
AUGUST 2000 2935G R I F F I E S A N D H A L L B E R G

Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in
Large-Scale Eddy-Permitting Ocean Models

STEPHEN M. GRIFFIES AND ROBERT W. HALLBERG

NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

(Manuscript received 26 July 1999, in final form 14 January 2000)

ABSTRACT

This paper discusses a numerical closure, motivated from the ideas of Smagorinsky, for use with a biharmonic
operator. The result is a highly scale-selective, state-dependent friction operator for use in eddy-permitting
geophysical fluid models. This friction should prove most useful for large-scale ocean models in which there
are multiple regimes of geostrophic turbulence. Examples are provided from primitive equation geopotential
and isopycnal-coordinate ocean models.

1. Introduction

A key goal of large-scale ocean modeling where me-
soscale eddies are permitted is to achieve simulations
in which the natural tendency for oceanic flows to ex-
hibit hydrodynamic instabilities and turbulence is not
handicapped by overly strong frictional dissipation.
That is, the desire is to allow dynamics at the resolved
scales of motion to dominate the subgrid-scale param-
eterization. Such simulations impose fewer a priori as-
sumptions on the flow associated with details of the
subgrid-scale operator. Ideally, the result is a simulation
that more faithfully represents the rich variety of ob-
served oceanic flow regimes.

In practice, it is impossible to completely remove
friction from a numerical simulation. In particular, ocean
models require frictional dissipation in order to suppress
instabilities such as those associated with the grid Reyn-
olds number, to provide a vorticity sink at western
boundaries, and to generally suppress power at unre-
solved scales. Indeed, in the presence of geostrophic
turbulence, friction must be sufficient to absorb enstro-
phy upon cascading toward the smallest resolved scales.
Finally, frictional dissipation can be included as a phys-
ical parameterization of the effect of unresolved scales
on the resolved scales. Currently, however, there is no
generally agreed upon form of a physically motivated
closure for linear momentum in ocean models. Notably,
Laplacian momentum friction has not been motivated
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from first principles at the scales resolved in large-scale
ocean models.

Consequently, one can identify the two central roles
of friction: numerical closure and physical parameteri-
zation. It is not uncommon for the friction to be de-
scribed as though it were a physical parameterization
of small scales, even though the chosen value of vis-
cosity may be set by numerical stability considerations.
However, these two very distinct considerations should
be thought of separately in designing dissipation
schemes for ocean models.

The focus here is on the numerical closure aspects of
friction. Yet our inspiration stems from the ideas of
Smagorinsky (1963, 1993), who was motivated from
physically based turbulence closure arguments. The key
point made in this paper is that the Smagorinsky ap-
proach, when combined with a biharmonic operator, is
ideal for global ocean modeling in the presence of me-
soscale variability. This combination provides an ex-
tremely effective device for use in maintaining numer-
ical stability, without adversely affecting the resolved
scales of flow.

Since the inertial range of a geostrophic turbulence
cascade conserves total energy, it is desirable to have
the frictional operator remove a minimal amount of ki-
netic energy from the scales of physical interest. That
is, we wish friction to keep the flow within the bounds
of numerical stability requirements without adversely
affecting the resolved part of the spectrum where energy
is concentrated. If set to a strength sufficient to suppress
numerical instabilities, the Laplacian form of friction
significantly removes both kinetic energy and enstrophy
over a broad range of spatial scales. For this reason,
more highly scale-selective frictional operators, such as
biharmonic or higher-order operators, are often used for
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quasigeostrophic simulations (e.g., Holland 1978; Held
et al. 1995) as well as primitive equation models (e.g.,
Semtner and Mintz 1977; Böning and Budich 1992).
The anticipated potential vorticity approach of Sadourny
and Basdevant (1985) goes one step further by formally
conserving energy while dissipating enstrophy.

When using a biharmonic operator, the predominant
practice in ocean modeling is to also employ a state-
independent biharmonic viscosity. To maintain numer-
ical stability, this coefficient must be set large enough
to control the most vigorous anticipated motions. Such
a choice may be suitable for simulations with one regime
of flow, although it will lead to more dissipation than
is numerically required when the flow exhibits temporal
and spatial variability. When simulating realistic ocean
flows that contain multiple space–time varying flow re-
gimes and employ variable grid resolutions, such dis-
sipation will generally be excessive in many important
regions. The discussion by Gille (1997) illustrates this
point in an analysis of the Southern Ocean momentum
budget with an eddy-permitting global ocean simulation.

Smagorinsky (1963, 1993) proposed that the effective
Laplacian viscosity due to unresolved scales should be
proportional to the resolved horizontal deformation rate
times the squared grid spacing. This scheme is a phys-
ically plausible parameterization of the effects of three-
dimensional isotropic turbulence, and it has found much
use in large-eddy simulations (e.g., see Galperin and
Orszag 1993 for a compendium). For large-scale geo-
physical fluid simulations, however, it has little physical
justification since the unresolved scales are dominated
by quasi-two-dimensional geostrophic turbulence. For
this reason, Leith (1968, 1996) proposed an alternative
approach based on two-dimensional turbulence. Leith’s
viscosity is proportional to the horizontal gradient of
the relative vorticity times the cubed grid spacing. This
approach has found some use in atmospheric models
(e.g., Boer and Shepherd 1983), but it is not commonly
used in ocean models.

The Smagorinsky scheme has found notable use in
large-scale ocean models (e.g., Blumberg and Mellor
1987; Rosati and Miyakoda 1988; Bleck and Boudra
1981; Bleck et al. 1992) for pragmatic reasons. First, it
is more convenient to compute than the Leith viscosity
due to the smaller required grid stencil, and because the
deformation rate used to compute the Smagorinsky vis-
cosity is furthermore needed to compute the stress ten-
sor. Second, as with the Leith scheme, the Smagorinsky
viscosity tailors the local dissipation to both the local
flow state and local grid resolution with only a single,
nondimensional adjustable parameter. If this parameter
is properly chosen, the resulting viscosity ensures that
the flow respects the relevant numerical stability prop-
erties, even when simulating multiple flow and grid re-
gimes such as occur in realistic ocean simulations.

Although the use of a Smagorinsky viscosity with a
Laplacian frictional operator is less dissipative than a
constant viscosity, we have found that the Laplacian

form of the operator remains overzealous in its dissi-
pation of large-scale energy. As illustrated in sections
4 and 5, the result can be overdissipation of the eddies
and, hence, a suboptimal use of the model’s resolved
scales. For this reason, we propose the use of a Sma-
gorinsky-like viscosity with a biharmonic operator as
an appropriate numerical closure scheme for eddy-per-
mitting ocean models. A similar idea was mentioned by
Bleck and Boudra (1981) and Sadourny and Maynard
(1997). In this approach, the biharmonic viscosity is
proportional to the resolved deformation rate times the
grid spacing to the fourth power, |D|D4, rather than |D|D2

as used with the Laplacian operator. This biharmonic
Smagorinsky scheme retains the enhanced scale selec-
tivity of a biharmonic viscosity, as well as the pragmatic
aspects of the Smagorinsky scheme mentioned above.

Even without resolved eddies, the proposed bihar-
monic Smagorinsky scheme will be a useful numerical
closure when combined with a physically based param-
eterization of unresolved turbulence. Consequently, ob-
servations and/or theory can be used to specify the form
and magnitude of the physical parameterization, rather
than also having to be concerned with numerical sta-
bility constraints. To the extent that the physical param-
eterization is less scale selective than the biharmonic
operator, the dominant dissipative effect on the well-
resolved scales will be associated with physics, not nu-
merics. A recent illustration of this approach is given
in the paper by Kazantsev et al. (1998), in which a
constant viscosity Laplacian operator provided their nu-
merical closure, and statistical mechanics provided their
physical closure.

The organization of this paper is the following. Sec-
tion 2 reviews the scale selectivity and numerical sta-
bility properties of the Laplacian and biharmonic op-
erators in support of the previous discussion. Section 3
introduces the Smagorinsky Laplacian and biharmonic
viscosities and discusses their properties according to
the numerical stability constraints of section 2. Section
4 presents an eddy-permitting channel experiment using
the Modular Ocean Model (MOM), which is a three-
dimensional, geopotential-coordinate, primitive equa-
tion, B-grid ocean model (Pacanowski and Griffies
1999). This example serves to illustrate the overdissi-
pation resulting from Laplacian friction relative to the
biharmonic friction, even when using a Smagorinsky
viscosity. Section 5 presents an example of an eddy-
permitting midlatitude wind-driven sector experiment
using the Hallberg isopycnal model (HIM), which is a
three-dimensional, isopycnal-coordinate, primitive
equation, C-grid ocean model (Hallberg 1995). This ex-
ample illustrates the utility of the Smagorinsky approach
in a model with meridional boundaries and hence a very
inhomogeneous flow field. Section 6 provides a sum-
mary and conclusions. An appendix documents the La-
placian and biharmonic friction operators valid in any
set of horizontal orthogonal coordinates and nonorth-
ogonal vertical coordinates. We also present here a dis-
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cussion of the discretization choices made when imple-
menting these ideas on the Arakawa B and C grids.

2. Scale selectivity and numerical stability

The purpose of this section is to summarize the basic
ideas regarding the scale selectivity of the biharmonic
friction relative to the Laplacian friction, as well as to
discuss some of the numerical stability considerations
that constrain the size of the viscosity. Much of the
discussion here is limited to the case of constant vis-
cosity and a uniform grid. However, the ideas corre-
spond locally to cases with a nonconstant viscosity used
on a nonuniform grid.

a. Scale selectivity of the frictional operators

Although standard, it is nonetheless useful to begin
our discussion with a simple illustration of the enhanced
scale selectivity of the biharmonic operator over the
Laplacian. For this purpose, we proceed much as Se-
mtner and Mintz (1977) and Holland (1978) by consid-
ering the following linear equations in one Cartesian
dimension using constant viscosities

c 5 Ac and (1)t xx

c 5 2Bc , (2)t xxxx

with A . 0 the Laplacian viscosity, B . 0 the bihar-
monic viscosity, and c a model field, such as velocity.
The evolution of a monochromatic grid wave c 5

(where k is a wavenumber, xn 5 nD are the gridikxnc(t)e
points, and D is the uniform grid spacing) takes the form
of a damped exponential. Using centered differences in
space, the spindown times

22
2

21t 5 A sin(kD/2) and (3)L [ ]D

24
2

21t 5 B sin(kD/2) (4)B [ ]D

have a ratio t L/t B that falls off in a roughly quadratic
fashion as the wavenumber decreases and reaches a
maximum at the highest resolved wavenumber k 5 p/D .
Consequently, the longer waves, which are also better
resolved, have longer spindown times with the bihar-
monic operator, given the same spindown time for the
shorter waves. The wavenumber where the two opera-
tors exhibit the same spindown times depends on the
values chosen for the viscosities. As discussed below,
for reasons of diffusive stability we are motivated to
consider B 5 A(D2/8) when relating the Smagorinsky
Laplacian and biharmonic viscosities. With this choice,
for example, grid-scale waves, with k 5 p/D , are
damped twice as fast with the Laplacian operator than
with the biharmonic operator, whereas 10D waves, with
k 5 p/(10D), are damped 80 times faster, and 20D waves

are damped 320 times faster. This behavior illustrates
what is meant by scale selectivity—the biharmonic op-
erator more strongly selects the small scales to dissipate
and leaves the large scales relatively untouched.

b. Scale selectivity versus adaptive dissipation

Since the Smagorinsky viscosity is based on the local
deformation rate, it can be tuned to provide the mini-
mum dissipation consistent with numerical stability.
However, we wish to distinguish this adaptive dissi-
pation property from that of the enhanced scale selec-
tivity of a biharmonic operator. For this purpose, con-
sider the one-dimensional case in which the Smagorin-
sky viscosity takes the form A 5 (CD/p)2|ux |, with C
an empirically chosen constant, and so the diffusion
equation for momentum is given by

ut 5 [(CD/p)2|ux |ux]x. (5)

For a monochromatic wave u 5 c(t) exp(ikxn), the re-
sulting k3 on the right-hand side may suggest a more
scale-selective operator than in the constant viscosity
case. Indeed, it is more scale selective when the flow
is completely described by a single wave. However, for
a realistic flow in which there are many scales, the scale
of the largest shear, which sets the viscosity, can be
associated with a wavenumber k*. Once this scale is
set, the right-hand side scales as k2 for the other waves,
just as for a constant viscosity. That is, scale selectivity,
which is a property of the frictional operator, is distinct
from an ability to adaptively reduce dissipation through
use of a spatially dependent viscosity

As a specific example, we have evaluated the dissi-
pation associated with three superimposed waves, with
relative wavenumbers 3, 4, and 25, and relative ampli-
tudes 1, ½, and ½. The Smagorinsky viscosity varies
quite rapidly, due to the wavenumber 25 wave, but it
has a mean value that is a substantial fraction of its
maximum value. The dissipation of the wavenumber 3
and 4 waves is within 1% of the dissipation that would
be provided by the mean viscosity. In particular, the
ratios of the spindown rates of the wavenumber 3 and
4 waves are almost exactly (¾)2.

c. Stability of the diffusion equation

Sufficient conditions for numerical stability of the
linear equations (1) and (2) can be found using a von
Neumann analysis (e.g., Haltiner and Williams 1980).
For centered differences in space and forward differ-
ences in time, one finds for one spatial dimension, A ,
D2/(2Dt), whereas for two dimensions,

2D
A , , (6)

4Dt

where D2 5 2[(Dx)22 1 (Dy)22]21. Note that use of D
5 min(Dx, Dy) is conservative and is used in the fol-
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lowing. For the biharmonic operator in two dimensions,
a sufficient condition for stability is

2D
B , A , (7)max8

where Amax 5 D2/(4Dt).
For global ocean models, the convergence of the me-

ridians can make this constraint more limiting on the
available time steps than the Courant–Freidrichs–Lewy
(CFL) constraint. This situation occurs especially when
one attempts to use a globally constant viscosity relevant
for resolving the western boundary layer in the mid-
latitudes. A common practice to overcome this con-
straint is to taper the viscosity according to the grid
spacing (e.g., Smith et al. 2000). The local grid depen-
dence of the Smagorinsky viscosity naturally accounts
for the convergence of the meridians, as well as other
nonuniform grid configurations such as enhanced equa-
torial resolution.

d. Grid Reynolds number constraint

Instead of considering the balance between time ten-
dency and friction, consider now a steady-state balance
between advection and Laplacian friction

Ucx 5 Acxx, (8)

where U is a constant advection velocity. Using centered
differences in space, Bryan et al. (1975) showed that
the finite-difference counterpart of this equation will
suppress a computational mode if

UD
, 2. (9)

A

That is, the Reynolds number1 based on the grid scale
must be less than two. Similar considerations for the
balance Ucx 5 2Bcxxxx leads to UD3/B , a, where a
is generally tedious to determine, yet with a 5 16 mo-
tivated by combining the constraints (7) and (9).

In coarse-resolution models, not satisfying the grid
Reynolds number constraint typically ensures a noisy
solution. In the presence of an eddying flow, indepen-
dent of the discretization choice, a viscosity satisfying
a similar constraint is necessary to prevent velocity self-
advection from steepening velocity gradients into grid-
scale velocity shocks, as described in one dimension by
Burgers’s equation ut 1 uux 5 Auxx. Failure to do so
can result in an unbounded solution.

e. The frictional boundary layer

Horizontal friction is a leading-order term near west-
ern boundaries and, thus, creates a frictional boundary
layer (e.g., Munk 1950; Gill 1982). With Laplacian fric-

1 Also called the grid Peclet number when c is a tracer.

tion, the Munk boundary layer Lbdy has a width pro-
portional to (A/b)1/3, where b is the planetary vorticity
gradient. For biharmonic friction, the boundary layer
width is set by Lbdy } (B/b)1/5.

Experience has shown that if the boundary layer is
not resolved by the model grid, that is, if Dx . Lbdy,
then the model’s circulation will be noisy (e.g., Bryan
et al. 1975). Physically, the problem is related to not
applying a sufficient level of vorticity dissipation from
which the western boundary current can deposit the
torque input from external forcing throughout the basin.
A common practice is to allow at least two grid points
within the Munk layer. Indeed, for MOM, the work of
Griffies et al. (2000) argued for the necessity of doing
so in order to reduce the amount of spurious diapycnal
mixing arising from errors in numerical tracer advec-
tion.

With increasing model resolution, the western bound-
ary layer constraint becomes less of a limiting factor
than the Reynolds number constraint. The ratio of the
viscosities necessary to satisfy the two constraints takes
the form ARe/Abdy 5 UD/( b) } U/(2D2b). For bi-32Lbdy

harmonic viscosity, BRe/Bbdy } U/(16D2b). The advec-
tive velocity scale U typically increases with decreasing
grid spacing, thus guaranteeing that the viscosity ratios
are increasing functions of resolution. Hence, the bound-
ary layer constraint is more important in regimes where
the flow is sluggish, such as occurs in coarse-resolution
models, whereas the Reynolds constraint is more im-
portant for vigorous flows, such as those in fine-reso-
lution models.

f. Comments on tracer diffusivity

At scales relevant for large-scale ocean models, it is
physically unclear how the momentum viscosity and
tracer diffusivity should be related. The numerical con-
straints determining the magnitude of the diffusivity are
analogous to those for viscosity, except that there is no
corresponding frictional boundary layer constraint. Typ-
ically, we have found it sufficient, for numerical closure,
to set the diffusivity to a time-independent constant that
is a function only of the grid spacing and that is gen-
erally much smaller than the viscosity in the frictional
boundary regions. Issues of physical closure for the trac-
er equation are topics of intense research, and are not
the subject of this paper.

3. The Smagorinsky viscosity

A length scale and timescale are sufficient to deter-
mine a kinematic viscosity. For the timescale, Smago-
rinsky (1963, 1993) chose the deformation rate

21 2 2T 5 |D| 5 ÏD 1 D . (10)T S

In Cartesian coordinates, the horizontal tension DT 5
ux 2 y y, and the horizontal shearing strain DS 5 uy 1
y x. Generalizations to arbitrary coordinates, as well as
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further discussion, are given in the appendix. For the
length scale, Smagorinsky chose the maximum wave-
number admitted by the horizontal grid

L21 5 p/D . (11)

For generally anisotropic grids, we choose to set D [
min(Dx, Dy). The resulting viscosity is given by

Asmag 5 (CD/p)2|D|, (12)

where C is a dimensionless scaling parameter. Smago-
rinsky, and various other researchers, have provided
physically based arguments for specifying the value of
C (see in particular Smagorinsky 1993 and references
therein). For our purposes, it is empirically determined
based on details of the numerical model.

The central idea in this paper is to generalize the above
to a biharmonic viscosity by simply multiplying the Sma-
gorinsky Laplacian viscosity by D2/8, leading to

Bsmag 5 AsmagD2/8. (13)

The factor of 1/8 arises from considerations of linear
stability given by Eq. (7).

Given these expressions for the Smagorinsky viscos-
ity, it is useful to summarize how it obeys the three
numerical stability considerations just described. It is
sufficient to consider the case of a Laplacian operator
in one spatial dimension. The three constraints can be
summarized as

A . UD/2, (14)smag

3A . bD , and (15)smag

2A , D /(2Dt). (16)smag

If the deformation rate scales as U/D , the Smagorinsky
viscosity then has the scale

Asmag 5 (C/p)2UD . (17)

The grid Reynolds number constraint (14) then implies
that the Smagorinsky dimensionless scaling coefficient
must satisfy C . p/ 2 ø 2.2. Taking the minimumÏ
value yields the Smagorinsky viscosity Asmag 5 UD/2,
which satisfies the linear diffusion equation constraint
(16) provided that the advection velocity satisfies the
advective CFL constraint UDt/D , 1. Note that ocean
models are often more stringently constrained by Dopp-
ler-shifted gravity wave speeds Ug . U. In our appli-
cations, we have found values of C ø 3–4 to be suitable.
Note that these values are larger than those suggested
by Smagorinsky (1993) based on arguments from three-
dimensional turbulence.

The constraints (14) and (15) suggest three distinct
regimes for large-scale ocean models. When resolution
is coarse and flows are weak, the need to resolve western
boundary currents is the most stringent constraint on
the level of viscosity. In this regime, we have found the
Laplacian Smagorinsky scheme, using a minimum al-
lowable viscosity set by the Munk boundary layer con-
straint, to be of use. In general, such a minimum set by

frictional boundary layer constraints is necessary in the
more quiet deeper ocean, where both the Laplacian and
biharmonic Smagorinsky viscosities can be insufficient
to resolve boundary currents. With more vigorous flows
allowed with higher resolutions, but resolutions that are
still too coarse to permit a well-represented geostrophic
energy/enstrophy cascade, the Reynolds number con-
straint becomes more important than the western bound-
ary layer constraint. In this case the biharmonic Sma-
gorinsky scheme is an ideal numerical closure when
combined with a physically based parameterization of
the effects of the unresolved scales. With a Smagorinsky
biharmonic scheme satisfying both the Reynolds num-
ber and western boundary constraints, the physically
based viscosity can be set by theory or observations,
rather than numerics. The third regime is one in which
the resolution is sufficiently high, compared to the de-
formation radius, that the enstrophy cascade to small
scales is well represented. In this case, the Smagorinsky
biharmonic scheme alone is suitable.

4. A thermally forced channel model

This section illustrates how the use of a Laplacian
friction operator, even with a Smagorinsky viscosity,
can overdamp otherwise physically unstable and nu-
merically well-resolved waves. The configuration we
employ is a zonally reentrant, flat-bottom channel con-
figuration using the primitive equation, geopotential-
coordinate ocean model MOM (Pacanowski and Griffies
1999). The experiment is initialized from rest with a
stratification achieved by running a coarse-resolution
version for 4000 yr, at which time the vertical stratifi-
cation is stationary and there is a large store of available
potential energy. Thereafter, the solution is interpolated
to a higher horizontal grid resolution, and a small
amount of grid noise is added in order to initiate the
growth of baroclinically unstable modes. A similar mod-
el configuration and experimental procedure has been
used by Griffies et al. (2000). Further details are given
in the caption to Fig. 1.

Shown in Fig. 1 are snapshots of the temperature field
at 300 m and day 400. The left panel in Fig. 1 is the
result when using the biharmonic Smagorinsky scheme,
and the right panel in Fig. 1 uses a Laplacian Smago-
rinsky scheme. Each simulation used a Smagorinsky
scaling coefficient C 5 2. Day 400 occurs in the middle
of the growing phase of the most unstable wave. By
day 800, each solution has reached a peak in kinetic
energy.

As suggested by the analysis in section 2a, we see
that the Laplacian operator heavily dissipates the grow-
ing waves. Indeed, there is relatively little nonlinear
wave activity for the Laplacian solution, whereas the
biharmonic solution has reached a stage of strong non-
linear turbulent mixing. By day 800, the biharmonic
solution has 18 times more kinetic energy than the La-
placian solution, and it has almost completed the fa-
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FIG. 1. Results from a zonally reentrant channel configuration using MOM. The domain extends from 108 to 408S, and is
108 in longitude. The horizontal grid is locally square, so that the latitudinal resolution Df is given by Dl cosf, where Dl
5 ¼. The vertical resolution is a uniform 25 m from the surface to the bottom at 1200 m. The vertical viscosity is a constant
1024 m2 s21, and the vertical diffusivity is a constant 2 3 1025 m2 s21. The quicker advection scheme (Leonard 1979; Holland
et al. 1998) is used for advecting temperature. A thermal restoring force of 28 W m22 (8C)21 provides the only external
forcing. There is no bottom friction. The horizontal Prandtl number is unity. The equation of state is linear. Each panel shows
results at 300-m depth (level 12) after 400 days of integration. (left) Temperature using biharmonic Smagorinsky. (right)
Temperature using Laplacian Smagorinsky.

miliar quasigeostrophic turbulence process of nonlinear
transfer from the baroclinic modes to the barotropic
mode (e.g., Rhines 1977; Salmon 1998).

Other experiments with the Laplacian operator were
conducted to further investigate what was necessary to
allow for a stronger growth of the unstable waves. To
do so, we ran cases with much smaller values of the
Smagorinsky scaling coefficient (as small as C 5 0.5),
as well as with various levels of constant horizontal
viscosity. Consistently, for those cases that did generate
nontrivial turbulence, the Laplacian solution was un-
derdissipated and, so, was characterized by a substantial
amount of power at the grid scale.

We conclude from this experiment that the analysis
presented in section 2a has a great deal of relevance to
the ability of a model to admit geostrophic turbulence
through the growth of baroclinically unstable waves.
The use of Laplacian friction, even when employing a
Smagorinsky viscosity, suppresses the growth of the un-
stable waves. It either yields trivial levels of turbulence,

or fails to dissipate the enstrophy cascade as it reaches
the grid scale. Only by moving toward much higher grid
resolution will the dissipation levels at the relevant
wavelengths be small enough for the Laplacian friction
to admit turbulence in this model, while still absorbing
the associated enstrophy cascade.

For the current experiment, the biharmonic friction
required roughly 10% more total computational time on
a Cray T90 processor than the case with the Laplacian.
This cost should be compared to that engendered by
adding the higher grid resolution needed to permit an
analogous level of turbulence with the Laplacian op-
erator.

5. A wind-driven sector model

We now follow up the thermally forced channel sim-
ulations with wind-driven sector experiments using the
primitive equation, isopycnal ocean model HIM (Hall-
berg 1995). Notably, the presence of meridional bound-
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FIG. 2. Log10 of the time-averaged biharmonic Smagorinsky vis-
cosity (m4 s21) over 1000 days in a five-layer HIM simulation of two
wind-driven gyres. (a) A plan view of the second layer from the top.
(b), (c), (d), and (e) Cross sections at 408, 358, 308, and 258N, re-
spectively. The viscosity (and horizontal deformation rate) in the
eddy-rich western boundary current region is almost two orders of
magnitude larger than in the quiescent abyssal shadow region (Luyten
et al. 1983) in the southeast corner of the basin. The slightly enhanced
values near the boundaries in the south, east, and north are associated
with boundary currents. The equivalent instantaneous fields are much
less smooth than these time averages.

aries introduces strong inhomogeneities that are always
present in realistic ocean simulations. These inhomo-
geneities provide the key difference from the channel
experiments.

There are no diapycnal mass fluxes in these simula-
tions, so the mean stratification in each simulation is
identical. The western boundary current spawns a vig-
orous eddy field, even with a Laplacian viscosity. The
wind forcing has a strength typical for the North At-
lantic, and the Ekman pumping pattern drives a familiar
two-gyre circulation. All of these simulations are run
to 10 000 days, with a statistically steady state attained
at about 4000 days. The resolution of 1⁄68 3 1⁄58 (a square
grid of 18.5 km at 33.58N) is adequate for representing
the first baroclinic deformation radius of about 40 km.
The vertical resolution of five isopycnal layers permits
the development of baroclinic eddies with a reasonable
vertical gyre structure.

The Smagorinsky biharmonic viscosity exhibits
strong spatial variations (Fig. 2). The flow deformation
rate (and hence the viscosity) is intense near the surface
in the western boundary current region and around the
separated western boundary current. Strong eddies are
shed from the separated western boundary current, and
these give rise to a broad region of enhanced time mean
viscosity. In the eastern portion of the basin, and es-
pecially in the abyssal shadow region (Luyten et al.
1983), the viscosity is substantially smaller. In this sim-
ulation, there is a variation of over two orders of mag-
nitude in the viscosity between the most and least en-
ergetic regions. In each region, the viscosity is adequate
to maintain numerical integrity (i.e., satisfy the grid
Reynolds number and frictional boundary layer con-
straints) without causing more dissipation than is nec-
essary.

The same simulation was repeated with a constant
biharmonic viscosity replacing the Smagorinsky vis-
cosity. To determine the constant viscosity, we tried
taking both the volumetric average of the Smagorinsky
viscosity as well as the largest time mean value that
was observed anywhere in the model domain. Use of
either value resulted in a numerically unstable simula-
tion. This experience illustrates that numerical stability
requires a constant biharmonic viscosity that is able to
control the largest deformation rates that occur at any
place and time. Consequently, the time mean Smago-
rinsky biharmonic viscosity may be everywhere less
than the required constant coefficient biharmonic vis-
cosity! Further experimentation found that a constant
viscosity of 2 3 1010 m4 s21 gave a numerically stable
simulation.

The flow has slightly (3%) less kinetic energy and
available potential energy averaged over 1000 days with
the constant biharmonic viscosity than with the Sma-
gorinsky viscosity. However, the two cases are quali-
tatively similar, and the difference is not statistically
significant. This is reassuring, since there is a long tra-
dition of using a constant coefficient biharmonic vis-

cosity in eddy-permitting ocean model simulations. In
these simulations, the turbulence and the eddy kinetic
energy are dominated by the western boundary region.
The differences between simulations using constant-co-
efficient and Smagorinsky biharmonic viscosities will
be more pronounced when those simulations include
multiple, independent turbulent regimes such as for the
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FIG. 3. Instantaneous relative vorticity of the second layer in five-
layer HIM simulations of two wind-driven gyres using (a) the bi-
harmonic Smagorinsky scheme and (b) Laplacian Smagorinsky
scheme. Note the enhanced level of activity with the biharmonic
scheme.

World Ocean. Also, it should be reemphasized that the
appropriate value of the constant coefficient viscosity
was only known after actually running several simu-
lations. The Smagorinsky viscosity avoids the need for
an a priori guess at this value.

As with the thermally driven channel, a Laplacian
Smagorinsky scheme substantially suppresses the eddies
relative to the biharmonic Smagorinsky scheme, as is
readily seen by comparing instantaneous relative vor-
ticities of an interior layer (Fig. 3). The eddy kinetic
energy averaged over 1000 days is smaller by a factor

of 4 with the Laplacian Smagorinsky scheme compared
with the biharmonic Smagorinsky scheme, relative to
the total kinetic energy and available potential energy
of each simulation. The kinetic energy of the mean flow
is reduced by less than 20% with the Laplacian, while
the available potential energy is slightly (3%) larger
with the Laplacian compared with the biharmonic. The
difference in the levels of eddy activity between these
simulations is due to suppression of the eddies by the
Laplacian, not to a change in the baroclinic instability
of the mean flow.

A simulation with half the resolution, but using the
same nondimensional coefficient with the Smagorinsky
biharmonic viscosity, gave perfectly sensible results;
that is, the admitted scales remained resolved. The same
would not occur with a constant coefficient biharmonic
viscosity, which generally requires that the viscosity be
increased as the resolution decreases. This illustrates the
very convenient property of the Smagorinsky bihar-
monic scheme: only a single nondimensional coefficient
needs to be set, and this coefficient is independent of
resolution, so long as the same physical regime is pre-
sent. It is only a function of the model’s numerics.

The CPU time required for the simulation with the
Smagorinsky biharmonic scheme was only 3% more
than with the constant coefficient biharmonic scheme
and 4% more than with the Smagorinsky Laplacian
scheme. Note that this difference is for a model without
thermodynamics. For more realistic models, the relative
cost of the scheme would be even less.

6. Summary and conclusions

This paper argues for the utility of a Smagorinsky-
like viscosity for use with a biharmonic friction operator
as a numerical closure scheme for eddy-permitting
large-scale ocean models. This proposal is natural for
one aiming to simulate geostrophic eddies in a realistic
inhomogeneous environment such as the World Ocean.
That is, the biharmonic operator, being more scale se-
lective than the Laplacian operator, acts less on the large
scales of motion, which are of direct interest and are
better resolved, than the small scales, where enstrophy
cascades. As an example of this scale selectivity, we
ran a thermally forced channel that showed that the
Laplacian operator, even when using a Smagorinsky vis-
cosity, can unnecessarily suppress physically unstable
modes that are well resolved by the model grid.

The utility of the Smagorinsky approach to deter-
mining viscosity follows from its providing a local de-
formation rate and grid-size-dependent viscosity that
naturally adapts to the inhomogeneities present in re-
alistic ocean simulations. An eddy-permitting sector
model provided a vivid illustration of the ability of the
Smagorinsky scheme to maintain the high levels of vis-
cosity in the western boundary current, needed for nu-
merical stability reasons, while allowing much lower
levels in the more quiescent interior. In contrast, ex-
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periments run with constant biharmonic viscosities ei-
ther underdissipated the flow, and tended to go numer-
ically unstable, or dissipated the flow more than with
the Smagorinsky scheme.

Ideally, the beneficial properties of the Smagorinsky
scheme are realized by setting a single nondimensional
constant. Sector experiments with different horizontal
resolutions illustrated that the same value of this con-
stant is appropriate regardless of the resolution, so long
as similar physical features are present. Consequently,
the Smagorinsky scheme effectively reduces the number
of parameters that must be tuned when designing a new
experiment. This aspect of the scheme can be quite im-
portant especially for large-scale eddy-permitting mod-
els. In practice, one should be aware of the need to
resolve boundary currents, especially where the flow is
less vigorous, since the Smagorinsky viscosity might be
too small in these regions. This issue is more relevant
for coarse models, but in general it may be necessary
to set a minimum allowable viscosity determined by the
relevant flow-independent frictional boundary layer
scaling.

The biharmonic Smagorinsky scheme has little phys-
ical justification for large-scale geophysical simulations.
Indeed, for that matter, neither does the more traditional
Laplacian scheme. Yet, as argued here, the biharmonic
scheme is an ideal numerical closure to which a phys-
ically based parameterization of the effects of unre-
solved scales may be added, if necessary. Assuming that
the physical parameterization involves some form of a
Laplacian, the enhanced scale selectivity of the bihar-
monic operator guarantees that at sufficiently large
scales, the effects of resolved fluctuations and the phys-
ical subgrid parameterization will dominate the simu-
lation, and the numerically based Smagorinsky bihar-
monic closure will be negligible.

On a Cray T90, the Smagorinsky scheme in our ide-
alized examples required roughly 2%–4% more for the
total model runtime relative to a constant horizontal
viscosity. When using a biharmonic operator, the models
ran some 5%–10% slower than with the Laplacian. In
either case, the added cost should be gauged against the
cost necessary to increase the grid resolution enough to
admit comparably rich geostrophic eddy activity with
the Laplacian operator and/or a constant viscosity. From
this perspective, the biharmonic Smagorinsky scheme
is very economical.
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APPENDIX

The Friction Operators
We present here the Laplacian and biharmonic friction

operators applicable for any set of orthogonal curvilin-

ear coordinates in the transverse directions, as well as
methods used for their discretization. As generalized
orthogonal coordinates are commonly used by ocean
models, such as those of Blumberg and Mellor (1987),
Haidvogel et al. (1991), Smith et al. (1995), Madec and
Imbard (1996), and Murray and Reason (1999, manu-
script submitted to J. Comput. Phys., hereafter MR), it
is important to provide methods for implementing the
ideas described in the main text in such a framework.
Mathematical details are largely omitted in the follow-
ing, as they can be found in the classical literature, such
as Aris (1962) and Batchelor (1967). The papers by
Williams (1972), Smagorinsky (1993), Wajsowicz
(1993), Sadourny and Maynard (1997), Pacanowski and
Griffies (1999), and MR also provide discussions di-
rectly relevant to the following.

We follow the general tensorial notation of Aris
(1962) as it represents a simple and powerful general-
ization of the more familiar Cartesian tensor notation.
In particular, the summation convention is employed, in
which repeated indices are summed. Additionally, par-
tial derivatives are prefaced by a comma, and covariant
derivatives by a semicolon.

a. Coordinate assumptions

For the transverse or ‘‘horizontal’’ coordinates (those
within the surface of the sphere), we restrict attention
to coordinates that are locally orthogonal and that do
not depend on the vertical position. As such, the squared
infinitesimal distance between two points in a shallow
ocean takes the form

(ds)2 5 (h1 dx1)2 1 (h2 dx2)2 1 (dz)2

5 (dx)2 1 (dy)2 1 (dz)2. (A1)

In this expression, g11 5 (h1)2 and g22 5 (h2)2 are non-
negative metric components, each dependent on the two
transverse coordinates (x1, x2). The familiar case of
spherical coordinates (x1, x2) 5 (l, f ) leads to (h1)2 5
R2 cos2f and (h2)2 5 R2, with l the longitude and f
the latitude. The coordinate increments dx 5 h1 dx1 and
dy 5 h2 dy1 represent the infinitesimal physical distance
in the two generalized transverse directions.

b. Laplacian friction

We rely on Williams (1972), Smagorinsky (1993), and
Wajsowicz (1993) to detail the assumptions leading up
to the form of the Laplacian friction operator. For pre-
sent purposes, we start by assuming that the frictional
stress tensor can be split into vertical and horizontal (or
transverse) subtensors. Focusing on the 2 3 2 transverse
stress tensor, we note that this tensor is proportional to
the strain arising from horizontal deformations in the
fluid (summarized by the transverse strain tensor), it is
symmetric (which is required for the conservation of
angular momentum), trace free, and possesses axial
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symmetry about the local vertical (which arises from
transverse isotropy). These assumptions lead to the
transverse frictional stress tensor

t ab 5 rA(2eab 2 gab ),cec (A2)

where A is a nonnegative kinematic viscosity with di-
mensions length2 time21, r is the fluid density, and the
tensor labels a, b 5 1, 2 represent the horizontal di-
rections. The symmetric transverse strain tensor eab

takes the form 2eab 5 ua;b 1 ub;a. The direct relation
between strain, which is a kinematic property of the
fluid, and stress, which leads to dynamical response
through Newton’s law, can be considered a general state-
ment of Hooke’s law. We note that the transverse isot-
ropy assumption has been dropped by Large et al. (2000)
which leads to two kinematic viscosities for the trans-
verse stress tensor. More conventional treatments of fric-
tion in ocean models follow the approach given here.

The covariant divergence of the frictional stress ten-
sor (19) yields the frictional force vector per unit volume
r Fm 5 , which acts on a parcel of fluid. Performingmnt ;n

this divergence leads to the physical friction components
(Fx, Fy) 5 (h1F 1, h2F 2):

x 21 21rF 5 g (g rAD ) 1 g (g rAD ) and (A3)22 22 T ,x 11 11 S ,y

y 21 21rF 5 g (g rAD ) 2 g (g rAD ) . (A4)22 22 S ,x 11 11 T ,y

Introduced here are the horizontal tension

DT 5 h2(u/h2) ,x 2 h1(y /h1) ,y (A5)

and horizontal shearing strain

DS 5 h1(u/h1) ,y 1 h2(y /h2) ,x, (A6)

where (u, y) 5 (h1Dx1/Dt, h2Dx1/Dt) are the physical
velocity components (e.g., in spherical coordinates,
(u, y) 5 R(cosfDl/Dt, Df/Dt)). Both DT and DS have
physical dimensions of inverse time, and together they
quantify the rate of horizontal deformation experienced
by a fluid parcel. The spherical coordinate version of
these expressions are given by Smagorinsky (1963,
1993).

c. Biharmonic friction

To derive the biharmonic friction operator, we iterate
twice on the Laplacian, where each step uses the square
root of the biharmonic viscosity. Specifically, the com-
ponents F̃ a of the biharmonic friction vector are derived
from r F̃ a 5 , where Qab 5 2r B (2Eab 2 gab )ab cQ EÏ;b c

is a symmetric ‘‘stress’’ tensor. The components of the
symmetric ‘‘strain’’ tensor are given by 2 Eab 5 Fa;b 1
Fb;a. Here, Fa is the frictional force per unit mass de-
termined through the second-order frictional stress ten-
sor rFa 5 as derived in the previous subsection, butabt ;b

with B used as the viscosity when computing t ab.Ï
Notably, as with Laplacian friction, since the bihar-
monic friction arises from the covariant divergence of

a symmetric tensor, it will not impart internal sources
or sinks of angular momentum.

d. Effects on kinetic energy

The horizontal kinetic energy of a fluid parcel is given
by 2K 5 r dV gabuaub, and its evolution under the ef-
fects from transverse friction is K̇ 5 dV gabua . Forbnrt ;n

Laplacian friction, integration over a domain and ne-
glect of the surface terms leads to the contribution

2 2K̇ 5 2 dV rA(D 1 D ), (A7)E E T S

which is negative semidefinite so long as the horizontal
viscosity is nonnegative. In Cartesian coordinates, this
contribution can be put in the familiar form 2# dV
rA(|=u| 2 1 |=y | 2). The scalar quantity

|D| 2 5 1 5 (2r2A2)21t abt ab
2 2D DT S (A8)

represents the total squared horizontal deformation rate
of a fluid parcel. It is independent of the choice of hor-
izontal coordinates. As mentioned in section 3, |D| is
used for defining the timescale when computing the
Smagorinsky viscosity.

For horizontal biharmonic friction, similar manipu-
lations, in which all boundary contributions are neglect-
ed, lead to the contribution

mK̇ 5 2 dV rF F , (A9)E E m

which is also nonpositive. In Cartesian coordinates, this
result can be put in the form 2# dV r{[= · ( B=u)]2Ï
1 [= · ( B=y)]2}. The Cartesian form exposes theÏ
need to use B in order to dissipate kinetic energy.Ï
Alternatives, such as = · (B= · ¹2c) or ¹2(= · B=c)
generally dissipate kinetic energy only when B is spa-
tially constant, and so are not considered here when
using the Smagorinsky viscosity.

e. Generalized vertical coordinates

Fundamental to the earlier derivations is the special
nature of the local vertical direction ẑ, which is parallel
to gravity. The nonorthogonal generalized vertical co-
ordinate systems employed in ocean models also main-
tain the special nature of the vertical, hence allowing
for the 2 3 2 transverse stress tensor to be isolated.
Consequently, the only transformation that must be per-
formed is one that converts the divergence of the stress
tensor into the (x, y, s) coordinates, so that we can iden-
tify the appropriate forms of the friction vector com-
ponents. In particular, we simply need to transform the
horizontal partial derivatives from constant z surfaces
to constant s surfaces. For the zonal friction, this der-
ivation leads to
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z ,srFx 5 (z ,sg22rADT),x 1 (z ,sg11rADS),y
21 21g g22 11

2 (z ,xrADT),s 2 (z ,yrADS),s, (A10)

where the horizontal derivatives are now taken along
constant s surfaces. The nonorthogonal transformation
between (x, y, z) and (x, y, s) is nonsingular so long as
the Jacobian ]z/]s 5 z,s, also called the specific thick-
ness, is of one sign. We assume this to be the case. The
dimensionless vector (z,x, z,y, 0), where derivatives are
taken with s constant, measures the slope of the s sur-
faces relative to z surfaces. Assuming that this slope is
small leads to the friction components

x 21 21z rF 5 g (z g rAD ) 1 g (z g rAD ) (A11),s 22 ,s 22 T ,x 11 ,s 11 S ,y

and
y 21 21z rF 5 g (z g rAD ) 2 g (z g rAD ) . (A12),s 22 ,s 22 S ,x 11 ,s 11 T ,y

Consequently, the only practical difference from the
geopotential model is the presence of the specific thick-
ness factor z,s. This factor ensures a proper momentum
balance for the layer-integrated equations of motion.
Furthermore, motivated by simplicity and momentum
balance, we prescribe that thickness appears only when
computing the second part of the biharmonic operator.

f. Discretization methods

On a C grid, the horizontal strain DS [Eq. (A6)] is
naturally defined at the vorticity point, and the hori-
zontal tension DT [Eq. (A5)] is defined at the thickness
point. These positions are ideal for then constructing
the zonal and meridional friction components through
the spatial derivatives given in Eqs. (A3) and (A4).
Boundaries are handled with no-normal flow/free slip,
which means DS vanishes on all boundaries. The anal-
ogous boundary conditions are applied when construct-
ing the biharmonic operator. This discretization has no
computational modes.

A common starting point for discretizing friction in
B-grid ocean models is the ‘‘Laplacian plus metric’’
form of the friction operator detailed by Bryan (1969),
Wajsowicz (1993), and MR, in contrast to the form ex-
posing the rates of deformation given by Eqs. (A3) and
(A4). The Laplacian plus metric form manipulates the
friction operator into a scalar Laplacian operator acting
on the velocity components, plus added ‘‘frictional met-
ric terms.’’ This approach, however, does not utilize the
deformation rate calculation, needed for the Smagorin-
sky viscosity, for a calculation of the friction operator.
Additionally, the computation of frictional metric terms
is cumbersome and generally leads to computational
modes. As a result, we have considered the following
alternative approach based on exploiting the self-ad-
jointness of the frictional operator.

The key idea is to note that the negative semidefinite
kinetic energy dissipation

2 2S 5 2 dV rA(D 1 D ), (A13)E T S

which is a functional of the velocity field and its spatial
gradients, has a functional derivative given by

1 dS
b5 g F . (A14)aba2r du

To obtain this result, we assumed the viscosity is in-
dependent of the flow. This assumption amounts to as-
suming a linear friction operator. We exploit this result
to derive a discretization of the linear friction operator
and then extend it to the case of the Smagorinsky non-
linear viscosity. A similar approach was used for the
isoneutral diffusion operator, which is a nonlinear form
of diffusion when acting on the temperature and salinity
fields (see Griffies et al. 1998 for more details).

Upon recognizing the functional relation (A14), the
approach is to discretize the kinetic energy dissipation
S and then to perform the discrete functional derivative.
The result is the physical components of the discretized
friction vector given by

1 ]S
xF 5 and (A15)i, j U 12r(h ) V ](u )1 i, j i, j i, j

1 ]S
yF 5 , (A16)i, j U 22r(h ) V ](u )2 i, j i, j i, j

where the subscripts i, j denote discrete model lattice
points. For a Bousinnesq fluid, as assumed for MOM,
r is replaced by ro. Note that the volume of the velocity
cell VU accounts for the difference between a dimen-
sionless Kronecker delta function used in the discrete
case, and the Dirac delta function, whose dimensions
are inverse volume, used to derive the continuum ex-
pression (A14).

Details of this discretization are analogous to the iso-
neutral diffusion operator discretization. Griffies et al.
(1998) and Pacanowski and Griffies (1999) documents
these details, and so they are not repeated here. Notably,
the friction operator’s stencil comprises weighted triads
of velocity points analogous to the tracer/density triads
present in the isoneutral diffusion operator. Boundaries
are handled using no-slip conditions for both the La-
placian and biharmonic operators. The result is a dis-
crete B-grid friction operator that has no computational
modes, is guaranteed to dissipate kinetic energy, ex-
ploits the calculation of the deformation rates for both
the Smagorinsky viscosity and the stress tensor, and
generalizes naturally to arbitrary orthogonal coordi-
nates.
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