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The so-called conservative or flux fornl of the finite difference fornlu1ation of con-
vection ternls is shown to be inadequate for preventing nonlinear instability in some cases.
A preferred scheme for the convection terms which has the property of absolute spatial
conservation is obtained. Illustrative examples are given for (i) the Navier-Stokes
equations; (ii) a forced convection equation; and (iii) a Burger:s ~ype equation.

1. INTRODUCTION

Early investigations of long-term time integrations involving nonlinear
convection terms revealed the presence of a weak instability that eventually led to
meaningless results. The instability could not be cured by shortening the time step.
This so-called nonlinear instability was shown by Phillips [1] to be due to aliasing.
Arakawa [2] then proved that it is possible to devise forms of the discrete convection
terms with which the instability does not occur because the aliasing is controlled.
The principle is that stability can be maintained if the discrete convection form is
designed so that the integral of the quadratic quantity is conserved (in addition to
the usual Courant-Friedrichs-Lewy linearized stability condition on the time step
..::1t). As nonlinear instability is due to spatial truncation rather than to time trunca-
tion, our discussion and use of the term "c~servation" will refer in the main to
the spatial aspect of the integration.

Quadratic conserving forms of the convection terms were given by Arakawa [2]
for the two-dimensional vorticity equation and by Lilly [3] and Bryan [4] for the
general primitive form of the hydrodynamic equations. In each of these schemes
the conservation of quadratic quantities depends on the divergence .0) == V .v
being identically zero at all stages of the calculation. In some methods of integration
continuity is identically satisfied through the use of a stream function. However,
in the primitive equation forms used in the integration methods of, e.g., Harlow
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and Welch [5] and Williams [6], continuity is not identically satisfied but is main-
tained at a small value !!#, the precise value of which depends on the accuracy to
which the associated Poisson equation for pressure is solved. Because of this
nonvanishing value of!!# it is necessary to re-examine the derivation of the discrete
convection schemes.

The difference scheme derived will be applicable, in addition to the Navier-
Stokes equations, to other transport equations with convection terms present.
Such equations are the induction equations of magnetohydrodynamics, the trans-
port of "active scalars" such as heat, mass, or solutes in liquids that can influence
the motion and the transport of "passive scalars" such as tracers and pollutants in
atmospheric and oceanic flows.

2. THE FINITE DIFFERENCE EQUATIONS

Numerical methods for integrating equations involving convection terms are in
general use. It will be convenient to refer to a typical method, that discussed by
Williams [6]. In that study the convection terms were written in the standard
flux form, shown by Bryan [4] to be conserving of quadratic quantities. However,
it has become apparent that such discrete convection terms do not conserve
quadratic quantities absolutely, i.e., algebraically. This flux form is not- fully
adequate for prediction methods which involve a process in which the continuity
variable!!# = V' .vis not identically zero. The nonvanishing of!!# limits the validity
of Bryan's analysis for this method.

To illustrate the problem, consider a typical transport equation such as that for
heat in an adiabatic fluid,

aTat + (v .V) T = O. (1)

For a term such as wT. the finite difference expression in standard flux form is

ctCw, T) == S.(wT"), (2)

where we define the central difference operators

S.T == [T (z +~) -T (z -~)]/LJz, (3)

r==[T(Z+~)+T(Z-~)]/2, (4)

for the grid system of Fig. 1. LJz is the distance between adjacent T points. (See
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FIG. 1. The grid point arrangement.

Williams, Ref. [6], for full details of grid arrangement and boundaries for the
Navier-Stokes equations.) Upon forming the corresponding temperature variance
equation the term of Eq. (2) produces a contribution

""'Z- ( TT ) T2 T8~(wn = 8~ w~ +T8~w, (5)

where we define

""'Z ( ~z ) ( ~z )TT == T z + ~ .T z -~ .(6)

The first term on the right side of (5) is in the correct form for the conservation
of T2. However, the vanishing of the second term, when contributions from the
other convection components are considered, will depend on the satisfaction of
local continuity, .0) = O. In certain numerical schemes such as those Bryan [4] had
in mind local continuity is achieved and there is no problem. But in methods such
as that of Harlow and Welch [5] and Williams [6] .0) is a nonvanishing small quan-
tity. Thus a summation of terms such as (5) over the whole fluid gives a non-
vanishing contribution

T2
+1: T.O). (7)

This term (and its equivalent in the momentum transport equations, etc.) reduces
the accuracy of the conservation of quadratic quantities and hence the stability of
the form C1 .The conservation by the form C1 is dependent upon the value of'o) and
will therefore be referred to as a conditionally conserving form. Although the
term (7) appears small it can cause critical problems in computations with null or
small diffusive terms, as the examples will show. Clearly the problem is best avoided
by using a difference scheme for the convection that does not have conditional
conservation. In methods where the Poisson equation is solved by a relaxation
process the residual .0) is much larger and problems are accentuated.
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To obtain a convection scheme which has no ~ contribution, we consider a
second form

C2(w, T) == ws;rz. (8)

which is related to the first by the identity

ws;rz = S.(WT) -TS.w. (9)

The C2 form produces a contribution

T2-1:: -~ (10)
2

to the temperature variance integral so that by averaging the two forms C1 and
C2 , the ~ contributions to the variance equation can be made to cancel and we
obtain a form Ca which is absolutely conserving, i.e., the cons~rvation is algebraic
and is independent of the accuracy of the solution. This form is written

Ca(w. T) == [S.(wT) + ws;rz]/2. (11)

and it has a simple fundamental form when expressed for the grid arrangement of
Fig. 1. The form is

Ca(w, T)k = [Wk+1/2T k+l -Wk-1/2T k-J/2Jz. (12)

It should be mentioned that the form Ca has the disadvantage of introducing
errors proportional to ~ into the integrals of linear quantities. However, linear
conservation is not as meaningful or as necessary a requirement for computational
stability as quadratic conservation. Hence it is recommended that the form Ca
be used both to avoid possible difficulties from arising and to reduce computational
time, since the expression (12) for Ca involves less calculation than that for C1 or C2 .

3. ILLUSTRATIVE SOLUTIONS

In this section we present solutions obtained for three different problems
involving convection terms. The differences between solutions using the C1 and
Ca discrete convection schemes will be examined in each case. Each example
indicates how the schemes behave for different types of convection.

Only time integration schemes that are essentially nondamping have been con-
sidered, i.e., for which linearized stability analysis shows the associated eigenvalues
to lie on the unit circle.. The methods of Lax-Wendroff [7] and Leith [8], and the
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Am method of Douglas [9] in the nonlinear case, were found unacceptable for this
reason. The commonly known "leap-frog" method [10] and the lesser known
"angled-derivative" method [1 I] were found satisfactory for the purpose of this
study.

3.1. Example 1. The Navier-Stokes Equations

Solutions were obtained for an inviscid flow by the method given by Williams [6]
for solving the Navier-Stokes equations. Setting the viscosity to zero places the
severest test on the numerical formulation and most clearly shows the differences
between the conditional and absolute conserving schemes.

1.0

****************** **9***** ***
** ********~**** *** **** .**8* ** ** ********* ** *
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* * * * ** *** *** 5* * * * ** * * * * ******* * * " * ** * * ** *** *** ** * * *
* * * ** ********* *6 * *" *
* * ** **" *** ** * ** * ** ********* 7* * *Ok ** **** **** ** ** ** ********* ** *
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FIG. 2. Initial stream function of Example 1..
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As an example, we consider the evolution of a cellular flow in an annular gap.

The flow is assumed to be inviscid and barotropic so that there is no external source

of energy. Thus the initially imposed kinetic energy should remain constant. How

well this condition is met by each computational scheme will be a measure of that

scheme's behavior. Since the flow is assumed to be axially symmetric, the governing

equations are

8tvt + C(v, v) = -8r17, (13)

8twt + C(v, w) = -8.17, (14)

1
PJ == -8r(rv) + 8.w = 0, (15)

r

where v, w, 17 are the radial velocity, vertical velocity, and pressure, respectively.

The equations are solved by marching with centered time differences and using the

continuity equation (15) to give a Poisson equation for the pressure. The full details

of the grid and boundary arrangement are in the paper by Williams, Ref. [6].

The fluid is given initial kinetic energy by specifying a cellular motion, Fig. 2, in

the r, z plane in terms of normalized coordinates r', z',

1/1 = -3 sin217z' .sin217r', (16)

rv = -8.1/1, rw = +8rl/1, (17)

with zero normal velocities at all boundaries. The convection schemes in axially

symmetric cylindrical polar coordinates are

1 -r -r -r-Z
CJv, v) == -8r(rv .v) + 8.(w v), (18)

r

1 -z -r -z-z
CJv, w) == -8r(rv .w) + 8.(w w), (19)

r

r z
1 -r -r

C2(v, v) == -(rv 8rv) + (w 8.v) , (20)

r

r z
1 -z -.

C2(v, w) == -(rv 8rw) + (w 8.w) .(21)

r

The averaging in the C1 forms is necessitated by the staggered grid and this
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particular form is chosen as it provides quadratic conservation. The C2 forms are
derived from the C1 forms by use of the identity (9). The kinetic energy K is defined
as the summation of

1 (-z 1 -r
)7: w2 + r rv2 (22)

over all fluid elements centered on the pressure point. The Ca forms are given by
averaging the corresponding C1 , C2 terms.

Other parameters of the calculation are (i) the interior radius, a = 2 cm; (ii)
the outer radius, b = 5 cm; (iii) the depth of the fluid, d = 3 cm. A moderate
resolution of 20 x 20 grid lengths was used. The accuracy of the solutions can be
improved by increasing the resolution but our purpose is to display the behavior
at a given resolution.

TABLE I

Total Change in Kinetic Energy for Both Schemes After 50 sec Computed at
Three Values of .dt. Initial Kinetic Energy = 4.8882 cgs units.

Scheme 10,000 x (.dt = 0.005) 5000 x (.dt = 0.010) 1000 x (.dt = 0.050)

C. -0.0054 -0.0101 -0.0295
C1 +0.1831 +0.1535 +0.1712

TABLE II

Variation in kinetic energy for both schemes for .dt = 0.005 over 20,000 steps.
Also shown are individual energy components. Initial kinetic energy = 4.8882 cgs units. i

Time Time Eiv. Etw. .dK .dK
step in sec with C. with C. with C. with C1

0 0 2.3959 2.4923 -0.0000 +0.0000
2000 10 2.8964 1.9917 -0.0001 +0.0170
4000 20 1.7546 3.1332 -0.0004 +0.0338
6000 30 2.2437 2.6438 -0.0007 +0.0308
8000 40 2.8802 2.0064 -0.0015 +0.0428

10,000 50 2.2297 2.6532 -0.0054 +0.1831
12,000 60 2.3314 2.5439 -0.0129 +0.4053
14,000 70 2.5376 2.3300 -0.0206 +0.4503
16,000 80 2.4094 2.4523 -0.0265 +0.4694
18,000 90 2.3677 2.4879 -0.0327 +0.4125
20,000 100 2.2832 2.5659 -0.0390 +0.4354
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In analyzing the solutions we must first find out how the time truncation of the
centered time differencing affects the solutions so that we can isolate the effects of
the space truncation errors which are our present concern. To do this solutions
were obtained for three values of the time step increment LIt for the two discrete
convection forms C1 and Cs .The results, Table I, show the change in total kinetic
energy after 50 secs caused by computational sources. All the LIt values are below
the C-F-L linear stability value of 0.15 for this flow. From Table I we conclude
that errors in energy conservation in using the Cs form are due solely to time trunca-
tion errors and that these errors can be made as small as desired by decreasing LIt.
However, the errors with the C1 system are effectively independent of LIt and are
due to space truncation errors.
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0 r' 1.0
FIG. 3. Final stream function of Example 1.
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Next, using the smallest Jt to minimize time truncation effects, we look at solu-
tions over a large number of steps, Table II. The two components of K show that
the flow is changing even though the total K remains almost constant; The column
for Cs shows that the time truncation effects are small and that the use of C1 leads
to space truncation errors of an undesirable level.. Obviously Cs is a preferable
scheme under the conditions of these solutions. Figure 3 shows the state of the
stream function at the end of the calculation.

To estimate under what circumstances the errors caused by using the C1 form
are important, consider the kinetic energy equation that is normally used in the
Boussinesq equations of natural convection, i.e.,

oKat = ,sg<wT) + v<v .V2V) -<v .(v .Vv» -<v .V1T). (23)

The last two terms are zero for the continuous equations but in the finite difference
equations they are only zero if the differencing is designed to make them so. In
general the last two terms are insignificant when compared to the first two terms.
In the example of Williams [6] using the C1 form, the values obtained were of the
order 10-1, 10-1, 10-7, and 10-6 for these terms, respectively. Thus for such calcula-
tions there is little difference in using either the C1 or Cs forms. However, when the
first two energy integrals are small or zero, as is the case in adiabatic, inviscid flow,
the significance of the last two terms increases. In the example of this section where
JK is due solely to the latter terms we find that (i) for Cs, <v .(v' V'v» ,..., 10-8,
<v .V'1T) ,..., 10-s, a~d .0) ,..., 10-0 throughout the calculation but (ii) for C1 the
values of <v .(v' V'v», <v' V'1T), and'o) are 10-5,10-8,10-0 initially, and after 100 sec
they have grown to 10-2, 10-8, 10-0, indicating that there is a weak instability in
the C1 convection term. The instability is not present in the Cs form and can be
suppressed in the C1 form by the presence of diffusive terms.

In all the solutions discussed above, the Poisson equation was solved accurately
to within round-off error. When relaxation procedures are used the above-
mentioned problems become more acute.

3.2. Example 2. Forced Convection of a Scalar

The purpose of Examples 2 and 3 is to illustrate the stability of the Cs difference
operator in cases where .0) may not be small and where no attempt is made to
eliminate or control it as the integration proceeds. Similar to the studies by
Roberts and Weiss [11] and Crowley [12], we will first consider a typical forced
convection equation, in particular, adiabatic heat flow. For a prescribed velocity
field this becomes a linear, variable coefficient, partial differential equation for T,

aT -( ) aT - ( ) aT (24)-= -ux z '--wx z'-
at ' ax ' az
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where

u(x,z) = sin21Tx .sin 21TZ + ,Jx, z),
- ( ) . 2 .2 ( ) (25) w x, z = -SIn 1TX. SIn 1TZ + '2 x, Z ,

and the bar indicates that the velocity field is kept constant during the time integra-
tion. The functions '1 , '2 represent random components whose mean divergence
!!} ,..., 10-2 on a 40 x 40 mesh. The sinusoidal components, though satisfying
\1 .v == 0 exactly in their continuous form, fail to satisfy it upon finite differencing
by errors ,...,10-7. Situations in which such calculations are useful occur commonly
in meteorology and astrophysics, where the passive advection of tracers and pollu-
tants in the atmosphere, or of magnetic fields in stars, by an experimentally observed
velocity field needs to be investigated over long times.

With the help of (11), Eq. (24) may be written

!{- = -C3(u, T) ~ C3(w, T), (26)

, and has been integrated on the unit square 0 ~ x ~ 1, 0 ~ Z ~ 1 covered by

a 40 x 40 mesh of grid points. Two different time iteration methods have been
applied to (26). These are:

a. The "leap-frog" method (Richtmyer, Ref. [10], p. 17), which has a time
truncation error of O(Jt2) and a Yon Neumann condition of

Jt ~ Jx/(1 u I + ~ I w I)

associated with it,

1~ (T;i+l -Tti-l) = -C3(u, T') -C3(w, Tj. (27)

b. The two-sweep "angled-derivative" method (Roberts and Weiss, Ref. [11],
p. 279) which has a time truncation error of O(Jt2jJx2) and no time step limitation
associated with it.

Upsweep (j = 1,2,..., J; i = 1,2,..., I),

Tlt1 -TlJ C -( -T'T\ C -( - T'"' (28 )Jt = -3 U,.. } -3 W, J. a

Downsweep (j = J, J -1,...,1; i = I, I -1,...,1),

n+2 7:1"+1'i Ji'i = -C3+(u, T1'+I} -C3+(w, T1"+I), (28b)
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where we define

Cs-(u, T') = (Ui+1/2;Ti+l ; -Ui-1/2 ;71!~ ;)/2I1x,.." (29)

Cs +(il, T') = (ili+1/2.;T~t~.; -ili-1/2.;T~_1,i)/2L1x.

Each method of time iteration was repeated with different sizes of the time step
I1t (the particular values depending on the stability condition of the method) in
order to separate the effects of time truncation errors from that associated with the
divergence .Oi} and spatial truncation in general. We must also make a remark
concerning the boundary conditions on T. Since (24) is first order in x and z, we
may specify T only on two sides of the square, say on x = 0 and z = O. However,
the nature of the staggered grid (shown in Fig. 1) upon which scheme Cs is built
precludes the use of the boundary values of T, and the calculations effectively use
T = 0 on the boundaries.

As initial conditions, at t = 0, T(x, z) is defined as zero everywhere except on a
circle of radius, = 0.15 centered at x = 0.35,. z = 0.35 in the unit square. On the
circle the values of T describe a cone, i.e.,

T(x, z) = A[,2 -(x -0.35)2 -(z -0.35)2].

Integrations were carried out for I1t = 0.0025, 0.010, and 0.040, respectively,
where the critical I1tCR given by the C-F-L condition is 0.025 (see Table III).
At tN = 50.0 the integrations were stopped, with the temperature variance deter-
mined by some schemes increasing monotonically and others oscillating about
some mean value. It was found best, therefore, to define the following quantities:

1 N
E(t = 0) = Eo = r. T:;(t = 0), B = N r. E(t,,),

i.; ,,-I
(30)

I1E = (B -Eo)IEo , E* = E(tN)IEo, 8E = Il1ax I E -Eo liEu .

In those cases where the iterations diverged E* is given, otherwise I1E and 8E are
given. To compute 8E, the initial peak in the energy vs time curve is neglected; in
most cases, 8E corresponds to the amplitude of quasisinusoidal oscillations in E
superposed on B.

The results showed that in the case 'I and '2 are set to zero, the same results are
obtained with the C1 and Cs schemes to five significant figures. When 'I and '2 are
nonvanishing, C1 yields divergent results at t at 35 sec but Cs remains convergent
for all values of I1t ~ I1tCR .On a comparison with the results of Example 1, we
may conclude that linear systems can remain stable with a much larger value of
t!lJ than nonlinear systems. We may note that although linearized stability analysis
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TABLE III

Change in Variance L'iL'jTi' for Both Schemes After 50 sec, at Three Values of Jt and with Two
Time Methods when rl , rs * 0 (ANG = angled-derivative, LF = leap-frog,

JE, 8E, E* given by (30)).

Jt = 0.0025 (20,000 steps) Jt = 0.010 (5000 steps) Jt = 0.040 (1250 steps)

Time Space
scheme scheme ~E E* 8E ~E E* 8E E*

C1 2.100 2.100 00
ANG C. 0.0013 0.0008 0.0115 0.0052 7 X 101

C1 1.990 2.230
LF

C. 0.0002 0.0000 0.0027 0.0001 -

predicts stability for the angled-derivative method at LIt = 0.040 (1.6 X LltcR)'
a slow instability has increased the energy to very large values and the integration
is clearly blowing up. The source of this instability is in the time truncation errors.

3.3. Example 3. Two-Component, lnviscid" Burger's Equation"

The purpose of this calculation is to illustrate the stability of the Ca difference
operator in highly nonlinear systems in which no restraint is put on !!i. Consider
the case in the calculation of turbulent compressible flows. The system chosen was
the following:

ou ou ou
-= -u- -w- (31a)ot ox oz '

ow ow ow
-= -u- -w-. (31b)

at ox oz

Again the initial velocity field is chosen to be that of (25), but now !!i, originally
, ,10-7, will be allowed to vary with time. For boundary conditions we choose the
normal velocity to vanish at each wall, which provides the four necessary boundary
conditions for (31). The use of the staggered grid will exclude the tangential veloci-
ties from entering the calculations.

As in Example 2, a 40 X 40 mesh is chosen and the staggered grid arrangement
of Williams [6] is used for the location of u and w values. The leap-frog and angled-
derivative methods were used for the time integration. However, because of the
nonlinearities we must further clarify schemes (27) and (28). If in scheme (28) we
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TABLE IV

Change in Kinetic Energy for Both Schemes After 25 sec, at Three Values of .1t and with Two
Time Methods (ANG = angled-derivative, LF = leap-frog, E* given by (30)).

.dt = 0.0005 (50,000 steps) .1t = 0.0025 (10,000 steps) .1t = 0.0125 (2000 steps)

Time Space
scheme scheme E* E. E.

., I-

C. 1.000 1.027 2.42
ANG

C1 CX> CX> CX>

C. 1.029 1.304 CX>
LF

C1 CX> CX> CX>

replace T by u and w, respectively, and evaluate u and IV (now simply u and w) at
time level 'T in both (28a) and (28b), we obtain the angled-derivative analog of (31).
A similar procedure in (27) will yield the leap-frog analog of (31).

We must note that the system described by (31) permits discontinuities or shocks,
but there is no effort made in this paper to study the nature of the solutions, only
to show that the Cs form gives stable numerical solutions even in such cases.

The integrations were carred out to tN = 25 sec, with the results given in Table
IV. As in Example 2, E* respresents the ratio of final to initial energies [see (30)].
All computations with the C1 difference scheme blew up between t ~ 0.5
and t ~ 1.0 sec. By monitoring the total divergence E. E; I V .v I.; = ~ present
in the system it was found that the blow-up of the calculations coincided with
a sudden large increase in the value of ~ by factors of 100 or larger. The same
increase in ~ affected the Cs integrations only slightly. Part of the divergence
increase may be attributed to the formation of discontinuities, a genuine effect of
compressibility, but a large part is due to the appearance of random small scale
fluctuations which the grid is unable to resolve. The results show that it is possible
to maintain computational stability even when the flow becomes physically unreal-
istic, and care must be taken to interpret the results in such cases.

The effect of the time truncation errors is clearly displayed in the results for the
Cs calculations. With each time method there is an increase in the energy that gets
bigger with increasing Llt.

Somewhat surprisingly, the angled-derivative method has proved superior to the
leap-frog in this nonlinear problem despite its poor truncation error. Additional
tests showed that for Llt = 0.0005 the energy remained unchanged in the fourth
significant figure even after 100,000 steps, showing that it is possible to devise
convective difference schemes that conserve in time as well as in space, Admittedly,~
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one has to pay the price in increased computer time, but with the advent of the
"fourth-generation" computers and reduced cost per arithmetic operation, this
may not become excessive in the future.

It is interesting to compare the results of Example I and Example 3 as displayed
in Tables II and IV, respectively. In the former pressure is included and the diver-
gence is controlled by the method of corrective iteration, and the Ca scheme is
slightly damping, whereas the C1 scheme is amplifying. In the latter case both
schemes are amplifying, with the C1 scheme blowing up in a few hundred time

steps.

4. CONCLUSION

We have shown that quadratic conserving convection schemes can be divided
into two classes, those of partial conservation and those of absolute conservation.
The absolute conserving form Ca is found to be preferable because it is both I

computationally stable under all situations a~d more economical to compute due
to its simpler form.
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