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ABSTRACT

The effect of Ekman friction on baroclinic instability is reexamined in order to address questions raised by
Farrell concerning the existence of normal mode instability in the atmosphere. As the degree of meridional
confinement is central to the result, a linearized two-dimensional (latitude-height) quasi-geostrophic model is
used to obviate the arbitrariness inherent in choosing a channel width in one-dimensional ( vertical shear only)
models. The two-dimensional eigenvalue problem was solved by pseudospectral method using rational Chebyshev
expansions in both vertical and meridional directions, It is concluded that the instability can be eliminated only
by the combination of strong Ekman friction with weak large-scale wind shear. Estimates of Ekman friction
based on a realistic boundary-layer model indicate that such conditions can prevail over land when the boundary
layer is neutrally stratified. For values of Ekman friction appropriate to the open ocean, friction can reduce the
growth rate of the most unstable mode by at most a factor of two but cannot eliminate the instability.

By reducing the growth rate and shifting the most unstable mode to lower zonal wavenumbers, viscous effects
make the heat and momentum fluxes of the most unstable mode deeper and less meridionally confined than
in the inviscid case. Nevertheless, linear theory still underestimates the penetration depth of the momentum
fluxes, as compared to observations and nonlinear numerical models.
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1. Introduction

Baroclinic instability has long been the subject of
extensive study in dynamic meteorology, and the in-
stability is generally believed to be the dominant source
of midlatitude synoptic-scale transient eddy activity in
the Earth’s atmosphere. The groundbreaking work by
Charney (1947) and Eady (1949) neglected frictional
effects, and the most natural way to rectify this defi-
ciency within the framework of quasi-geostrophic the-
ory is to add an Ekman boundary layer at the ground
(and lid, if there is one). Because the Ekman pumping
can catalyze the release of mean-flow potential energy
in addition to dampmg kinetic energy, the net effect
on the instability is not straightforward.

Holopainen (1961), Barcilon (1964) and lehams
and Robinson (1974) considered either Phillips-type
two layer models or Eady-type models subjected to the
influence of one or two Ekman friction layers. They
found that if both Ekman layers were present the
growth rate was reduced as expected and a long-wave
cutoff was also produced (for Eady-type models).
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However, the presence of a single Ekman layer has a
destabilizing effect on the short waves. This destabiliz-
ing feature should be recognized as the side effect of
the upper rigid lid in their models; if the Ekman layer
is at the ground, for example, the destabilized inviscid
mode is the top-trapped mode, which has no counter-
part in the semi-infinite domain. The potential desta-
bilizing effect of a single weak Ekman layer is most
readily assessed in terms of the pseudomomentum for-
mulation described in Held et al. [1986, see esp. Eq.
(9)] for the continuous case and Panetta et al. (1988)
for the two layer case. Briefly, only inviscid neutral
modes with pseudomomentum of the same sign as the
Doppler-shifted phase speed at the ground [¢ — u(0))
are destabilized by the introduction of a weak lower
Ekman layer. Such modes do not occur in more real-
istic models, such as the Charney model.

Card and Barcilon (1982) considered the Charney
model with an Ekman layer at the lower boundary. In
this case the presence of Ekman friction at the lower
boundary leads to a significant reduction in growth of
disturbances of all wavelengths and the formation of
a short-wave cutoff. Inspired by the possibility that Ek-
man damping could eliminate the normal mode baro-
clinic instability altogether, Farrell (1985) used Char-
ney’s and Eady’s models to carry out further studies
on baroclinic instability with Ekman damping, both
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from the normal mode and initial value standpoint.
In his model, the flow field was confined to a narrow
(1500 km wide) 8-channel. Based on his calculations
Farrell conjectured that “exponential (normal mode)
instability is insignificant or nonexistent when Ekman
damping corresponding to moderate values of vertical
diffusion (eddy viscosity) is included.” Farrell’s results
are not definitive, however, because he computed the
stabilization threshold for only a single channel width
and zonal wavenumber. The choice of channel width
is crucial, because a narrow channel yields a large total
wavenumber, and shortwave perturbations, being
shallow, are strongly damped. In determining whether
Ekman friction can suppress baroclinic instability in
the real atmosphere, the central issue is the degree of
meridional confinement occurring in nature. We shall
take up this question by using a one-dimensional model
with various channel widths and values of Ekman
damping, and a two-dimensional model with varying
values of shear parameter and Ekman damping. Our
estimates of Ekman friction will be based on compu-
tations performed with a realistic boundary-layer
model. The effects of the Ekman damping on the ver-
tical structure of the unstable waves are also discussed.

2. Formulation

The mathematical formulation of the linearized
quasi-geostrophic baroclinic instability problem is
documented in Pedlosky (1982); we shall follow his
treatment and notation closely. We linearize the quasi-
geostrophic @-plane equations about a compressible
isothermal atmosphere with wind profile u(y, z) and
assume the small disturbances take the form of normal
modes, i.e.,

WX, ¥, z, 1) = Re{$(y, z)e'** P} e (1)

Also from the basic thermodynamic relations the den-
sity scale height H = RT,/g and Brunt-Viisili fre-
quency N = g/(C,T,)"/* are constants since they are
determined solely by the prescribed constant basic state
temperature Ty. Therefore, if we adopted the radius of
deformation L, = NH/ f, as our length scale, we obtain
the following dimensionless equation which governs
the motion of the small disturbances:

(u—c)[¢yy+¢,z—(k2+i-)¢]+%¢=0 ()
where
%%= — Uy, — U + U, 3)

is the meridional potential vorticity gradient.
The velocity scale used here is Hu,(0, 0), where u.(0,
0) is the vertical shear at the ground and at latitude
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45°N, c is the complex phase speed and the dimen-
sionless “beta” parameter is

— Bdide2
8= Hu(0,0)° @

The Ekman friction is incorporated into the dynam-
ics through the action of Ekman pumping, i.e., by in-
troducing a vertical velocity (which is proportional to
the relative vorticity at the édge of the Ekman layer)
at the lower boundary. Therefore, the linearized lower
boundary condition becomes

1 .Evllz 2
C(¢z+5¢)+ U, = lﬂe_(k ¢ — ¢y), at z=0
)

where E, = 2v/foH? is the Ekman number and ¢
= Hu,{0, 0)/(foLy,) is the Rossby number. Together
with the energy-decay condition

¢—>0 as z—> © (6)

Egs. (2) and (4) define the dispersion relation Q(=; k,
w) where 7 represents all the mean flow properties in-
cluding the eddy viscosity ».

Care must be taken in determining the mean flow
parameters such as the Brunt-Viisilid frequency and
the eddy viscosity. In order to be consistent with the
isothermal assumption, the Brunt-Viisilid frequency
should be calculated directly from the basic state tem-
perature or vice versa rather than be prescribed arbi-
trarily. From data given in Qort and Rasmusson (1971)
it may be inferred that the Northern Hemisphere mean
tropospheric temperature at latitude 45°N is about 250
K. The Brunt-Viisili frequency is then approximately
0.02 s~!, which is somewhat higher than that used in
most previous baroclinic instability studies. The choice
of the value of vertical eddy viscosity is more contro-
versial. In order to bring some precision and objectivity
to bear on this issue, we have carried out computations

' of Ekman pumping using a boundary layer parame-

terization based on that in use at the European Centre
for Medium Range Weather Forecasting. A complete
discussion of the calculation is given in the Appendix.
(The reader is urged not to succumb to the temptation
to skip this material simply because it has been rele-
gated to an appendix; in some ways, these estimates
are at the heart of our argument.) The effective diffu-
sivity varies with boundary layer wind, shear, stratifi-
cation and surface characteristics, and a variety of cases
are discussed in the Appendix. In brief, neutrally strat-
ified boundary layers over the open ocean yield values
in the range 1-5 m?2s~! (oceanic boundary layers with
appreciable stable stratification may be regarded as es-
sentially inviscid). Over flat land, neutral conditions
yield diffusivities as high as 50 m2s~*, though moderate
stable stratification brings the diffusivity back down to
order of 5 m? s™'. In mountainous terrain, the model
can yield diffusivities of 20 m?s~! or more even in the
presence of strong stable stratification, but this estimate
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must be regarded as suspect owing to the rather prim-
itive state of development of boundary layer theory in
steep orography.

Apart from any imprecision of the estimate of
boundary layer diffusivity, there are errors inherent in
assuming Ekman boundary-layer dynamics and in lin-
earization of the damping—in linear theory, E,'? is
constant, whereas in reality the growth of the pertur-
bation surface wind will soon dominate the relatively
weak mean surface wind, leading to growth of the sur-
face stress and hence enhanced (but spatially and tem-
porally varying) Ekman damping. A saving grace is
that the diffusivity appears in (5) only in the form
E,'/? so that the sensitivity is not extreme. We further
hedge our bets by carrying out calculations for a range
of diffusivities about the ‘““best guess.”

3. One dimensional model

Equation (2) is a nonseparable partial differential
equation which will be solved in section 4 by a recently
developed numerical scheme. A great simplification
can be achieved by ignoring the meridional variation
of the mean flow and assuming that the small pertur-
bations are sinusoidal in y-direction, i.e., replacing ¢(y,
z) by ¢(z)e” everywhere. To accomplish this, two
meridional walls are assumed to confine the waves.
Equation (2) now becomes an ordinary differential
equation, which is easier to solve.

It is possible to obtain the dispersion relation for
large K? = k? + I? by a straightforward extension of
the short-wave expansion described in Pierrehumbert
(1986) allowing for the Ekman term in the lower
boundary condition. For large K the solution of (2) is
¢ = e ¥**i_Substituting in the boundary condition
(5) then yields

172
w= -i—E~3——K+ o(1).
2¢

Thus, there is a unique eigenmode at short wavelengths,
and it is highly damped. This remark constitutes a sim-
ple proof that any Ekman friction introduces a short-
wave cutoff, and applies regardless of the form of U(y,
z), so long as 8Q/4dy is finite.

Using the shooting method together with an analytic

continuation technique such as employed in Pierre- -

humbert (1986), this solution can be continued back

to the long-wave side. However, we found that the

(unique) short-wave mode continues into a highly
damped mode rather than the Ekman-modified unsta-
ble mode, which is of primary interest. This suggests
that, at least in the one-dimensional case, the unstable
mode disappears at the stability boundary rather than
crossing over into a damped mode. In any event, this
complication makes it difficult to find the unstable
modes by continuing from known analytical solutions.
The shooting method is fast and accurate, but lack of
a systematic method of generating initial guesses is apt
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to miss physically important modes. To remedy this
problem a global method must be used. We adopted
the transformation technique developed in Boyd
(1987) to transform the Chebyshev polynomials to the
“rational Chebyshev series” then used it as the basis
functions for spectral expansion; full details are given
in section 4.
The one-dimensional wind profile we use here is

—22/1.3.5 (7)

and is illustrated in Fig. 1 along with Charney profile.
This wind profile has the same shear as the Charney
profile at the ground-and has a maximum wind at the
height of tropopause (1.5 H = 10.5 km ) then it decays
to zero at infinity. The basic parameters are

N=0.02s"!, H=7km, L;= 1400 km,
#(0)=35ms™'/7km and »=36m?s™".-

Note that the value of eddy viscosity used here repre-
sents a moderate Ekman friction, characteristic of a -
neutral boundary layer over open ocean or a stably
stratified boundary layer over land (see Appendix).
The maximum wind corresponding to the shear value
given above is about 32 m s~

Figures 2a and 2b show the growth rate and phase
speed of the unstable mode for the Charney model .
without Ekman friction and for our modified 1D model
with and without friction. Here the meridional waveé-
number / was set to zero (the most unstable case) for
simplicity. As is well known, the deviations from the

u(z) = ze
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FIG. 1. The wind profile #(z) used in the 1D model. The straight
line is the Charney profile. The vertical shear at the ground level in
both profiles are the same.
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FIG. 2a. The growth rate as a function of wavenumber k for Charney model without
friction, the one-dimensional jet profile with » = 3.6 m? s™! and the same profile
without friction. The vertical shear at the ground is 5 X 1073 s™",

Charney profile eliminate the neutral point separating
Green modes from Charney modes. As expected from
the arguments of Pierrehumbert (1986) the inviscid
short-wave behavior of our model is asymptotic to that
of Charney’s model as k goes to infinity, since the short-
wave behavior depends only on the shear at the ground.
The inclusion of Ekman friction reduces the growth
rate everywhere for the internal jet model, just as Card
and Barcilon (1982) found to be the case for the Char-
ney model. ’

25 —

20

PHASE SPEED (m/s)

From Fig. 2b, it is seen that the Ekman friction
somewhat retards the phase speed of the unstable mode.
By definition, c is real at a stability boundary, and the
indication in Fig. 2b is that ¢, remains positive as the
growth rate approaches zero. Because the Ekman fric-
tion appears only in the bottom boundary conditions,
the viscous effects do not desingularize the critical level,
and the mode at the stability boundary would appear
to have a logarithmic singularity where U = ¢,. Because
the singularity cannot be resolved with a finite number

Charney model

L | ¥

U T T T 1
20 30 40

WAVE NUMBER k
FIG. 2b. As in Fig. 2a, but for the phase speed.



2924

of degrees of freedom, convergence is poor near the
stability boundary, and it is difficult to accurately com-
pute the growth rates there. For the same reason, it is
difficult to pin down precisely the position of the sta-
bility boundary using numerical methods alone, or in-
deed to demonstrate convincingly that a stability

boundary exists at all. The pure Charney model is not-

plagued by this problem, as the stability boundary sep-
arating Green and Charney modes has its critical level
only at the ground, and in consequence is not singular.
~ For whatever it is worth, our calculations suggest a
short-wave cutoff for k somewhat greater than 3.0, and
also indicate that there may be a small stable gap be-
tween the Green and Charney modes in the dissipative
case. In any event, our main concern in this paper is
not with the behavior near stability boundaries, but
with the growth rate of the most unstable mode, for
which convergence is not a problem.

Now we focus our attention on the effect of change
in meridional scale and eddy viscosity on the maximum
growth rate. Figure 3 was the result of an extensive
numerical study covering the whole plausible range of
v (from O to 100 m? s~') and streamwise wavenumber
k for three different values of / seeking for the maxi-
mum growth: rate in each case. The result for the case
I = 2 is the closest one to that of Farrell, although he
did not allow k to vary. In this particular case, the
instability indeed is insignificant if » is larger than 4.5
m? s~!, However, the results from the other two cases
reveal that even at » = 100 m? s ™! the instability is not
insignificant. This tells the whole story about the im-
portance of the meridional scale in this problem. The
lesson here is that one must be very careful in choosing
all the parameters ax}d length scales in order to render

1.0 -y

0.8 ~

-

0.6

0.4

MAXIMUM GROWTH RATE (1/DAY)

0.2

0.0
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the one-dimensional model meaningful. Needless to
say, this requires profound physical insight and perhaps
some good luck. The solution to this dilemma is to use
the full two-dimensional model with two-dimensional
jetlike wind profile and let the nature of the jet deter-
mine the proper meridional scale of unstable waves.

4. Two-dimensional model

In order to make the comparison with our 1D mod-
els meaningful and still capture the main features of
the real atmosphere, we adopt the following profile

®

It is symmetric about y = 0 (latitude 45°N) and decays
to zero at infinity. The contour plot of this wind profile
on the meridional section (y-z plane) is shown in Fig.
4. When ¢ = 0.25 the corresponding dimensional wind
has vertical and horizontal shear comparable to the
observed zonal mean wind; a value ¢ = 0.5 might be
more typical of shears encountered in the oceanic storm
tracks.

Insertion of this wind field into (2, 5) yields a two-
dimensional eigenvalue problem, which we will solve
by spectral discretization followed by truncation to a
finite-dimensional algebraic eigenvalue problem. The
spectral and pseudospectral methods have been widely
used in numerical modeling of fluid flow. Until recently
it has been applied only to bounded or periodic do-
mains. Using the usual basis functions in an infinite
domain (y-direction) or semi-infinite domain (z-di-

u(y, z) = sech2(y)ze /43,

" rection) one encounters the difficulty of satisfying the

boundary conditions at infinity. Grosch and Orszag
(1977) employed both algebraic and exponential map-

0.0 . 4 16.

EDDY VISICOSITY v

FIG. 3. Maximum growth rate as a function of vertical eddy viscosity for 1D model,
1=0, 1, 2 and 2D model. Both 1D and 2D models have the same Rossby number ¢
= (.25, based on maximum vertical shear at the ground.
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FIG. 4. The wind profile used in the 2D model, #(y, z) = sech?y ze~**/*3, The contour labels give
dimensional wind speeds in m s~, corresponding to ¢ = 0.25. y and z are nondimensionalized by
the radius of deformation L, and density scale height H respectively.

pings to solve some fluid dynamics problems in semi-
infinite domain with success. Instead of transforming
the infinite or semi-infinite physical domain into a
bounded computational domain as Grosch and Orszag
did, Boyd (1987a,b) employed an algebraic transfor-
mation to transform the Chebyshev polynomials di-
rectly. The advantage of Boyd’s method is that we do
it once for all time and the equations need not be
changed. The mechanisms to do the transformations
in both the vertical (semi-infinite domain) and merid-
ional direction (infinite domain ) are described in detail
in Boyd’s two recent papers, each in the context of the
one-dimensional problem. We employed these two
techniques in our problem simultaneously, and call it
double Chebyshev expansion. Let

N M
o(y,2)= 2 2 XunTBu(y)TL.(2) 9

n=0 m=0
where 7B and TL are the transformed Chebyshev
polynomials-rational Chebyshev series (see Boyd
1987a,b) in y and z respectively. Here M and N are

the number of expansion terms, representing the me-
ridional and vertical resolution, respectively. As de-
scribed by Boyd, the infinite horizontal domain is im-
plicitly transformed to the finite interval using y = Ly'/
(1 — »'?)/2, and the semi-infinite vertical domain is
transformed using z = L(1 + z')/(1 — 2'); for both
transformations we used L = 1.

Note that this representation of the function ¢(y, z)
satisfies the decay condition (6) naturally. Since the
wind profile is symmetric about y, so is the governing
equation; therefore we need only half of the basis func-
tions (in the y direction) to achieve the same accuracy
as in the general case. To set up the pseudospectral
matrix, we chose the evenly spaced pseudogrids (col-
location points) in the Fourier-space such that in the
real physical-space they are concentrated near the
ground and near the center of the jet. Substituting (9)
into (2) and the lower boundary condition (5) then
rearranging terms, we obtain a generalized eigenvalue
problem of the form

AX = cBX (10)
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TABLE 1. Matrix size and CPU time requirement
for the 2-D model.

Resolution CPU time
(M X N) Matrix size (sec)
10 X 20 200 X 200 84
12 X 24 288 X 288 232
14 X 28 392 X 392 590

where A and B are (MN) by (MN) matrices determined
by the mean flow properties and wavenumber k, ¢ is
the complex phase speed (eigenvalue) and X is the
eigenvector. Equation (10) can be readily solved by the
IMSL subroutine EIGZC or other standard packages.

To solve the two-dimensional model is very expen-
sive compared to of the 1D models. While the 1D
models can be easily solved-—even on a personal com-
puter, the requirement of CPU time and memory of
the 2D model made it prohibitive to run very many
cases—even on a Cyber 205. Table 1 lists the CPU
time required for three different resolution on a two-
pipe Cyber 205; using the IMSL routines in 64-bit pre-
cision. The CPU time required is approximately pro-
portional to the cube of the matrix size, indicating that
the vector speed-up has already saturated for matrices
of order 200.

The modes in a system with symmetric jet profile
can be classified as symmetric or antisymmetric, and
each class can be computed separately. Since we are
mostly concerned with growth of the most unstable
waves, and the growth rates of the antisymmetric

modes were found to be always smaller than that of
. \

GROWTH RATE (1/day)

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 45, No. 20

the symmetric modes, we will show the results for the
most unstable symmetric mode only.

Generally speaking, the convergence rate of this
spectral expansion is strongly related to the “degree of
singularity” of Eq. (2). In case of strong instability
(less singular), we found that the resolution 10 X 20
gives almost identical results to that of the higher res-
olution 14 X 28. However, it gives poor results near
the stability boundary. In all of the results presented
here, we used a 12 X 24 resolution for most of the
calculations except near stability boundary where a 14
X 28 resolution was used. \ .

The Rossby number ¢ in this problem is a measure -
of wind shear, e.g., ¢ = 0.25 is the case where maximum
wind at the tropopause is about 32 m s~! (the mean
wintertime value, referred to hereafter as typical wind
shear) and ¢ = 0.5 corresponds to a maximum wind
about 64 m s™' (hereafter referred to as strong wind
shear). We regard eddy viscosity 3.6 m?s~! as the nor-
mal friction and 36 m?2 s™! as a strong friction in the
Ekman layer (see the Appendix).

Figure 5a is the plot of growth rates versus wave-
number k for four cases. The case with ¢ = 0.25 and »
= 3.6 (typical wind shear and normal friction) should
represent the real atmosphere rather well. The e-folding
time of the most unstable wave is close to 5 days and
the most unstable wavelength is about 4400 km (k
~ 2.0) which is close to the observed scales of the
synoptic cyclones. The maximum growth rate for the
case with € = 0.5 and » = 36.0 (strong shear and strong
friction ) is much higher than that of the case with typ-
ical shear and normal friction. In other words, a twofold
increase in wind shear can easily overcome a tenfold

T T T T T
20 30 40

WAVE NUMBER k

FIG. 5a. The growth rates plotted as a function of wavenumber k, for the most
unstable mode in the two dimensional model. ¢ is the Rossby number, which is a
measure of wind shear and » is the vexjtical eddy viscosity.
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FI1G. 5b. As in Fig. 5a, but for the phase speed.

increase in eddy viscosity on the effect of the growth
of unstable waves. This result arises primarily from the
fact that the friction enters the nondimensional equa-
tion (5) only in the combination E,'/?/e so that the
nondimensional growth rates are only slightly reduced
in the strong friction/strong shear case; this is more
than offset by the doubled shear against which the
growth rates are redimensionalized. Increasing the
shear also affects the problem via a reduction of 8, but
the contribution of this effect to the change in maxi-
mum growth rate is not very great. In any event, it is
clear that dissipative suppression of baroclinic insta-
bility in the oceanic jets is highly unlikely, as the in-
stability can still grow vigorously even if we use the
“normal shear” for the wind: profile (which is an un-
derestimate of the actual shear) and friction values
characteristic of a neutrally stratified boundary layer
{which is an overestimate of the dissipation).

The probiem with using the classic one-dimensional
model is that it is difficult to pick an appropriate value
of meridional wavenumber to properly represent the
actual meridional scale of the unstable waves. As an
indication of the degree of meridional confinement in
the 2D model, we have plotted the maximum growth
rate for the normal shear case versus eddy viscosity in
Fig. 3 in addition to the 1D results. We see that the
magnitude of the effective meridional wavenumber in
the 2D model is between 1 and 2 (in units based on
radius of deformation ), and that the slight decrease in
effective wavenumber over that chosen by Farrell ne-
cessitates a much larger friction for stabilization.

Two inviscid cases were also studied for comparison
with the viscous cases and some previous studies. The
WKB approximation used by Ioannou and Lindzen
(1986) to study the instability of two-dimensional jets

is very promising; it reproduces the salient predictions
of the full two-dimensional inviscid calculation quite
well. The WKB approximation provides a systematic
way to choose the proper complex meridional wave-
number. Although the technique is formally limited to
jets with broad meridional structure, comparison with
our full two-dimensional results attests to its robustness.
The success of WKB may be due to the strong merid-
ional trapping of the mode at the latitude of the jet
maximum, as will be exhibited shortly. Ioannou and
Lindzen did not include Ekman friction in their cal-
culation, but we expect that the agreement would be
similarly good in the damped case.

Considerable discrepancy was found with the nu-
merical results of Gall (1976), particularly for the short
waves. The short waves exhibit a very high rate of
growth in his model. The discrepancy may perhaps be
attributed to the poor resolution and insufficient non-
linear viscosity (of the type introduced by Smagorinsky
1963) to control the “computational mode” in Gall’s
GCM-like model. This point of view is supported by
the result from a high-resolution spectral model by
Young and Villere (1985). They also used the primitive
equations in spherical geometry but adopted a' hori-
zontal scale-selective damping instead to prevent en-
ergy accumulation in the smallest resolved scales and
did not include any mechanism for surface friction.
Their result is generally consistent with our result for
normal wind shear without friction. For a jet at 45°
latitude, they find a maximum growth rate of 0.5 day ™
(vs 0.46 for the quasi-geostrophic model) occurring at
zonal wavenumber 9, which is roughly equivalent to
k = 3 in our units (vs maximum growth near k = 2.5
in quasi-geostrophic theory). The chief difference is
that Young and Villere’s growth rate falls off much
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more steeply with increasing wavenumber than does
the inviscid quasi-geostrophic result; we do not know
whether this is due primarily to the scale-selective
damping or to ageostrophic effects. The basic state wind
profiles used in Gall, Ioannou and Lindzen, and Young
and Villere’s models are all very similar to ours (the
maximum wind speeds are all around 32 m s al-
though they differ in details. The general similarity be-
tween the quasi-geostrophic 8-plane results and the
spherical primitive-equation results suggests that the
former approximation is an adequate framework for
addressing the effects of Ekman friction in the real at-
mosphere.
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The phase speeds for the four cases are shown in
Fig. 5b. As in the 1D model, the phase speed was re-
duced by the friction. In the 2D case, it is rather in-
sensitive to zonal wavenumber, except when the fric-
tion is strong. Also as in the 1D case, the results lead
one to speculate that the stability boundary occurs at
positive ¢, and hence is associated with a singular mode.
The numerical methods employed here are not really
adequate for addressing issues related to the stability
boundary, however.

We also carried out a calculation for the case with
normal wind shear (e = 0.25) and strong friction (v
= 36 m?s™'). The growth rates were found to be neg-

O==735 =30

200

400

600

o]

o

o
Y

200 >
400 |

600

800 1

A
L L1 1

2 1 0

1000

FIG. 6. Upper left panel: The wave amplitude |¢|. Upper right panel: The phase angle in degree. Lower left panel: Momentum flux
pu'v'. Lower right panel: Heat flux pv’'8’. Results are for the case with € = 0.25, v = 0 and k = 2.0.
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ligibly small. Owing to convergence problems, we can-
not say with certainty whether the growth has been
eliminated or merely reduced to a very small value;
however, for all practical purposes, this case may be
regarded as baroclinically stable. As shown in the Ap-
pendix, the friction used here is typical of a neutrally
stratified boundary layer over land. Combined with
the fact that the normal wind shear is perhaps slightly
stronger that the magnitude typically found away from
the oceanic jet maxima, it appears likely that circum-
stances can arise in which baroclinic instability is elim-
inated over the continents. The main factor preventing
this state of affairs from prevailing is the generally stable
stratification of the boundary layers.
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There are two well-known deficiencies in the linear
baroclinic instability theory. First, the wavelength of
maximum growth predicted by linear theory is some-
what shorter than the observed scales of baroclinic en-
ergy release in the atmosphere. Second, while the ob- -
servations show a primary maximum of eddy kinetic
energy near the tropopause with only a secondary
maximum at ground level, the linear theory invariably
predicts a primary maximum at the ground except for
ultralong waves, which are only weakly unstable. These
discrepancies are generally attributed to nonlinear ef-
fects. We have already shown that with the inclusion
of Ekman friction the most unstable wavelength can

" be lengthened. In the following we will also show what
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FIG. 7. Same as Fig. 6, but for the case with e = 0.25, » = 3.6 m?s~",
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the Ekman friction can do to improve the second de-
ficiency of the linear theory.

- The contour plot of the wave amplitude, phase, mo-
mentum and heat fluxes on a meridional section are
shown in Figs. 6-8 for a variety of flow configurations
at a fixed wavenumber k = 2.0 (corresponding wave-
length is about 4400 km ). Note that all of these patterns
are symmetric about 45°N (since this is a symmetric
mode).

Figures 6a-d are for the case with typical wind shear
and no friction. The prominent features of this inviscid
case are: The amplitude, momentum and heat fluxes
are all concentrated near the ground level and the cen-

- tral portion of the jet and there is no secondary max-
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imum aloft. The “steering level” is now a curved sur-

face with the lowest level at 45°N instead of a flat one
in the 1D model. The momentum fluxes are all coun-
tergradient except for two very small regions as shown .
in the figure. The phase shows westward tilt in most
of the domain so the heat fluxes are mostly northward.

- These pictures bear a remarkable resemblance to the

results (of the first symmetric mode with wavelength
4000 km ) found in loannou and Lindzen (1986). The
WKB approximation again seems to capture much of
the behavior of the full two-dimensional problem.
Figures 7a-d are for the same wind shear as in the
first case but including a normal friction. The Ekman
friction has made some improvement here; the wave
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amplitude has now developed a secondary maximum
near the 700 mb level and so has the momentum flux.
The portion of downgradient momentum and equa-
torward heat flux in the meridional section were also
increased. The case with strong shear and strong friction
is shown in Figures 8a-d. The region where we have
downgradient momentum flux and equatorward heat
flux is further increased, and the secondary maximum
of wave amplitude and momentum flux is stronger as
compared with the normal friction case. Despite the
improvement in penetration of the momentum fluxes,
the level of the maximum still falls far short of the 300
mb level typically encountered in both observations
and nonlinear numerical simulations.

In all these cases, the momentum flux of the linear
modes acts to spin up the winds near the surface, and
therefore tends to reduce the baroclinic instability of
the system; the influence is more effective in the fric-
tional cases, because the fluxes are less bottom-trapped.
The momentum fluxes are upgradient for the most part,
and do not act diffusively.

5. Concluding remarks

We have carried out calculations of the effect of Ek-
man friction on baroclinic instability, using a nonsep-
arable 2D model to obviate the inherent difficulty in
choosing an effective channel width in 1D models, and
using a realistic boundary layer model to provide a
reliable estimate of Ekman pumping. Our principal
conclusion is that Ekman friction almost certainly
cannot eliminate baroclinic instability in the oceanic
storm tracks; we found that the instability can grow
quite vigorously, even subject to a vertical shear esti-
mate which is at the low end of the plausible range and
a friction estimate which is at the high end. Over the
continents, where the vertical shear tends to be weaker
and friction tends to be stronger, suppression of baro-
clinic instability is within the realm of possibility, but
then only if the boundary layer is not appreciably stably
stratified. It is worth noting that the oceanic jets are
probably convectively rather than absolutely unstable
(Pierrehumbert 1986 ), so that amplifying wave packets
would ultimately leave the highly unstablé jet regions
and dissipate (or at least grow at a greatly reduced rate)
over the continents. The possibility thus emerges that
frictional stabilization may contribute to the rather
sharp termination of the Pacific and Atlantic storm
tracks observed at the continental boundaries.

With the inclusion of Ekman friction at the lower
boundary, we get a more realistic upper structure of
the unstable waves, and the wavelength of the most
unstable wave is lengthened. The geopotential height
fluctuation, heat flux and most notably momentum
flux all penetrate to considerably greater heights, and
the latter develops a secondary maximum aloft. While
the vertical distribution of momentum fluxes is still
not nearly as deep as that seen in observations and
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nonlinear numerical simulations, the frictional effects
leave a bit less that needs to be accounted for by non-
linear effects associated with saturation and Rossby .
wave radiation. In a sense, the stabilizing effects of Ek-
man friction advance the wave somewhat in its life
cycle.

Our results demonstrate that the present-day Earth’s
atmosphere is indeed baroclinically unstable, and hence
that transient eddies can be spontaneously generated
in the oceanic jet regions. We shall leave unresolved
the question of which class of observed phenomena is
actually due to such instability, though what we have
in mind are storm track transients such as identified
in band-pass analyses of Blackmon et al. (1984a,b) and
Plumb (1986). These motions have characteristics
which are generally in line with those of the normal
mode instability, manifested in the form of a wave
packet propagating through the storm track. On the
other hand, a number of case studies (e.g., Sanders
1987) suggest that vigorous cyclogenesis can commonly
occur at much smaller scales. To be sure, a small scale
perturbation was posited by Farrell largely to bring the
scale of the perturbation in line with that of such cy-
clones, and our calculation does not contradict his
conclusion that normal mode growth at small scales
(relative to the radius of deformation) is strongly in-
hibited by Ekman friction. To this remark must be
attached two caveats. First, one’s subjective impression
of the “scale” of a cyclone is dominated by the extent
of the region of closed surface streamlines, which is
not related in any simple way to the wavelength of the
instability that may be the prime mover in the process;
moreover, the scale of the mature cyclone is affected
by many nonlinear processes (including latent heat re-
lease and stretching of relative vorticity) which one
should not expect to be captured by a stability analysis.
Second, the explosive developments often occur in an
environment of effectively weak (moist ) static stability.
This reduces the radius of deformation L, which has
the dual effect of shifting the maximum growth to
shorter dimensional wavelengths (since our length
scales are nondimensionalized against L,) and reducing
the effective damping [since reducing L, increases the
Rossby number ¢, which appears in the denominator
of the friction term in (5)]. All this notwithstanding,
we would not care to claim that all forms of cycloge-
nesis arise from normal mode baroclinic instability;
there remains ample scope for other mechanisms in
explaining small scale explosive cyclogenesis.
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APPENDIX
The Estimation of Ekman Friction

Our estimate of the effective Ekman friction is based
on a linear Ekman layer model with general height
dependent viscosity »(z) and a drag law lower boundary
condition applied at z = z;. Introducing the complex
velocity # = u + iv, the equations for this model are

d
d_‘i(”‘z’a‘?) —a-4) (A

subject to boundary conditions

i—>d, as z—> (A2)

di N
v(?) 7 Ci(z) at z=z. (A3)
The drag coefficient C is obtained by linearizing the
surface stress formula [ Cp | #| u] about a constant sur-
face wind uy; thus, C = 2Cpu;. As usual, f'is the Coriolis
parameter and 4, is the geostrophic velocity at the outer
edge of the boundary layer.

If F(z) is the solution of the homogeneous form of
(A1) (i.e. with 7 set to zero) with F(z;) = 1 and which
decays as z = o0, then the vertical velocity at the outer
edge of the boundary layer is readily found to be

(A4)

where {; is the geostrophic vorticity at the outer edge
of the boundary layer and §g is the effective Ekman
layer depth, given in terms of F by

dF

w(zy) -

dz
F

d
V(Z])Z_ C

w, = 6E§g

0 = Re[ (AS)

<
f

in which the derivatives of F are to be evaluated at z
= 2Z1.

To evaluate (AS5) it is only necessary to compute
F(z) by means of standard techniques of numerical
integration. The F(z) depends on strength of the ver-
tical diffusivity but is independent of C. In the limit
of large C with fixed diffusivity, the Ekman pumping
becomes independent of C and the drag-law boundary
condition becomes equivalent to a simple no-slip con-
dition. In the opposite limit the pumping becomes in-
dependent of diffusivity and we have 6z = C/f. It may
seem paradoxical that the surface drag effects dominate
the pumping precisely when the drag coefficient is
small, but this result is readily explained by the fact
that the surface drag determines the momentum flux
at the bottom of the Ekman layer model, without which
there would be nothing for the diffusivity to commu-
nicate upward. Note also that the small C results are
not really independent of the presence of viscosity, as
the limit is taken with fixed, nonzero viscosity.
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For constant » with C = oo, (A5) reduces to
Vv/(2f), whence we define the equivalent constant
eddy viscosity veg = 2(8£)? f. Since the boundary layer
affects the interior quasi-geostrophic flow only through
the Ekman pumping, instability results pertinent to
the general boundary-layer model can be obtained from
the results given in the text by simply using v.g in the
computation of the Ekman number.

The objective of a boundary layer parameterization
is to obtain ¥(z) and Cp as a function of gross atmo-
spheric characteristics. While the empirical underpin-
nings for this endeavour are not all that could be de-
sired, they are not totally absent either. For the purpose
of our estimates we adopt the parameterization cur-
rently in use in the forecast model of the European
Centre for Medium Range Weather Forecasts, as de-
scribed in Louis (1979, 1985) and Louis et al. (1982).
This boundary layer model is based on Monin-Obu-
khov similarity theory and a mixing-length formula-
tion; it has a reasonably good empirical and physical
basis, at least for the nonconvecting case. Further, it
seems to us that the short-range forecasts produced by
the ECMWF could hardly be as accurate as they are if
something as fundamental as the Ekman friction were
grossly in error. :

The parameters entering the boundary layer param-
eterization are the height z, at which (A3) is applied,
the wind speed and shear u, and u, at z,, the Richardson
number N?/u,?, and the roughness length z,. In ad-
dition, f enters the problem via the Ekman layer model.
The results reported below were calculated with f
= 10"*and z, = 500 m; they are not very sensitive to
variations in z, and so we simply chose a value com-
parable to that used in the ECMWF model. Over the
open ocean 2, is obtained from the other parameters
in a self-consistent way by means of the Charnock for- -
mula (as in the ECMWF parameterization ). Over land

TABLE Al. Effective diffusivity from ECMWF
boundary layer model.

(m) R u(ms')  w(s!)  ve(ms™)
Open ocean 0.0 5.0 .01 0.7
Open ocean 0.0 5.0 .05 0.7
Open.ocean 0.0 10.0 .01 37
Open ocean 0.0 20.0 .01 17.0

3. 0.0 5.0 .002 12.6
3. . 0.0 5.0 .01 32.2
3. 0.0 5.0 .05 52.5
3 0.0 10.0 .01 65.1
3. 0.5 5.0 .01 34
3. 0.5 10.0 .01 8.7
3. 1.0 5.0 .01 1.9
3 1.0 10.0 01 5.0
100. 0.0 5.0 .01 124.4
100. 1.0 5.0 .01 17.0
100. 1.0 10.0 01 19.0
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it is specified by the characteristic scale of surface fea-
tures; a value of 3 m is believed appropriate to urban
or disturbed terrain. Over mountains the ECMWF
model uses the subgrid-scale orographic height variance
to estimate z,, and this can lead to values of 100 m or
more. The use of such large values of z; over mountains
must be regarded as speculative, since the estimates are
not based on particularly firm empirical or theoretical
considerations. Results for a variety of conditions are
given in Table Al.

Over the open ocean, the effective diffusivity in neu-
trally stratified boundary layers is quite weak unless
gale-force surface winds are assumed; results for stable
stratification are even lower. Over moderately disturbed
terrain, the dlﬁ'usmty in neutral conditions can easily
reach 50 m? s~!, though modest stable stratification
reduces this value considerably. The results are rather
insensitive to increasing the surface shear beyond 0.01
(with fixed Ri), since the shear primarily effects the
magnitude of »(z), and the values in question lie in
the “small C” regime. Weakening the shear, however,
does reduce the effective diffusivity appreciably. Finally,
large values of diffusivity are obtained over mountains,
even under stably stratified conditions.

We have discussed results only for the nonconvecting
case Ri = 0. The ECMWF scheme also transports mo-
mentum in convecting situations. All other parameters
being fixed, the drag and diffusivity in a convecting
layer can be an order of magnitude larger than in the
neutral case. As noted by the originators of the scheme,
though, the momentum transport in this situation is
not based on particularly sound or well-verified physical
principals; it is generally believed that such transports
are of little importance in the model as in convecting
situations they “have little shear on which to act”
(Louis 1985). However, there may be strongly con-
vecting situations in the model which give rise to spu-
rious suppression of cyclogenesis. On the other hand,
the behavior of the parameterization may mimic a real
effect, though much more would have to be learned
about momentum transport in convecting layers before
this could be said with any confidence. The possibility
that convective friction offsets some of the more fa-
miliar diabatic effects of convection on cyclogenesis—
particularly at the small cyclone scales typically of in-
terest in this context——merits further looking into.
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