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ABSTRACT

A two-layer quasi-geostrophic model is used to study the effects of a meridionally sheared zonal flow on the
life cycle of a weakly unstable baroclinic wave. In most of the cases analyzed, the fluid is inviscid with the
exception of scale-selective fourth-order horizontal diffusion. The initial zonal flow is identically zero in the
fower layer. The character of the eddy life cycle in the limit of weak supercriticality is shown to depend on
whether or not the meridional shear in the upper layer is strong enough to produce a critical latitude for
the wave.

If the shear is sufficiently weak, the wave undergoes periodic amplitude vacillation characterized by symmetric
baroclinic growth and baroclinic decay. However, when the meridional shear is strong enough to allow for the
existence of a critical layer, the flow undergoes an asymmetric life cycle which resembles that found by Simmons
and Hoskins in a primitive equation mode} on the sphere: the wave grows baroclinically but decays barotropically
toward a wave-free state. Throughout the barotropic decay stage, the wave is breaking and being absorbed either
at or before the critical layer. As the supercriticality is increased, strong reflection begins to occur at the location
of the wave breaking, resulting in irregular amplitude vacillation. Consistent with critical layer theory, when a
reflecting state is created the solution is sensitive to the inclusion of higher zonal harmonics of the funda-
mental wave,

By relaxing the potential vorticity distribution back to an unstable state, periodic solutions are obtained in
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which each episode of growth and decay is similar to that found in these nearly inviscid solutions.

1. Introduction

An important feature of the observed life cycles of
midlatitude synoptic-scale baroclinic waves is the
asymmetry between growth and decay. The growth is
primarily baroclinic; the decay barotropic. The eddies
grow at the expense of the available potential energy
of the mean flow, but the part of the eddy energy that
is not dissipated is returned to the kinetic, rather than
potential, energy of the mean flow during the decay
phase.

Randel and Stanford (1985) describe a very clean
example of this baroclinic wave life cycle in data from
the Southern Hemisphere. Simmons and Hoskins
(1978, 1980) provide a description of the asymmetry
between growth and decay in their nonlinear integra-
tions with a primitive equation model on the sphere.
There is striking similarity between the results of Sim-

mons and Hoskins, for a perturbation consisting of a

single unstable zonal wavenumber and its harmonics,
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and the observational study of Randel and Stanford.
The asymmetric life cycle is also captured in full general
circulation models (GCMs), in the presence of forcing
and dissipation. The first (two-level ) primitive equation
GCM on the sphere (Smagorinsky 1963) provides a
particularly clear example. Our goal in this paper is to
1solate the dynamics responsible for this asymmetry in
as simple a context as possible.

Most analytical studies of weakly nonlinear baro-
clinic instability, primarily conducted with the quasi-
geostrophic two-layer model, show waves undergoing
a symmetric life cycle of baroclinic growth and baro-
clinic decay (Pedlosky 1970, 1971). The energy trans-
ferred to the eddy from the zonal available potential
energy is returned to the zonal available potential en-
ergy during the decay stage. Ini these studies, the initial
zonal mean flow is assumed to be independent of lat-
itude. While meridionally sheared zonal flows are gen-
erated by the eddies as they evolve, for weakly unstable
waves these shears are too smalil for the resulting baro-
tropic conversions to compete in the wave energetics.
In order that a simple analytical or numerical model
represent the observed barotropic decay, it is clearly
necessary that the basic state zonal flow vary both in
the meridional and vertical directions.
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Further clues as to the dynamics of this asymmetric
life cycle are evident from the analysis of the Simmons—
Hoskins calculations by Edmon et al. (1980) from the

" point of view of wave activity conservation and Elias-
sen-Palm (EP) fluxes (see also Held and Hoskins
1985). During the growth stage, the wave activity is
propagating vertically, with the associated EP flux di-
vergence providing acceleration of the zonal flow at
low levels and deceleration at upper levels in midlati-
tudes. This vertical propagation implies that the energy
conversions are predominantly baroclinic. During the
decay stage, the wave activity propagates equatorward
within the upper troposphere, so that the zonal flow is
accelerated in midlatitudes and decelerated in the sub-
tropics. Since the wave activity tends to be propagating
horizontally at this stage, the meridional heat flux is
small so that the energy conversions are primarily
barotropic. At the end of the cycle, the mean flow has
been modified by the irreversible mixing in two distinct
regions: at low levels in midlatitudes, where the accel-
eration during the baroclinic growth stage persists; and
in the subtropics at upper levels, where the deceleration
occurs during the barotropic decay. In contrast, at up-
per levels in midlatitudes the flow is decelerated as the
wave grows, but it is then returned to slightly larger
than its original value as the wave radiates equatorward,
with little irreversible mixing occurring (at least in these
idealized calculations).

This analysw suggests that the 1rrevers1ble mixing at
upper levels is an essential aspect of the observed
asymmetric life cycle. One can imagine that if the wave
were reflected by a turning point or by a wall (in a
channel model) without losing amplitude due to ir-
reversible mixing, the propagation back to midlatitudes
would reverse both the momentum fluxes and the as-
sociated barotropic conversion, leading to an energy
cycle dominated by baroclinic conversions.

The mixing in the subtropical upper troposphere can
be thought of as due to “wave breaking” (e.g., McIntyre
and Palmer 1984) as the disturbance propagates into
a region of smaller zonal winds. As long as a critical
latitude exists in the upper troposphere, at which the
zonal flow equals the wave’s phase speed, such irre-
versible mixing is unavoidable, and a small incident
disturbance will be at least partially absorbed (see Kill-
worth and Mclntyre 1985, for a review of critical layer
theory). One is led to the hypothesis that the existence
of a simple asymmetric life cycle of the sort found by
Simmons and Hoskins could depend, in part at least,
on the existence of an upper tropospheric critical layer.

Motivated by this picture we have examined the ef-
fects of different meridional shears on the life cycles of
unstable baroclinic waves in a two-layer quasi-geo-
strophic, beta-plane channel model. We are particularly
interested in finding basic flows for which a simple
asymmetric life cycle similar to that seen by Simmons
and Hoskins will occur in the two layer model. In par-
ticular, we compare flows in which meridional shear
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exists but is insufficient to produce an upper level crit-
ical layer with flows in which an upper level critical
layer is present. Because of the complexity introduced
by the critical layers, we use a numerical model rather
than attempt an analytical weakly nonlinear theory.

Life cycles of baroclinic waves without upper level
critical layers are examined in section 3. The case with
strong meridional shear and upper level critical layers
is discussed in section 4. Forcing and dissipation are
added in section 5.

2. Model description

The two-layer model equations for a beta-plane can
be written in dimensionless form as

3gn/ 0t + J(Yn, gn) = _VVG'ﬁbm (1)

where the subscript # = 1 corresponds to the upper
layer and n = 2 the lower layer. The potential vorticities
g, are related to the streamfunctions ¥, and the flow
field through

Gn = \72\4,, + By + (=1)"(¥1 — ¥2)/2,
(Un, Vn) = (—Yn/3y, Yn/dx). (2)

Our notation follows Pedlosky (1987) except that the
radius of deformation, A, is chosen as the horizontal
length scale, where

A2 =g(p2 — p1)H/(2p2/6%) (3)

and H is the depth of either layer. The horizontal ve-
locity scale is set equal to the maximum value of the
initial upper layer zonal flow. The biharmonic hori-
zontal diffusion is included to parameterize the en-
strophy cascade to unresolved scales.

The streamfunctions ¥, consist of a zonal mean plus
a disturbance:

Yulx, y, 1) = ¥u(y, 1) + ¥u(x, y, 1);
Un(y, 1) = —3¥,(y, 1)/dy. (4)
The initial value of the zonal flow is specified as
Ui(y,0) = U(y); Ux(»,0)=0 (5)

where U(y) reaches its maximum value of 1.0 and is
symmetric about the center of the channel. The actual
form of U(y) will be presented later. The equation for
the disturbance is

G5/ 3t + Un0q5/ 9x + 07300,/ 9y
+ J(Yh, @n) = —vV5,  (6)

where Q, is the zonally averaged potential vorticity,
and the corresponding equation for the zonal flow is

80,/ 3t = —3(g,v})/dy — vIOU,,. (7)

Calculations are performed both without the wave-
wave interaction term J(¥, %) in (6) (the so called
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quasi-linear or wave—-mean flow interaction model) and
with the term retained. When this term is set to zero,
the disturbance is assumed to consist of only one zonal
wavenumber.

The fluid is bounded at y = 0 and y = W by rigid

walls. Since the meridional velocity at the walls must
vanish, it is necessary that

Wy/ox=0 at y=0,W, (8)

and
9)
Because of the presence of the higher-order derivative

in the horizontal diffusion term, the boundary condi-
tions

d¢n/dy = 85/ 0y® = 8Z,/dy = 8°Z,/9y® = 0, (10)
where '
$n =V,

are employed. Equations (8) and (9) are then consis-
tently satisfied by requiring

Va(x,0,1) = Yu(x, W,t)=0;
U,(0,t) = Uy(0,0) and U,(W, t) = U(W, 0).
(12)

The numerical model chosen has equally spaced grid
points in the meridional direction and an arbitrary
number of waves in the zonal direction. The appro-
priate number of grid points is determined by gradually
increasing the meridional resolution until the difference
between successive solutions is negligible. The model
equations are integrated in time with a leapfrog scheme.
The effects of the computational mode are reduced by
periodically restarting the model with the Euler-back-
ward scheme. When more than one zonal wave is re-
tained in the solution, the Jacobian is evaluated with
the spectral transform method (Orszag 1970).

Given our nondimensionalization, the value of 3 is
a measure of the supercriticality of the flow. The critical
value below which instability occurs is denoted by 8,.

oU,/dt = —vd*U,/dy* at y=0, W.

and Z,=9°Y,/dy? = —dU,/dy, (11)

3. Weak shear

For our first example of a baroclinic eddy life cycle
in a flow with meridional shear, we choose as an initial
zonal wind profile

Uy = 04sin(xy/W)+06; U, =0, (13)

which as is discussed below, does not produce an upper-
layer critical level. The width of the channel W is set
equal to 8.0. The horizontal diffusion coefficient is set
to zero since there is no enstrophy cascade to small
scales for this flow. The calculations in this section uti-
lize 100 grid points between the channel walls.
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A linear stability analysis was performed by inte-
grating (6) with one zonal wavenumber retained while
keeping the zonal mean terms fixed, until the distur-
bance settled into a normal model structure with a
uniform phase speed and growth rate. The critical value
of 8 was determined to be 8, ~ 0.486. The wave that
first becomes unstable when 8 is slightly less than 3,
has the zonal wavenumber £ = (.78 and the phase

-speed ¢, = 0.014. This wave does not have a critical

level; there is no point in the flow at which U = ¢,,
although U — ¢, is small throughout the lower layer.

~ We first ignore wave-wave interactions and examine
the nonlinear evolution of the wave with the most un-
stable zonal wavenumber, k = 0.78, interacting with
the zonal mean flow. The initial condition is the zonal
flow (13) plus a very small eddy chosen to be symmetric
about the center of the channel. The amplitude of the
perturbation is sufficiently small that it settles accu-
rately into the normal mode structure before nonlin-
earity becomes significant.

Choosing a small value of the supercriticality, 3
= 0.4845, the wave amplitude is found to be periodic,
with a very long period of 1130. The energetics of this
life cycle is shown in Fig. la. We see that the wave
grows baroclinically and also decays baroclinically. The
barotropic conversions are always 180 degrees out of
phase with and smaller in magnitude than the baro-
clinic conversions. During the decay of the wave, the
barotropic conversion is actually providing a source of
eddy energy. This life cycle does not resemble those
found in the more realistic models and in the obser-
vations discussed in the introduction. Except for the
small barotropic conversions, these results resemble
instead the two-layer analytical weakly nonlinear so-
lution of Pedlosky (1970), where the wave undergoes
a symmetric life cycle of baroclinic growth and decay.
In Pedlosky (1982), the general form of the weakly
nonlinear evolutionary equation of a baroclinic wave
in a meridionally sheared zonal flow is determined
when there is no critical layer present. Since the form -
of our initial zonal flow is the same as that in Pedlosky
(1982), the same type of weakly nonlinear perturbative
analysis would be valid for our problém for S slightly
less than 3. Although no explicit mention of energetics
is made in Pedlosky (1982), a detailed examination
would yield a life cycle that resembles Fig. 1a, with the
baroclinic and barotropic conversions locked in phase
relative to each other.

In Fig. 2 contours of streamfunction amplitude
squared as a function of latitude and time are shown
over one cycle of growth and decay. The meridional
structure remains unchanged as the wave grows and
decays, reflecting the symmetry of the energy conver-
sions about the maxima in the eddy energy seen in Fig.
la. In fact, the meridional variation of the stream-
function throughout the life cycle closely resembles that
obtained from the linear stability analysis. This link
between the linear and nonlinear solution is consistent



15 NOVEMBER 1989 STEVEN B. FELDSTEIN AND ISAAC M. HELD 3419

{o] $=0.4845 with the weakly nonlinear results of Pedlosky (1982),
where to lowest order in the expansion parameter, the
meridional structure of the nonlinear solution is iden-
tical to the structure of the linear mode.

With a somewhat smaller value of 8 = 0.45, the

20x10° amplitudes are larger and the flow appears to be ape-

5 riodic but the same type of life cycle occurs, with the
g _— | ' I \oupe & baroclinic and barotropic conversions locked in phase
s ! ' ' ' ' : ’ 2 (Fig. 1b). As B is reduced further, the flow develops
% /e ) WA ! in more complicated ways. At 8 = 0.40 (Fig. 1c), the
O P I L T o baroclinic conversion still dominates, but now the
A P barotropic conversions fluctuate at a higher frequency

I W H T than the baroclinic conversions. All of these solutions

i i i . FE are only weakly sensitive to the inclusion of higher

zonal harmonics of the fundamental wave in the cal-

o 7500 5600 culation. If eight zonal harmonics are retained, the
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small alteration in amplitude and period of the vacil-
lation. As 8 is further reduced, the flow in the wave-
mean flow calculation evolves in an irregular way with
no apparent relationship between the sign or the mag-
nitude of the energy conversions. However, these so-
lutions are strongly sensitive to the presence of the
higher harmonics.

4. Strong shear

As the meridional shear is increased in the flow (13)
by increasing the constant multiplying sin(xy/W), and
reducing the value of the additive constant so that
U(W/2,0) = 1, the character of the life cycle in the
limit of weak supercriticality remains identical to that
described in section 3, as long as the wave does not
have a critical layer. When the shear is large enough
that U, at the walls approaches zero and a critical layer
is generated in the upper level, more complex behavior
results. This particular flow does not generate a clean
version of the desired asymmetric life cycle, partly be-
cause the presence of a wall very close to the critical
layer modifies the reflection or absorption of wave ac-
tivity by the layer, and partly because the initial un-
stable mode has significant amplitude at the critical
layer. We find that a simpler life cycle is obtained when

a)
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the critical layer is far removed from any boundaries
and from the strongly unstable region itself. It also turns
out to be helpful, as discussed further below, if the
meridional shear is small at the critical layer. One initial
zonal wind profile that satisfies these requirements is

U(y) =02+ 0.8 exp[—(y — 0.5W)?/¢,%]
= 0.2 exp[—(y — 0.1W)?/a,%]
— 0.2 exp[—(y — 0.9W)?/5,2],
if 0.1W<y<09W;
if 0<y<O.1W
0IW<y< W,

U(y) =0,

or (14)

We choose W = 40(2)"/2, o, = 0.05W = 2(2)'/?, o,
= 0.2W = 8(2)'/2. The resulting wind profile is shown
in Fig. 3a. We use 400 grid points within the domain.
The choice of meridional resolution is determined by
gradually increasing the number of grid points until
the solution is essentially unchanged. The required res-
olution depends on the choice of the diffusion coeffi-
cient v. For the following calculation we choose v = 5
X 107°. As described below, this value of v is large
enough to dissipate small-scale eddies that are generated

le)

]w‘n‘ 10}

- Nl

(d)

FIG. 3. (a) Initial upper level flow for the strong shear case with 8 = 0.44; (b) initial meridional potential vorticity gradients in the two
layers; (c) magnitude of streamfunction for the unstable mode; and (d) potential vorticity flux in the unstable mode. The short vertical line
denotes the location of the linear critical latitude. In (c) and (d), the solid line corresponds to the upper layer and the dotted line to the
lower layer. The normal mode streamfunctions and fluxes are normalized by the values at the center of the channel in the lower layer.
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in regions of Rossby wave breaking, but it is small
enough so as to have a negligible effect on the larger-
scale eddies outside these regions.

A linear stability analysis is performed for the zonal
wind profile (14). Once again the procedure is to nu-
merically integrate the linearized form of (6) until the
perturbation settles into the fastest growing normal
mode. This is done for increasingly larger values of §
until 8 = 0.45 and the growth rate w; is less than 0.01.
Calculations for smaller growth rates were not feasible
because of the fine resolution required at the critical
layer as the supercriticality goes to zero. Linear ex-
trapolation was used to find 8. and c,; the numerical
integrations indicate that w;? and ¢, both vary linearly
with 8 at small supercriticalities. The extrapolation
yields 8. = 0.458. For 3 slightly less than j. the fastest
growing normal mode has a zonal wavenumber k
=0.82 and ¢, = 0.013.

a. Weak supercriticality

The initial meridional potential vorticity gradients
are shown in Fig. 3b for a weakly supercritical case
with 8 = 0.44. The critical layer for the unstable normal
mode is also indicated. As for the flow considered in
section 3, dQ,/dy is positive everywhere while 80, /dy
is negative in the center of the lower layer and positive
elsewhere. Figures 3c and 3d show the linear normal
mode streamfunction amplitudes and potential vortic-
ity fluxes in the two layers. There is a large difference
in structure between the two potential vorticity fluxes;
the upper layer flux is broad whereas the lower layer
flux is sharply confined to a narrow region consistent
with the narrowness of the negative dQ,/dy region.
Despite the broader structure in the upper layer, the
amplitude of the upper layer streamfunction and the

20x107*

10x107 1ox107

ENERGY CONVERSIONS
ENERGY

o 500 1000
TIME
FiG. 4. Energy and energy conversions for the strong shear case

when 8 = 0.44. Solid line denotes total wave energy; dashed line,
baroclinic conversion; dotted line, barotropic conversion.
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FIG. 5. The changes in (a) the zonal flow and (b) the potential
vorticity gradients in the two layers resulting from the eddy life cycle
with 8 = 0.44.

potential vorticity flux of the normal mode are essen-
tially zero at the linear critical layer.

As in the weak shear case, we first truncate the un-
stable wave to one zonal wavenumber and then check
if the results are sensitive to the inclusion of higher
harmonics. With 8 = 0.44, the wave undergoes only
one cycle of baroclinic growth followed by barotropic
decay, as shown in Fig. 4. The final state is wave free.
This energy cycle is in qualitative agreement both with
the more complex numerical models and with the ob-
servational studies discussed in the Introduction, and
is clearly distinct from the symmetric growth and decay
described in section 3. The evolution is extremely slow
by atmospheric standards, because of the very weak
supercriticality. '

The changes in U, and 8Q,/dy by the end of the life
cycle are shown in Fig. 5. We see that U, undergoes
changes in two distinct regions. In the center of the
channel, where the baroclinicity is largest, the zonal
wind has increased slightly in the upper layer and more
strongly in the lower layer. On the wings of the profile,
where the baroclinicity is very small, the zonal wind
has been decelerated in both levels, with the largest
changes in the upper level, near the location of the
linear critical latitude. The changes in 0, /dy are even
simpler: in the region of strongest baroclinicity, by far
the largest changes in the potential vorticity gradient
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are in the lower layer; near the critical latitude the
gradient is changed only in the upper layer. The mod-
ification in the lower layer has rendered the flow stable;
as indicated in Fig. 6, dQ,/dy is now positive every-
where. (As 8 is lowered, the region of negative 4Q,/dy
first appears at 8 = 0.5. Since 8, is significantly less
than 0.5, or equivalently there exists a broad region of
strongly negative dQ,/dy values, it is surprising that
such a weakly supercritical wave is able to destroy the
region of negative 0Q, /38y so thoroughly.)

The changes in U, and 3Q,/dy are related to the
eddy potential vorticity fluxes by

aUu,/ot = v,,q,, + v¥ (15)

. 8(8Q,/8y)/3t = — 3*(Vugn)/9Y?,  (16)

where v¥ is the “residual” meridional circulation that
satisfies

%X /3y* — 2v% = (—1)"(vhqh — v1q)). (17)
Near the critical latitude, the upper layer potential vor-
ticity flux directly decelerates the upper layer winds
and indyces a residual circulation that decelerates the
lower layer and reduces the deceleration in the upper
layer by the same amount. In the same way, the residual
circulation near the center of the channel redistributes
some of the mean flow acceleration from the lower to
the upper layer.

The deceleration of U, and the reduction of 3Q, /dy
in the upper layer clearly cannot be accounted for by
the normal mode structure. Figure 7 shows the evo-
lution of the streamfunction amplitude squared and
potential vorticity flux in the two layers through the
life’cycle. The upper level streamfunction (7a) spreads
laterally as the mean flow in the center of the domain
is stabilized; while there is little change from the normal
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FIG. 6. The initial and final potential vorticity gradient in the lower
" layer near the center of the channel with 8 = 0.44,
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mode structure in the lower layer (7b). The structure
of the upper-layer potential vorticity flux (7c) initially
resembles that of the linear solution but then deviates
strongly. It changes sign at about the time of maximum
eddy energy, but there is no accompanying change in
sign of this flux farther away from the middle of the
channel. The potential, vorticity flux near the linear
critical latitude is always negative. In the lower layer,
the structure of the potential vorticity flux is much
simpler, as it is essentially confined to the negative 30,/
dy region and is everywhere positive.

The poleward heat flux (not shown) is nearly iden-
tical in structure to the potential vorticity flux in the
lower layer, indicating that the momentum fluxes are
essentially confined to the upper layer, consistent with
the fact that little latitudinal dispersion can be seen in
Fig. 7b. The momentum flux in the upper layer is
shown in Fig. 7e. The convergence into the center as
the wave begins to radiate outwards evolves into a pat-
tern with strong divergence from the vicinity of the
critical latitude. The energy equations for the two-layer
model are

dE/dt = —0.5 fdyv'1(¢ﬁ - ¢’2)(U1(y, t)
— Us(y, t))—f dyv' §1UN(p, 1)

= f dyvhUs(p, 1), (18)

Since both v5{ and U,(y) are small, the barotropic
conversion in the lower layer is negligible. As the dis-
turbance evolves from its linear structure, the upper
layer vorticity flux increases relative to the heat flux,
as is reflected in the change in sign of the upper-layer
potential vorticity flux at the center of the channel.
Because of this change in the ratio of the two fluxes
during the nonlinear evolution of the wave, the baro-
tropic conversion eventually dominates and the wave
decays barotropically. The dissipation that occurs as
the wave approaches its critical latitude then ensures
that the decay is irreversible.

Except for the fact that the present 8-plane results
are symmetric about the jet center, the life cycle ob-
tained is qualitatively similar to that of Simmons and
Hoskins (1978; as analyzed further in Edmon et al.
1980). It is the spherical geometry in their calculations
that creates a preference for equatorward propagation
and poleward momentum flux during the barotropic
decay. This effect of sphericity on the asymmetry of
the eddy momentum fluxes has been examined by
Williams (1988). He finds that the time-averaged eddy
momentum fluxes are symmetric if the jet is sufficiently
narrow. In this case, the variation of 8 is small both
over the region of wave growth and over the broader
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region of wave radiation. On the other hand, for baro-
clinic jets that are wide enough to allow for a significant
variation of 8, the momentum fluxes are strongly
asymmetric.

The change in U, and 8Q, /dy near the linear critical
layer are consistent with the ideas of linear critical layer
absorption. The potential vorticity gradient in this re-
gion has only been modified slightly; given the width
of the region in which U, is decelerated the wave does
not have sufficient amplitude to generate a nonlinear,

reflecting critical layer (e.g., Geisler and Dickinson
1974; Beland 1976; Warn and Warn 1978). We have
checked to see how the dominant phase speed of the
disturbance changes during the life cycle by examining
the change in phase of ¢; from one time step to the
next, averaging over all grid points in the center of the
channel. It is found that the phase speed of the wave
remains close to its linear value of 0.022 throughout
the life cycle, verifying that the mean flow deceleration
in the upper layer occurs near the waves critical level.



3424

We also find that the center of the upper layer decel-
eration shifts closer to the critical layer as the diffusivity
is lowered. '

b. Moderate supercriticality

The energy cycle for a somewhat more supercritical
flow, with 8 = 0.38, is shown in Fig. 8. The disturbance
still undergoes a life cycle of baroclinic growth followed
by barotropic decay to a wave free-state, but there are
now small amplitude oscillations that take place prior
to the final wave decay. The corresponding evolution
of the upper layer streamfunction amplitude and po-
tential vorticity flux are shown in Fig. 9. The outward
radiation is less evident than in the more weakly su-
percritical case, and the potential vorticity fluxes de-
" velop similar structures but closer to the jet center.

Consistently, the deceleration of the upper level zonally
averaged flow and the changes in 80, /dy (Fig. 10) are
largest close to the channel center, although there is
still a broad deceleration that extends outwards to the
critical latitude.
We compute that the dominant phase speed in the
flow evolves from its linear value of 0.057 up to 0.075
“at the end of the life cycle. Despite this increase, the
dominant phase speed is always less than the upper-
layer zonal flow speed in the region of largest mean
flow modification. One can describe the wave as break-
ing well before it reaches its critical layer. The process

can be seen in the upper layer potential vorticity maps

in Fig. 11. The first panel (a) shows the linear growth
stage, where the particle displacements increase with
time but maintain the same meridional structure. The
disturbance only travels a short distance until the po-
tential vorticity contours overturn and the wave breaks
(b). Part of the disturbance then propagates further
until it too breaks (c¢). Eventually there are breaking
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FIG. 8. As in Fig. 4, except 8 = 0.38.
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FI1G. 9. Latitude-time contour diagrams in the strong shear case
when 8 = 0.38: (a) ¢'2, interval is 7.5 X 1073, (b) v g, interval
1.25 X 1073, Stippled regions are positive.

waves extending all the way to the linear critical layer.
At the last stage (d), the waves breaking at the linear
critical layer are dissipated away. The problem of de-
termining when a Rossby wave will break far from its
critical latitude, and what the resulting pattern of mean
flow deceleration will be, is an intriguing one that can
be addressed with barotropic models of the sort dis-
cussed by Held and Phillips (1987).

The change in the upper level flow due to the eddy
life cycle are compared in Fig. 12 for four different
values of the supercriticality. As 8 is reduced from 0.44,
the region of deceleration near 0.75°W gradually
broadens and shifts towards the jet center. However, a
distinct region of wave breaking and deceleration
emerges at 8 = 0.40, and dominates the picture at 3
= 0.38. ,
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(a)

0.5}

(b}

F1G. 10. The initial and final zonal flows and potential vorticity
gradients, with 8 = 0.38. Dotted line denotes initial flow; solid line,
final flow.

The upper-layer momentum fluxes associated with
the outward wave radiation are upgradient and thus
generate the barotropic decay. But it is the irreversible
mixing due to wave breaking rather than the barotropic
decay per se that is responsible for the simple life cycle
leading to a wave-free state. We have modified the ini-
tial zonal flow in (14) by increasing the value of the
upper layer wind far from the channel center so that
a critical latitude is no longer present. In the limit of
weak supercriticality, a symmetric life cycle of baro-
clinic growth and decay occurs just as in section 3. For
larger supercriticalities, the structure of the disturbance
evolves as it radiates outward, decaying barotropically
in the process. It then reflects off the walls and returns
to channel center again. A complicated life cycle rep-
resented by episodes of barotropic growth and decay
results.

c. Strong supercriticality

All of the solutions described above are only weakly
sensitive to the inclusion of higher harmonics of the
fundamental unstable wave. Both the amplitude of the
disturbance and the length of time over which the decay
occurs change slightly. However, the sensitivity to the
inclusion of higher harmonics increases when £ is low-
ered further. We describe results for 8 = 0.34. In the
one-wave calculation, instead of undergoing one major
cycle of growth and decay, the disturbance maintains
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itself through a complex process of irregular baroclinic
and barotropic conversions. The upper layer mixing is
sufficient to generate negative values of dQ,/dy. The
sign of 3Q,/dy oscillates in time, and there is a simul-
taneous alternation in sign of the upper-layer potential
vorticity flux at the same location. This behavior is
analogous to that in a quasi-linear critical layer, as de-
scribed by Haynes and Mclntyre (1987), in which the
changes in sign of the potential vorticity gradient are
associated with an oscillation between absorbing and
overreflecting states.

Haynes and Mclntyre show that this behavior is
modified as more harmonics of the fundamental wave
are added to the model. Consistent with their analysis,
we find that a fully nonlinear calculation produces a
simpler evolution towards a wave free-state, presum-
ably because the fully nonlinear model tends to evolve
towards a perfectly reflecting state without exhibiting
periods of strong overreflection. Figure 13 compares
the evolution of the wave energetics for the one wave
case with that for a solution with 4 waves—the unstable
wave and its first three harmonics. (The addition of
more waves produces insignificant changes in this plot).
The potential vorticity contours (not shown) evolve
into localized vortex streets (lines of closed potential
vorticity contours) in the region where 3Q, /3y is small.

d. Sensitivity to diffusion coefficient

Recalling that in all previous calculations » = 5
X 1073, the calculations with 8 = 0.44 and 0.38 were
redone after increasing and decreasing the value of ».
The same life cycle characterized by baroclinic growth
and barotropic decay still occurs, but there is some
dependence on ». When » = 5 X 1079, the solutions
are similar except that the disturbance decays a bit more
slowly and the potential vorticity contours wrap around
more extensively. When » = 5 X 107 the opposite is
true. Also, for the smaller value of v, there is essentially
no difference in the zonally averaged flow in the center
of the channel, whereas for values as large as 5 X 10™
one begins to find significant changes.

The width of the region in which the upper level
flow is decelerated is important for the character of the
life cycle. As v is lowered, we find that the center of
the deceleration shifts slowly towards the critical layer,
but its width does not decrease noticeably. If we fix the
amplitude at which the unstable wave equilibrates near
the center of the channel, or, more precisely, the

‘amount of pseudomomentum (or wave activity) that

radiates outwards to the region of wave breaking, then
the zonal flow change, integrated over the breaking
region, is also fixed. The narrower this region, the larger
the local deceleration, and the greater the modification
to the potential vorticity gradient. Only if this region
is sufficiently wide will the modification to the potential
vorticity gradient be small enough for linear critical
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{a)

FIG. 11. Contours of absolute potential vorticity in the upper layer when 8 = 0.38
(a)t =175, (b) ¢ = 200, (c) t = 300, (d) t = 450.
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FIG. 12. Changes in the upper zonal flow for different values of 8.

layer theory to be valid, resulting in strong wave ab-
sorption and the simple life cycle portrayed in Fig. 4.
Our calculations are in the regime where the diffu-
sivity has little effect on the width of the critical layer
absorption. In the limit of vanishing diffusivity, linear
theory predicts that the width of the critical layer, or
breaking region is
L. = Ac/(3U/dy)cL., (19)
where (dU/3y)c . is the meridional shear at the critical
layer and Ac is the width of the phase speed spectrum
of the incoming disturbance. We do not fully under-
stand how Ac is determined, but presume that the

imaginary part of the phase speed of the unstable nor-
mal mode is relevant.

e. Gaussian profile

Calculations have also been performed with the
simpler Gaussian initial wind profile:

U(y) = exp[—(y = 0.5W)*/0/],  (20)

with o} = 0.05W = 2(2)!/2 as before. Compared with
the flow (14), the most important difference appears
to be that the meridional shear at the critical latitude
for the unstable mode on the flow (20) is much larger.
As described above, given the incoming disturbance,
this will result in a narrower region in which the mean
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flow is decelerated near the critical layer and larger
changes in the potential vorticity gradient, making it
harder to produce an absorbing layer. Consistent with
this picture, we find that even smaller supercriticality
is needed with the Gaussian jet in order to produce-a
simple life cycle that exhibits a single episode of baro-
clinic growth, followed by barotropic decay to a wave-
free state. As an example, the evolution with 8 = 0.44
results in a mean flow modification comparable to that
obtained with 8 = 0.38 in Fig. 9. (The change in 8, is
very small.) Also, because the critical layer is closer to
the baroclinically active zone, it is more difficult to
separate the mean flow deceleration directly associated
with the critical layer from that related to finite-am-
plitude wave-breaking at the jet margins of the sort
seen in Fig. 11. It is for these reasons that we concen-
trate instead on results from the somewhat contrived
Gaussian profile with \yings.

{a)

4.0x10™[

ENERGY CONVERSIONS
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-4.0x107 755 - ~500
TIME

F1G. 13. Energy and energy conversions for the strong shear case
when 8 = 0.34 (a) one zonal wavenumber solution, (b) four zonal
wavenumber solution.
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5. Life cycles with forcing and dissipation

In this section, we demonstrate that similar life cycles
can be obtained in a model with forcing and dissipation.
We choose to force the system in the simplest possible
way by relaxing the flow towards its “radiative equi-
librium” with potential vorticity damping of equal
strength in the two layers. The potential vorticity equa-
tion with forcing and damping terms present, is now
written as

00n/ 8t + J(Yn, Q) = =¥V — 1(Qn — OF), (21)

where Q% (y) describes the radiative equilibrium pro-
file. Both weakly sheared and strongly sheared zonal
flows, with Q¥ consistent with (13) and (14) respec-
tively, have been examined.

For the weak shear case, we describe only the weakly
supercritical cases with 8 = 0.44, for which the model’s
behavior is very simple: the disturbance evolves to a
steady state for all nonzero values of r examined (down
to 'values as small as 0.0001). In this steady state, the
balance is primarily between the baroclinic energy
conversion and dissipation.

“The life cycles in the strong shear case depend upon
the value of r. As an example, when r = 0.028 and 8
= (.32 (see Fig. 14), we find that the solution is pe-
riodic. The wave growth is baroclinic but the decay is
due to a combination of barotropic conversion and
dissipation. During the early part of the decay stage,
the barotropic conversion is the one with the largest
magnitude. Thus, the disturbance undergoes a succes-
sion of individual life cycles characterized by baroclinic
growth followed by barotropic decay.

In Fig. 15, the zonally averaged flow is shown both

2.0x107Y

1.0<1074

ENERGY CONVERSION

-1.0x107

0 - 500 1000
TIME

FIG. 14. Energy conversions, total energy, and energy lost to po-
tential vorticity damping when 8 = 0.32 and r = 0.028. Solid line
above the axis denotes total wave energy; dashed line, baroclinic
conversion; dotted line, barotropic conversion; solid line below the
axis, potential vorticity damping.
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FiG. 15. Zonal flows and potential vorticity gradients before (dot-
ted) and after (solid) an eddy event, with 8 = 0.32 and r = 0.028.

at the beginning and at the end (¢ = 250) of an indi-
vidual growth and decay cycle. The modification to U,
and 80Q,,/dy is similar to the 8 = 0.38 inviscid solution
in that the deceleration is localized at the margins of
the jet, but there is little evidence of the broader de-
celeration in the wings of the profile extending towards
the critical latitude. The tendency to break at the jet
margins at this supercriticality, combined with the ef-
fect of the damping, prevents the wave from radiating
as far from the generation region as the weakly non-
linear inviscid solution in Fig. 7. In the .plot of the

potential vorticity flux in Fig. 16, one sees the upper

{a) UPPER

75 500
(b) LOWER
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FIG. 16. Latitude-time contour diagrams in the strong shear case

when 8 = 0.32 and r = 0.028: (a) v’ g, interval is 1.0 X 10~3; (b)
vhg5, interval 1.0 X 103, Stippled regions are positive.
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layer flux evolves from a structure that closely resem-
bles that of the linear normal mode, toward a structure
consistent with the localized deceleration away from
the jet center, roughly as in the moderately supercritical
inviscid solution described in section 4. The evolution
of the lower layer flux more closely resembles that of
the inviscid solution.

After the barotropic decay to a nearly wave-free state,
the forcing restores the unstable mean flow, and the
process is repeated. This qualitative behavior seems to
be present for a range of values of r, no matter how
small the supercriticality.

As risincreased for fixed supercriticality, the periodic
solution is eventually replaced by a steady one. As in
the weak shear case, the steady state consists of a bal-
ance between a positive baroclinic conversion and dis-
sipation.

6. Summary and conclusions

The effect of different meridionally sheared zonal
flows on the life cycles of baroclinic waves is examined
with a two-layer quasi-geostrophic model. When the
flow is weakly supercritical, it is found that the most
important factor that influences these life cycles is
whether or not the meridional shear is strong enough
to create a critical latitude in the upper layer.

When there is no critical latitude present, the dis-
turbance undergoes a symmetric life cycle of baroclinic
growth followed by baroclinic decay. On the other
hand, when there is a critical latitude present, an asym-
metric life cycle of baroclinic growth and barotropic
decay occurs. This asymmetric life cycle resembles
those observed in the atmosphere (Randel and Stanford
1985) and in multilevel primitive equation models
(Simmons and Hoskins 1978, 1980).

In the weak shear case, the meridional structure of
the disturbance retains its linear form throughout its
life cycle. However, in the strong shear (critical latitude)
case, the meridional structure of the disturbance un-
dergoes drastic changes with time, no matter how small
the supercriticality. This result implies that a weakly
nonlinear perturbative analysis with a single dominant
normal mode can be performed for the weak shear
case, but not for the strong shear case.

These changes in structure associated with outward
radiation are clearly essential if the barotropic conver-
sion is to increase relative to the baroclinic conversion
until barotropic decay occurs, but a cascade to small
scales, “wave breaking,” is then required to make this
decay irreversible and allow the evolution towards a
wave-free state. The location of the Rossby. wave
breaking is close to the linear critical latitude if the
supercriticality is exceedingly small. But as the wave
amplitude increases, breaking becomes a possibility far
from the critical latitude. This fact suggests that the
critical latitude is not really the essential element; what
is essential is the wave breaking that results in efficient
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absorption of the radiating waves and prevents their
return to the region of strong baroclinicity. The critical
latitude is important in that it causes waves of arbi-
trarily small amplitude to break.

The qualitative character of the flow evolution de-
pends on whether the resulting mixing is sufficient to
destroy the mean potential vorticity gradients. If it is
not, and significant gradients remain, the breaking layer
will be absorbing and relatively simple evolution to-
wards a wave-free state is possible. If the gradients are
destroyed, the wave can overreflect and an irregular
life-cycle ensues. The wave amplitude, or supercriti-
cality, at which overreflection begins to play a role
should be sensitive to the initial horizontal shear in the
breaking region, since this controls the width of the
region in which the potential vorticity is modified. Also,
in agreement with Haynes and Mclntyre (1987), the
overreflecting solution is sensitive to the inclusion of
higher zonal harmonics, whereas in the solutions char-
acterized by absorption, one zonal wavenumber pro-
vides a fairly accurate picture of the life cycle.

One obvious limitation of our model is that the ver-
tical resolution is limited to two layers. Since our results
qualitatively agree with those from the multilevel
primitive equation models, we believe that it is ade-
quate horizontal resolution, not vertical resolution, that
is required to see a realistic life cycle. One difference
between the high and low vertical resolution models is
that in multilevel models the radiating wave can be
absorbed at different vertical levels on a critical surface
whereas in the present model the radiating wave is ab-
sorbed at only one level.

This work can be usefully extended in several direc-
tions. The effects of spherical geometry in breaking the
symmetry about the jet axis and favoring equatorward
propagation are clearly important, but calculations on
a (@-plane with jets having a north-south asymmetry
would also be informative. Would the ratio of the upper
layer zonal flow decelerations north-and south of the
jet depend on supercriticality, for example? Life cycle
studies using disturbances with a broader zonal spec-
trum would also introduce new problems. And the be-
havior of the forced, dissipative flows must be examined
for the more atmospherically relevant case of strong
Ekman damping in the lower layer and weak thermal
damping.
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