two rotating calculations is considerably smaller. Recent laboratory studies
suggest that rotation probably modifies the entrainment process by modifying the plume velocities
(Mathew Wells, private communication); this geostrophic adjustment of the plume is resolved by
the numerical simulations, and occurs within the corner region where entrainment was diagnosed.

Baines (2001) and Baines (2002) show that in the laboratory, two different regimes may be iden-
tified for non-rotating plumes in a stratified environment. When the ‘‘buoyancy parameter’’
B = QN3/(Db0)

2 is large and bottom drag is small, the entraining plume model dominates, and
the plume overshoots its neutral buoyancy level. When B is small, and bottom drag is large,
detrainment occurs over most of the plume�s length and there is no overshoot. The separation be-
tween the two regimes is given by (Baines, submitted)
Cd þ aE � 0:2B0:4 sin h ¼ 0 ð16Þ

Our parameters appear to lie in the regime where Baines (submitted) would suggest detrainment
should dominate. However, we observe an overshoot beyond the neutral buoyancy level, and only
a small amount of detrainment prior to reaching neutral buoyancy. These discrepancies suggest
that the model does not correctly capture the detrainment physics at this resolution.
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4. Comparison with coarser resolution simulations

We now compare these high-resolution calculations with identical calculations run at lower res-
olution, as well as three other cases, run at the lower resolutions only. Fig. 13 shows the equivalent
of Fig. 2(a) for Ref at three lower resolutions for the z-coordinate model and at two lower reso-
lutions for the isopycnal coordinate model. In the z-coordinate calculations, at 2.5 km resolution
eddies are present, but no small-scale structure is even partially resolved. At 10 km resolution, ed-
dies are absent, and the flow looks more similar to the laminar regime found at higher Ekman
numbers in the laboratory experiments of Cenedese et al. (2004). At 50 km resolution even the
overall plume structure is poorly resolved and the plume descends much less down the slope.
The 10 km isopycnal coordinate calculation includes more eddy structure than the 10 km z-coor-
dinate calculation and does not descend so far down the slope (both are consistent with the much
smaller vertical viscosity in the isopycnal model, as discussed below). The 50 km isopycnal coor-
dinate calculation resembles a coarse-grained version of the 10 km calculation, and hence less
qualitative changes are introduced by the coarser resolution than for the z-coordinate model.
(Ezer and Mellor (2004) and Ezer (2005) show that terrain-following models are also relatively
insensitive to resolution.)

For quantitative comparison of resolution dependence we focus on three key parameters: the
average entrainment in the corner region (since we have seen this is where most of the entrainment
occurs in the rotating cases), the final buoyancy where the maximum tracer is found as a marker
of diapycnal mixing, and the descent of the overflow water down the slope.

Fig. 14 shows the average entrainment in the corner region as a function of resolution for the
six different cases. We do not show the entrainment for the 50 km resolution z-coordinate simu-
lations, since the poorly developed sluggish flow does not lead to a well-defined increase in trans-
port on the slope, and in fact there is sometimes detrainment as overflow fluid spreads in the
opposite direction. For the z-coordinate calculations we note that the entrainment coefficient is
uniformly smaller at coarser resolution, but that different cases show different sensitivity to differ-
ent resolutions. Whereas at a resolution of 2.5 km, all the rotating cases have entrainment coef-
ficients which are quite close in value, at 10 km resolution the entrainment in 0.1Db0 is reduced
most strongly, that in 0.5Db0 and 0.5 slope less strongly, and that in Ref and no N2 least of all.
We can relate this sensitivity to the parameter C or to the deformation radius: 0.1Db0 has the
smallest value of C, 0.5Db0 and 0.5 slope intermediate values, and Ref and no N2 the largest values.
Physically perhaps cases with smaller deformation radii are affected more by the change in reso-
lution. The decrease in entrainment as Dx increases may in part be due to a decrease in the dense
flow velocity at coarser resolution, a trend which is in part probably determined by the increased
viscosity at coarser resolution. The calculations with the isopycnal model all show less dependence
of entrainment on model parameters at 10 km resolution than for the z-coordinate calculations.
Entrainment is somewhat higher, and in fact higher than the z-coordinate calculations at 500 m
resolution except for Case 4 (non-rotating). Changing resolution from 10 km to 50 km produces
a small decrease in entrainment in the isopycnal model, probably attributable to decreases in the
resolved velocity from which entrainment is calculated using the Ellison–Turner parameterization.

Fig. 15 shows the final buoyancy bf of the overflow, as a function of resolution for each of the
six different cases. The location of the overflow water in buoyancy space as a function of along-
slope distance (or cross-slope distance for the non-rotating case) is defined as:



Fig. 13. Passive tracer concentration s just above the topography, as a function of horizontal distance, with buoyancy

contours overlain, for Case 1 (Ref) simulations at different resolutions, and using different model types: (a)

Dx · Dz = 2.5km · 60m, MITgcm; (b) Dx · Dz = 10km · 144m, MITgcm; (c) Dx · Dz = 50km · 144m, MITgcm; (d)

Dx · Db = 10km · 25 layers, HIM; (e) Dx · Db = 50km · 25 layers, HIM; (f) as for (d) but with increased mv.
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bðxÞ ¼
R
bðx; y; zÞsðx; y; zÞdy dzR

sðx; y; zÞdy dz ð17Þ
We find the time-average of this path in buoyancy space (once statistical steady-state has been
reached) and then average over the distance over which b(x) is approximately constant with dis-
tance to obtain bf.

Fig. 15 shows that the trend of final buoyancy bf with resolution is not monotonic. All cases
show an increase in final buoyancy at the coarsest resolution of 50 km, consistent with excessive
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spurious mixing expected when Dx > H= tan h. However, those cases run at 500 m resolution also
show an increased final buoyancy at this resolution, as compared to the intermediate resolution
cases. We suspect that if 0.5Db0, 0.1Db0 and 0.5 slope were run at 500 m, we would find that they
also have a minimum in final buoyancy (and hence a minimum in diapycnal mixing) at the inter-
mediate resolutions.

At a resolution of 10 km the final buoyancy seen in the isopycnal and z-coordinate models is
very similar. However, on changing resolution to 50 km, the isopycnal model shows a small de-
crease in final buoyancy (indicating less mixing), unlike the large increase in mixing seen in the
z-coordinate 50 km calculations.

This very different response to changing resolutions reflects the way that the vigorous mixing is
manifest in the two models. In the z-coordinate calculations, the mixing is due to partially re-
solved shear-driven overturning at the highest resolutions and unconstrained numerical mixing
at the lowest resolutions. In the isopycnal model, the entrainment is solely due to the parameter-
ized mixing. As a deliberate part of the parameterization, this mixing controls the shears that
would drive mixing were they present in the higher resolution z-coordinate simulations. The dom-
inant source of energy to drive mixing is the horizontally broad (but vertically concentrated)
shears at the top of the plume, and these broad shears are similar at the leading order in both
the 10 km and 50 km isopycnal calculations. If spurious numerical mixing were greatly reduced
(which is a formidable challenge) and a deliberate parameterization of unresolved mixing were
introduced, it is very likely that the z-coordinate model would have a similarly weak dependence
on resolution.

Finally Fig. 16 shows the mean path of the plume for each of the five rotating cases as a func-
tion of resolution. The mean path is defined by
Y ðxÞ ¼
R
ysðx; y; zÞdy dzR
sðx; y; zÞdy dz ð18Þ
and is time-averaged once a statistically steady-state is reached. For the z-coordinate model we
note the following trend in all cases: for Dx = 2.5 km and Dx = 10 km, the path taken down
the slope is initially very similar; however, for Dx = 2.5 km the path changes and aligns itself with
the along-slope direction closer to the inlet. The least descent is seen for Dx = 500 m, consistent
with the more rapid mixing and small vertical viscosity in these calculations. For Dx = 500 km
the path is less steep than for the intermediate resolution cases, but not aligned along slope as
soon as for Dx = 500 m. The steepness of descent therefore follows the same trend as the changes
in buoyancy, as one would expect, with less mixing associated with greater down-slope momen-
tum. Interestingly, the introduction of eddies, which occurs as Dx is reduced from 10 km to 2.5 km
makes little difference to the average path down the slope, perhaps because at Dx = 10 km the
higher vertical friction compensates for the absence of eddies. By comparison, the isopycnal
model shows a path much more aligned with the along-slope direction for both Dx = 10 km
and Dx = 50 km, consistent with the snapshots shown in Fig. 13. A possible cause might be the
much smaller vertical viscosity in the isopycnal model.

To test the effects of the much larger vertical viscosity in the z-coordinate model, an additional
10 km resolution isopycnal model simulation of the reference case was done with the much larger
vertical viscosity of the z-coordinate model (0.5 m2 s�1 vs. 10�4 m2 s�1). The eddies are strongly
suppressed in this viscous simulation (Fig. 13f). Consistent with the viscous suppression of the
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Fig. 16. The mean path of the overflow water, as determined from the passive tracer center of gravity, as a function of

resolution for each of the five different rotating cases: (a) Case 1 (Ref); (b) Case 2 (0.5Db); (c) Case 3 (0.1Db); (d) Case 5
(0.5 slope); (e) Case 6 (no N2). Five or six different calculations are shown for each case: with z-coordinate and isopycnal

calculations shown by solid and dashed lines, respectively.
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Fig. 17. The mean path of the overflow water, as determined from the passive tracer center of gravity, as a function of

vertical viscosity and model type for Case 1 (Ref) at 10 km horizontal resolution: z-coordinate, mv = 5 · 10�1 m2/s

(solid); isopycnal coordinate, mv = 10�4 m2/s (dashed); isopycnal coordinate, mv = 5 · 10�1 m2/s (dotted).
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shears that drive the parameterized mixing, the final plume density is higher (and in fact is now
higher than the 10 km z-coordinate model) (Fig. 15). The path of the plume in the viscous case
reaches about 40 km further down the slope, accounting for most of the difference in the paths
between the two models (Fig. 17). This is consistent with an increase in down-slope bottom
Ekman transport with higher viscosity (as seen also in Ezer (2005)). There are other significant
differences between the two models, especially the different formulations of horizontal viscosity
and the differing barotropic circulations that evolve with the presence or lack of a true open
boundary condition at the outflows. But despite these differences, it is significant that there is
an intermediate resolution regime, predictable from previous theory, where the two models
behave rather similarly. We are confident that the highly resolved non-hydrostatic simulations will
provide invaluable guidance in refining the parameterizations for use in this regime within large-
scale ocean simulations.
5. Discussion and conclusions

We have described a series of simulations, at four different resolutions, with six different com-
binations of physical parameters, and using two different numerical model types, designed to
investigate the sensitivity of overflow simulations to model resolution and type, over a range of
physical regimes. We have focused on the entrainment and diapycnal mixing which takes place
in an overflow. We find that the net amount of diapycnal mixing which takes place is strongly
dependent on model resolution for the z-coordinate model: mixing is increased at higher resolu-
tions (when non-hydrostatic mixing processes are permitted) and at coarse resolutions (when the
mixing is spurious, and due to the inability of the model to move fluid down the slope without
invoking convective adjustment). Current z-coordinate climate models are in the coarse resolution
limit of our simulations, and hence effort is being devoted to preventing this spurious mixing in
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overflow regions, by implementing schemes designed to move dense fluid more efficiently down
the slope. However, as resolution increases, future models will likely move into the regime where
mixing is less than in the high resolution simulations (which in the absence of infinitely high res-
olution calculations we are forced to use as our best guess at the truth). Hence, future z-coordinate
climate models may ultimately be in a position to adopt bottom boundary mixing parameteriza-
tion schemes as a means of representing the mixing in gravity currents, such as currently practiced
in sigma coordinate models, which use turbulence closure models such as Mellor and Yamada
(1982).

For the isopycnal coordinate model, we find that in comparison with the non-hydrostatic sim-
ulations, entrainment is slightly greater at 10 km resolution, while the diapycnal mixing is about
the same (no N2) or somewhat less (Ref). Both entrainment and mixing decrease as resolution
coarsens, as less extrema in shear are resolved. As all of the mixing and much of the entrainment
is entirely due to the Richardson number-based parameterization, this resolution dependence
might be further reduced by adjusting the parameterization to take into account how much of
the shear spectrum is resolved.

We can compare our results with the sigma-coordinate calculations of Ezer and Mellor (2004),
which use the same configuration as our Ref. Their calculation Sl uses a horizontal resolution of
10 km with horizontal viscosity of 5 · 101 m2/s, as for our z-coordinate 10 km calculations. The
sigma-coordinate calculation shows slightly more eddy activity than the our z-coordinate calcula-
tion at similar resolution, while following a less steep descent down the slope. These differences
may again be due to the difference in vertical viscosity (supplied by the Mellor–Yamada scheme
in the sigma model). The sigma-coordinate calculation is qualitatively similar to the isopycnal
coordinate calculation at the same resolution. Like the isopycnal coordinate simulations, sigma
coordinate simulations show less resolution dependence than z-coordinate simulations. Note that
our 10 km and 2.5 km z-coordinate calculations bear little resemblance to the z-coordinate calcu-
lations of Ezer and Mellor (2004) at the same resolution (which produced much less descent than
the sigma coordinate calculations, and much more mixing) primarily because the MITgcm em-
ploys the more accurate partial step topography, rather than the full step topography used by
Ezer and Mellor (2004). Differences may also be due to the use of the Mellor–Yamada mixing
scheme by Ezer and Mellor (2004).

We may also compare our results with measurements from the Denmark Straits Overflow. Over
the 200 km downstream of the sill where measurements were made, Girton and Sanford (2003)
found a rate of descent of 6 m/km, somewhat steeper than seen in any of our rotating simulations
(no N2 having the steepest rate of descent at 4.5 m/km, deduced from Fig. 16); however the topo-
graphic slope is somewhat steeper in the Denmark Straits region than in our configuration. The
downstream change in plume density seen in the Denmark Straits Overflow (0.1 kg/m3) is substan-
tially smaller than in our Ref and no N2 simulations (from Fig. 15), but lies between that seen in
0.5Db0 and 0.1Db0, which is expected since the initial buoyancy anomaly in the Denmark Straits is
between those two values. Finally the entrainment velocity diagnosed in the Denmark Straits
overflow lies between 6 · 10�5 m/s and 8 · 10�4 m/s. This is less than the entrainment velocity
diagnosed in our Ref and no N2 calculations, but greater than that in the 2.5 km resolution
0.5Db0 and 0.1Db0 calculations (entrainment velocities are not shown here, but are an intermediate
step in the calculation of the entrainment coefficient). Given the tendency of the z-coordinate
model to underestimate entrainment at lower resolution, it is likely that a simulation with the
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appropriate initial buoyancy anomaly at high resolution would generate entrainment of about the
same order as seen in the observations. While we cannot say anything more specific about the abil-
ity of the model to simulate real flows without employing more realistic topography, stratification
and inflow forcing, it appears that the model has the capability to be used at high resolution to
give estimates of entrainment of the right order of magnitude. Future work, e.g. as part of the
Gravity Current Entrainment Climate Process Team, will examine the correspondence between
realistic simulations and observations more closely.

An important result for models at intermediate resolutions (i.e. where h= tan a < Dx) is the con-
trolling effect of vertical viscosity, in both determining whether eddies are possible, and enhancing
downslope flow (although entrainment and mixing are less sensitive to the vertical viscosity). Since
the z-coordinate model requires larger vertical viscosity for numerical reasons compared to the
isopycnal model, the solutions at Dx = 10 km are qualitatively quite different.
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Appendix A. Bottom mixing parameterization

Here we describe a new parameterization of bottom boundary mixing for isopycnal models,
employed in all the isopycnal simulations in this study. Isopycnal models have previously used
the shear Richardson number to parameterize diapycnal mixing. The source of this energy is
the resolved shear, and it has proven capable of capturing many aspects of mixing in the interfa-
cial layer at the top of dense plumes. Plumes, however, also tend to have well-mixed boundary
layers (Peters et al., in press), and the previous parameterizations for isopycnal models (Hallberg,
2000) have not included the vigorous mixing that occurs within the homogeneous bottom layer.

The well-mixed bottom layer is a region of three-dimensional turbulence. Although the shear
Richardson numbers can be locally quite small within this bottom layer, the source of turbulent
energy is as likely to be emanating from interactions between the mean flow and the boundary as
it is from local velocity shears.

In this paper, we introduce a parameterization of bottom boundary layer mixing to comple-
ment the shear-Richardson number parameterization that applies in the interfacial layer at the
top of the plume. It is assumed that the source of energy to drive mixing is the energy extracted
from the mean flow by the bottom drag. With a quadratic bottom drag, energy is extracted at a
rate
EBBL ¼ q0cD j uBBL j uBBL � uBBL ¼ q0u
�3 ðA:1Þ
It is assumed that a substantial portion of this energy is dissipated within the bottom boundary
layer, and that there is an assumed efficiency c with which this extracted energy drives diapycnal
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mixing. (This relationship between turbulent dissipation and diapycnal mixing is essentially the
well known Osborn-Cox relationship (Osborn and Cox, 1972).) Direct measurements of turbulent
mixing in stratified fluids indicate that the efficiency with which turbulent dissipation translates
into diapycnal mixing is of order 20% (Ivey and Imberger, 1991), so this is a reasonable value
to choose for c, although c must be considered the tunable parameter of this parameterization.
The parameterization here is to apply this energy to the deepest resolved stratification, which will
be within the bottom boundary layer or at the top of the bottom boundary layer. In addition, sur-
face mixed layer parameterizations have found that the agreement with observations is improved
if a rotationally induced decay of exp(�zf/ku*) is used, where j = 0.4 is the von Karman constant
(Oberhuber, 1993) and z is the distance between where the turbulence is generated and where its
mixing is realized.

In an isopycnal model, diapycnal mixing occurs through a layer entraining its neighbors
(McDougall and Dewar, 1998). The bottommost massive layer cannot entrain from massless lay-
ers below, and it cannot entrain solely from layers above and still retain its prescribed density, so
the bottom mixing is expressed as entrainment both from above and below by the second massive
layer from the bottom. Using the relationship between work and diapycnal mixing the diapycnal
diffusivity in the second layer from the bottom is set to be
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where the subscripts B and B � 1 refer to the bottom layer and the next layer up, respectively, and
DqB�1 is the density jump across second layer from the bottom (see Hallberg (2000) for an exact
definition when the density differences between layers are not uniform). If mixing due to the
resolved shear Richardson numbers or the background diffusivity would be more intense, this
bottom source of mixing is simply omitted in this prescription.
.1. Passive tracer concentration s in a meridional slice through the middle of the inflow at time 12.5 days after the

ion of the dense inflow, for the non-rotating Case 4 (no f), in the isopycnal model at a resolution of 10 km. This

is comparable to Fig. 6a. In (a), the bottom-drag induced mixing parameterization is included with an efficiency

; this is the setting used throughout the paper. In (b), the bottom-drag induced mixing is omitted (or equivalently

efficiency of 0). Without the bottom mixing, nearly undiluted overflow water flows into the abyss in a highly

s but adiabatic bottom boundary layer.
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This additional bottom source of mixing has a dramatic effect on the simulations, as shown in
Fig. A.1. Without the bottom mixing, a thin sheet of dense and tracer laden fluid creeps down the
slope within a viscous bottom boundary layer. While this creeping flow may be reasonable in low
Reynolds number laboratory flows, in an oceanographic context the near-bottom viscosities that
support it are much higher than molecular values, and the bottom boundary layer should be tur-
bulent. The added bottom mixing greatly reduces the propensity for a secondary, thin, dense
plume, essentially by providing a diffusivity that is more commensurate with the expected turbu-
lence in the bottom boundary layer.

This new parameterization of bottom-layer mixing is based upon a plausible conversion of
some of the energy extracted from the resolved flow by bottom drag into turbulent kinetic energy
that supports the diapycnal mixing. Although it dramatically improves the simulations presented
here, it should be considered a qualitatively reasonable placeholder for future parameterizations
that will be developed by studying high-resolution simulations and observations of oceanic bot-
tom boundary layers.
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