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The Modular Ocean Model (MOM) is a hydrostatic primitive 
equation numerical code of use for the scientific exploration of 
ocean dynamics covering a broad range of space and time scales.  
In this article, we present an overview of the MOM effort and 
discuss recent developments and applications.
A Community Model Code 
Numerical ocean modelling at NOAA’s Geophysical 
Fluid Dynamics Laboratory (GFDL) originates from Joe 
Smagorinsky’s recruitment in 1962 of Kirk Bryan, then at Woods 
Hole.  Smagorinsky envisioned a suite of numerical models 
for use in understanding mechanisms for weather and climate 
phenomena, and for dynamical forecasts.  This pioneering 
vision is fundamental to numerical modelling of weather and 
climate today.  With patient and commited leadership, solid 
funding, and persistent scientific and engineering efforts, the 
1960s and 1970s saw Bryan, Mike Cox, and collaborators such 
as Bert Semtner, pioneering global ocean simulations (Bryan 
1969b, Bryan et al 1975, Bryan and Lewis 1979)
Release of the ``Cox Code’’ (Cox 1984) established a tradition 
whereby GFDL provides institutional support for the use of 
its ocean codes. These efforts have seeded many other ocean 
modelling initiatives, such as those at Southampton for studies 
of the Southern Ocean and global eddying simulations, as 
well as at the Hadley Centre in the context of global climate 
modelling. The development of MOM1 (Pacanowski et al 1991) 
furthered this influence by establishing the starting point for 
efforts at Los Alamos, Paris, Australia, NCAR, and elsewhere.  
It is difficult to garner robust statistics for free software.  
Nonetheless, the most recent release of MOM (version 4) has 
more than 500 registered users since early 2004, with users 
coming from dozens of countries, and many representing 
multiple collaborators.  Hence, there are well over a thousand 
international scientists in the MOM4 community using the code 
for a huge variety of scientific investigations on nearly every 
conceivable computer platform.
Central to the success of MOM is the ease of setting up new 
experiments to meet the unique needs of each investigator.  This 
ease arises from the distribution with MOM of various auxiliary 
codes aimed at developing the model grid, topography, initial 
conditions, and boundary conditions.  MOM is also packaged 
with the GFDL Flexible Modeling Framework (FMS).  Much 
of the engineering exercise of running ocean models relies 
on powerful, yet often complex, computers.  FMS provides 
parallelization primitives to facilitate MOM’s efficient use on 
both vector and scalar machines.  FMS also contains a general 
framework for coupling to other component models, such as 
atmosphere and ice models.  Indeed, two of the roughly ten test 
cases with MOM4 are coupled ocean-ice models. Additionally, 
MOM comes with an ocean biogeochemistry model that 
manages multiple tracers in a flexible manner.  For diagnostics, 
MOM incorporates the FMS diagnostic manager whereby a 
table entry allows for the addition or removal of a diagnostic 
field at runtime.  Hundreds, if not thousands, of variables are 
tagged for inclusion in this table, and additional variables are 
trivial to include.
Support for a community of users is fundamental to GFDL’s 
commitment to MOM. The reasons are many, but include the 
exposure that algorithms get from a broad scientific community.  
This exposure assists in uncovering code bugs, formulational 

inconsistencies, and physical limitations. To assist in this 
exposure, MOM developers have consistently held model 
documentation a primary aspect of each code release (Cox 
1984, Pacanowsk et al 1991, Pacanowski 1995, Pacanowski 
and Griffies 1999, Griffies et al 2004, Griffies 2004. 2007). Such 
documentation aims to inform the MOM community regarding 
the rationale of its algorithms, thus assisting in the intelligent 
and critical use of the code.  A key feature of a community 
model is the contribution of dynamical methods, subgrid scale 
parameterizations, and diagnostics to the main code branch.  
Nearly 20 years of MOM experience illustrate how community 
contributions greatly enhance the code integrity and breadth of 
applications.  Finally, a scientifically useful numerical tool is far 
more than code.  It is also a repository of experience garnered by 
a broad range of applications and wide user base.  Without such 
experience, knowledge of the code’s abilities and limitations is 
absent, and its use as a scientific tool is handicapped.
Suite Of Algorithms
The Cox Code was based on the Boussinesq primitive equations 
posed on a finite difference B-grid using z-coordinates in the 
vertical and spherical coordinates in the horizontal. It used the 
Bryan (1969a) rigid lid to split the fast barotropic waves from 
the slower motions of primary interest.  This framework proved 
sufficient for an amazing number of insightful ocean climate 
model applications.  However, as our scientific understanding 
of the ocean evolves, so does our understanding of how to 
simulate the ocean, with limitations of the early algorithms 
readily being exposed as applications broaden and simulations 
are compared to the growing suite of observations.  This 
evolution of understanding and application has motivated the 
continual evolution of MOM throughout the 1990s and 2000s.
The most recent version of MOM is known as MOM4p1 
(Griffies 2007). This code provides options for a suite of vertical 
coordinates, with pressure and functions of pressure suitable 
for non-Boussinesq dynamics, thus rendering a more accurate 
representation of the ocean free surface due to an explicit 
inclusion of steric effects.  It uses a split-explicit algorithm for 
the barotropic and baroclinic motions, following the method 
originally proposed by Killworth et al (1991) and slightly 
modified by Griffies et al (2001) and Griffies (2004).  This 
approach allows MOM to explicitly represent tides; employ 
a realistic hydrological cycle, rather than parameterize its 
effects with unphysical salt fluxes (Huang 1993); to use realistic 
bottom topography without concerns for rigid lid instabilities 
(Killworth 1987); and to run efficiently on parallel computers 
without bottlenecks of global sums arising in elliptic methods 
(Griffies et al. 2001)
MOM4 represents the bottom topography using the partial 
steps of Adcroft et al. (1997) and Pacanowski and Gnanadesikan 
(1998).  Partial steps more faithfully represent the ocean’s 
bottom by allowing the thickness of a grid cell to be a function 
of horizontal and vertical position.  The cell thicknesses can 
also be functions of time, as appropriate for non-geopotential 
vertical coordinates such as pressure.  In the horizontal, MOM4 
uses generalized orthogonal coordinates, thus allowing it to 
exploit a broad range of locally orthogonal grids, such as the 
tripolar grid of Murray (1996) now standard for GFDL ocean 
climate simulations (Griffies et al 2004).
Leap-frog time stepping for the inviscid dynamics, standard 
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until MOM3, has been replaced by a staggered forward time 
stepping scheme (Griffies 2005, Griffies et al 2005).  This method 
removes the leap-frog computational mode, and renders a 
numerically precise conservation of mass and tracer.  In some 
configurations, it can update the ocean state using twice the 
time step as the leap-frog, thus halving model cost.
The goal of a tracer advection scheme is to minimize dispersion 
errors and false extrema, maintain strong fronts and gradients, 
and keep spurious levels of diffusion low.  There is no perfect 
scheme available, with MOM4p1 providing ten schemes, each 
with their pros and cons.  However, recent experience at GFDL 
has shown some compelling reason to consider the Prather 
(1986) scheme as a benchmark for one of the best available.
Ocean climate models have traditionally been at the coarser end 
of the model resolution spectrum due to the global domain and 
long integration time.  Climate resolutions necessitate a suite of 
subgrid scale parameterizations.  MOM4 provides a suite for 
mesoscale eddies (Gent et al 1995, Griffies et al 1998, Griffies 
1998, Visbeck et al 1997); overflows (Beckmann and Doescher 
1997, Campin and Goosse 1999); tidal mixing (Simmons et al. 
2004, Lee et al. 2006); lateral friction (Griffies and Hallberg 
2000, Large et al. 2001); and boundary layers (Pacanowski and 
Philander 1981, Large et al. 1994, Chen et al. 1994).
Recent developments with MOM4p1 have exposed the code to 
regional modelling applications that have prompted a revision 
of MOM’s radiating open boundary conditions.  Additionally, 
MOM4p1 provides a wrapper for the Generalized Ocean 
Turbulence Model (Unlauf et al. 2005), thus facilitating the use 
of a wide class of turbulence closures commonly applied to 
regional and coastal applications.
Ongoing Development 
A key aim of future coupled climate modelling at GFDL is 
to produce ensembles of centennial-scale simulations with a 
mesoscale eddying ocean using GFDL’s computer resources.  
For this purpose, we are prototyping a 1/4 degree configuration 
with 50 levels.  This model runs on 800 SGI Altix processors 
with a turnaround of roughly 100 simulated years per calendar 
month.
Figure 1 (page 13) shows the zonal velocity at 400m from 
a preliminary simulation.  Space does not allow for us to 
compare with other simulations.  Nonetheless, we note that 
the simulation quality is comparable to that achieved at finer 
resolutions, such as that described in Richards et al. (2007).  
We conjecture that such quality arises from the generally small 
lateral friction available with the Smagorinsky biharmonic 
scheme (Griffies and Hallberg 2000), along with the strong 
tracer gradients maintained with Prather (1986) advection.
In addition to MOM development, GFDL ocean model 
developers have focused on merging features available in three 
ocean models: the Hallberg Isopycnal Model, the MITgcm, and 
MOM.  This effort aims to remedy problems inherent in each 
model, to more rigorously test methods and parameterizations, 
and to optimize human resources.  The resulting unified 
code is expected to mature during the upcoming years into a 
generalized vertical coordinate model with both regional and 
global applications.
Dedication 
Throughout the history of ocean model development at GFDL, 
Peter Killworth has been an active participant in the community 
of users and developers.  We sincerely thank Peter for his years 
of tireless service, through insightful model applications and 
analyses, novel algorithm designs, and super-human efforts as 
editor of the journal Ocean Modelling.
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Introduction
Rapid increase of computer power and significant improvement 
of ocean general circulation models (OGCMs) with advanced 
parameterizations enable us to perform long-term simulations 
with global high-resolution OGCMs, which represent well 
not only the global circulation but also pathways of narrow 
strong currents such as western boundary currents, frontal 
structures, and small scale phenomena including mesoscale 
eddies. The recent advent of massive parallel computer 
systems, including the Earth Simulator (ES) with 40 Tflops 
peak performance established in 2002, has opened an era of 
global eddy-resolving ocean simulations. We have performed 
a series of quasi-global simulations on the ES with a horizontal 
resolution of 0.1° (see below). The simulations display oceanic 
mean fields and variability with rich fine-scale structures, which 
are comparable to available observations, and intriguing results 
are emerging from the realistically simulated oceanic fields. 
The present article introduces a few examples to illustrate the 
great opportunity the high-resolution ocean simulations can 
offer to advance our understanding of ocean circulation and 
its variability.
Model and simulation description 
OFES (OGCM for the ES) is an OGCM parallelized and highly 
optimized for the ES, based on MOM3 (Pacanowski and 
Griffies, 1999). The horizontal resolution of our quasi-global 
eddy-resolving model, extending from 75°S to 75°N, is 0.1° 
and the number of vertical levels is 54. As our first attempt, a 
50-year spin-up simulation was conducted forced by monthly 
climatological NCEP/NCAR reanalysis fields (Masumoto 
et al., 2004).  Surface heat fluxes are calculated using bulk 
formulae, and the surface salinity flux is derived from reanalysis 
precipitation  and estimated evaporation with an additional 
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A series of quasi-global eddy-resolving ocean simulations

term restoring to the monthly climatology. Following this 
spin-up simulation, we have performed a hindcast simulation 
forced by daily NCEP/NCAR reanalysis fields for the period 
from 1950 to 2006 (NCEP hindcast simulation, Sasaki et al., 
2007). Furthermore, an additional hindcast simulation driven 
by the QuikSCAT satellite wind stress, provided from the J-
OFURO dataset (Kutsuwada, 1998; Kubota et al., 2002), has been 
performed (QSCAT hindcast simulation, Sasaki et al., 2006). 
50-year spin-up simulation with monthly climatological 
forcing 
Figure 1 (page 6) shows a snapshot of the simulated surface 
current in the spin-up simulation. Narrow strong currents 
including western boundary currents and equatorial current 
systems are well represented, and small scale features such as 
mesoscale eddies can be identified not only around the strong 
currents but also in interior basins. Flows through narrow 
passages near the marginal seas including the Indonesian 
archipelago, sharp frontal structures accompanying narrow 
currents in the Kuroshio Extension regions and the Antarctic 
Circumpolar Current, and separations of western boundary 
currents are among many examples realistically represented 
in the spin-up simulation. Variation of the simulated sea 
surface height (SSH) is also comparable to satellite observation 
(Masumoto et al., 2004). In the mean fields, coherent vertical 
structures of alternating zonal jets in the world ocean are 
confirmed by the OFES results, and the coupling between the 
jets and mesoscale eddies is implied (Maximenko et al., 2005). 
These successful representations in the spin-up simulation 
encourage us to proceed to the subsequent hindcast simulation. 
It is noted that the spin-up simulation has been extended up to 
98-years long, incorporating chlorofluorocarbon tracers (Sasai 
et al., 2004). 
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Multi-decadal hindcast simulation with NCEP reanalysis 
forcing
The NCEP hindcast simulation provides a long-term dataset 
useful to study intraseasonal to decadal variations in realistic 
oceanic fields. The simulated fields capture many observed 
features of large-scale oceanic variations on interannual to 
decadal time-scale such as El Niño, Indian Ocean Dipole events, 
Pacific Decadal Oscillation (PDO), and Pan-Atlantic Decadal 
Oscillation, as well as intraseasonal variations in the equatorial 
Pacific and Indian Oceans (Sasaki et al., 2007). Furthermore, the 
multi-decadal integration of the eddy-resolving model provides 
an unprecedented opportunity to study the low-frequency 
variability of narrow oceanic jets. 
A remarkable example, in this regard, is a series of studies of 
decadal variation of the Kuroshio Extension (KE) front, the 
front associated with a swift eastward current formed after the 
Kuroshio separates from the Japanese coast, which has recently 
been recognized as an important contributor to the PDO (e.g. 
Schneider and Cornuelle, 2005, Qiu et al., 2007). Analyzing the 
OFES hindcast output, Nonaka et al. (2006) demonstrated that 
the observed basin-wide cooling during the early 1980s in the 
North Pacific (Figure 2a) was accompanied by the southward 
shift and intensification of the two separate oceanic fronts: the 
Kuroshio Extension (KE) and the subarctic/Oyashio extension 
fronts. They attributed the subsurface cooling along the former 
front and the mixed layer cooling along the latter (Figure 2b) 
to the southward migration of the fronts, as the associated heat 
flux anomalies act to damp, rather than force, the temperature 
anomalies (reduced heat release into the atmosphere), indicating 
that sea surface temperature (SST) anomalies induced by the 
ocean feedback to the overlying atmosphere (Tanimoto et al., 
2003).
Mechanisms that cause such migration of the oceanic fronts 
have not been fully explored due partly to their highly chaotic, 
nonlinear characteristics. An EOF analysis shows that wind-
forced Rossby waves explain the variation in the jet over time 
but predict too broad a latitudinal structure (Taguchi et al., 
2007). A further analysis with meridional scale separation 
suggests that the large-scale component of the decadal SSH 
anomalies in the OFES hindcast is well reproduced by the linear 
baroclinic Rossby wave adjustment theory (Figure 3a and b, 
page 13), but a much narrower structure of the KE variability 
results from the internal dynamics of the jet and recirculations 
(Figure 3c, page 13). Interestingly the large-scale and the 
frontal/recirculation variability exhibit nearly identical time 
series, which suggests that the wind-forced Rossby waves act 

as pacemaker regulating the intrinsic variability of the front 
(Taguchi et al., 2007).
Supplementary hindcast simulation with QuickSCAT wind 
stress forcing
In the QuickSCAT hindcast simulation, oceanic responses to 
the wind field including small scale features like the orographic 
wind in the lee of islands and near land boundaries are 
simulated well (Sasaki et al., 2006). For example, two branches 
of the South Equatorial Current in association with zonal band-
like structures of the wind curl to the west of Galapagos Islands 
are realistically reproduced in OFES. Another example is the far-
reaching Hawaiian Lee Countercurrent (HLCC) westward and 
in the lee of the Hawaiian Islands (Figure 4, page 13), for which 
two-way air-sea interactions are suggested to be important 
(Sasaki and Nonaka, 2006). In such interactions, the HLCC 
is further driven by the wind-stress curl induced by a warm 
SST band along the current, following the initial formation of 
the current at the Hawaiian Islands. This study demonstrates 
usefulness of the QuickSCAT simulation to investigate the 
impact of the small scale wind stress upon the ocean, which 
would never be possible without the fruitful combination of an 
eddy-resolving OGCM and satellite-observed high resolution 
wind forcing.
Summary and Discussion
A series of OFES simulations have been performed on the ES. 
The successful simulations provide us good opportunities to 
investigate not only mean fields but also variations with various 
temporal and spatial scales in the realistic simulated oceanic 
field including mesoscale eddies, narrow strong currents, and 
frontal structures, as briefly introduced in this article. 
We have been extending the hindcast simulations up to date. 
Comparison of the OFES results to recent observational 
data from satellite and Argo profiling floats, for example, 
would provide us new insights about unsolved mechanisms 
responsible for ocean circulations and their variability. To share 
with the wider research community the treasure chest from 
OFES, we have started opening the outputs of the spin-up 
simulation, as a first step (http://www2.es.jamstec.go.jp/ofes/

Figure 1. Snapshot of simulated surface current speed (m sec-1) based 
on the OFES spin-up simulation

Figure 2. Wintertime (January-March) mean SST fields over the 
North Pacific based on (a) the observation (Frontier Research system 
Comprehensive Ocean and Atmosphere Data Set) and (b) the OFES 
simulation. Contours indicate the five winter mean for 1984-88 
(every 1°C), and shade indicates the difference of that mean field 
from another five-winter mean for 1968-72, as indicated to the right 
of the top panel.
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eng/). We will also open a portion of outputs from the hindcast 
simulation in the near future.
However, there exist some issues in the results of OFES to be 
solved in the near future. For example, occasional meandering 
of the Kuroshio south of Japan and the northwestward extent 
of the North Atlantic current are still unrealistic. To overcome 
these problems, we are trying to incorporate different 
parameterization schemes as well as a sea-ice model in OFES 
(Komori et al., 2005). Inertial mixing, tidal mixing, and non-
hydrostacic processes, in addition, should be included into 
the future version of the high-resolution/ultra high-resolution 
model.
Together with the accompanying high-resolution atmospheric 
general circulation model (Ohfuchi et al., 2004) and the sea-ice 
model, a high-resolution ocean-atmosphere coupled simulation 
(Komori et al., 2007) is now executable on the ES, which is 
expected to improve predictability for high-impact phenomena 
with an assimilation system. Furthermore, an ocean biological 
model has been incorporated into OFES (Sasai et al., 2006) and 
will also be implemented in the coupled model in order to study 
predictability of marine ecosystem variability influenced by 
physical fields. More detailed analysis of these high-resolution 
models will lead us to the frontier of climate researche.
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From Griffies et al, page 3: Ocean Modelling with MOM

Figure 1: Five year mean zonal velocity at 400m in a global 1/4 degree MOM simulation.  These currents show signs of the latitudinally alternating 
zonal jets described by Richards et al. (2007), which were seen in a 1/10 degree simulation as well as satellite altimetre observations

From Saski et al (page 5): A series of quasi-global eddy-resolving ocean simulations

Figure 3. (a) Broad-scale component of the post (1984-1996) minus pre-shift (1968-1980) difference in OFES SSH (color shade in cm). Unfiltered 
OFES SSH averaged for both periods is superposed with black contours (at intervals of 10 cm). (b) Same as (a) but for SSH anomalies from the 
Rossby wave model (shade). (c) Same as (a) but for frontal-scale SSH (shade). Black contours designate differences in the unfiltered OFES SSH 
between the two periods with contour intervals of 5 cm.

Figure. 4. Annual mean current vectors at 38 m depth (m sec-1) and surface wind stress curl (color, unit: 10-7 N m-3) in 2003 based on the OFES 
QSCAT simulation.




