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ABSTRACT

A nondivergent barotropic model on a sphere is used to study the effects of a critical latitude on stationary
atmospheric waves forced by topography. Linear and “quasi-linear” calculations are performed with an idealized
wavenumber 3 mountain and with realistic topography. Quasi-linear dynamics, where mean flow changes are
due to momentum flux convergence, “form drag” and relaxation to a prescribed climatological mean flow,
produces an S-shaped kink in the zonal mean absolute vorticity gradient near the critical latitude, resulting
in enhanced reflection. The component of the quasi-linear solution resulting from enhanced reflection at the
critical latitude is computed by taking the difference between the linear and the quasi-linear solutions. In a
calculation with realistic topography and zonal flow, this reflected component is found to be dominated by a
wave train emanating from the western tropical Pacific and propagating northward and then eastward across
the Pacific Ocean and the North American continent. This wave train results from the reflection of the
Himalayan wave train at the zero-wind latitude in the tropical winter troposphere.

The vorticity gradients in the monthly mean statistics of Oort (1983) show structure near the critical latitude
similar to that produced in our quasi-linear model, suggesting that some reflection of incident Rossby waves
is likely in the atmosphere, at least in the western Pacific, and that the wind structure responsible for this
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reflection may be created in part by the stationary Rossby waves themselves.

1. Introduction

Stationary Rossby waves forced in midlatitudes and
trapped within the troposphere are typically refracted
into low latitudes, where they often encounter a tran-
sition from westerlies to easterlies. At this critical lat-
itude (CL), the theory for linear inviscid and steady
waves breaks down. Whether this breakdown results
primarily in absorption or reflection of the incident
waves is of vital importance for the extratropical wave
problem,

The wave is at least partially absorbed at the critical
latitude if diffusion or damping of eddy vorticity is
used to remove the critical latitude singularity for me-
ridionally propagating Rossby waves (Kuo, 1949;
Dickinson, 1968). A similar result emerges when the
initial value approach is used to solve the linear inviscid
Rossby wave critical latitude problem for a linear shear
flow (Dickinson, 1970; Yamagata, 1976). In contrast,
Benney and Bergeron (1969) find a solution with non-
linearity rather than dissipation dominant near the
critical latitude, in which the wave is perfectly reflected.
The quasi-linear inviscid calculations of Geisler and
Dickinson (1974) and Beland (1976) also show the
Rossby wave CL to be perfectly reflecting in the steady
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state, indicating that a simple wave-mean flow inter-

. action model can capture the essence of the reflection

mechanism despite its arbitrary truncation of the full
equations and the resulting distortion of the solution
in the immediate vicinity of the critical latitude. An-
alytic work of Haberman (1972) and Tung (1979)
shows the ratio of nonlinearity to viscosity to be the
key parameter which decides whether the CL reflects
or absorbs the incident Rossby waves. These conclu-
sions are supported by the numerical calculations of
Beland (1978) in which the fully nonlinear barotropic
vorticity equation is integrated forward in time for a
range of viscosity coefficients. Beland also shows that
for realistic parameter values it takes the flow in the
vicinity of the CL about a week to attain a strongly
reflecting structure. Tung (1979) has argued that the
Rossby wave CL in the real atmosphere is dominated
by nonlinearities and must therefore reflect incident
stationary wave energy. These results have led to a
renewed interest in exploring the possibility of Rossby
wave resonance in the real aimosphere.

Grose and Hoskins (1979) describe the steady linear
response to flow over realistic topography using the
shallow water equations on a sphere. These solutions
and their close relationship to analogous solutions in
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baroclinic models have been discussed further in Hos-
kins and Karoly (1981) and Held (1983). In this paper
we examine how this linear response is modified when
stationary waves are allowed to interact with the zonal
mean flow and topography. The zonal mean flow is
not completely free to respond to these interactions
as its departure from its climatological value is con-
strained by the presence of a relaxation term. The only
dissipative effect in the model is a linear drag which
acts everywhere. The strongest interaction is expected
to occur near the critical latitude and to result in en-
hanced reflection, as described by Geisler and Dick-
inson.

The model formulation is described in Section 2
while some theoretical preliminaries are discussed in
Section 3. The effect of the CL on the structure and
character of stationary waves forced by an idealized
wavenumber 3 mountain is described in Section 4 and
of those forced by realistic topography in Section 5.
Aspects of the observed tropical flow field which suggest
that it is capable of reflecting incident Rossby waves,
at least in the western Pacific, are described in Section
6. Discussion and conclusions follow in Section 7.

2. Model formulation

Consider quasi-geostrophic flow in a homogeneous,
incompressible and hydrostatic atmosphere which is
bounded at the top by a rigid lid. Such a model con-
serves potential voiticity following horizontal fluid
motion. The horizontal flow in our model is damped
everywhere by a linear drag while the axially symmetric
zonal flow is forced to relax to a specified climatological
profile U,. The equation describing the motion is

d{¢+f ) D _
V=)= 75— %) 1
“(5)-pa-» ()
where
d . . ..
@ horizontal material derivative
¢ relative vorticity
Co zonal mean climatological vorticity
f Coriolis parameter [=2Q sinf]
D drag coefficient
H, height of the rigid lid
h(\, 8) surface topography [#/H, < 1] v
H(\, 0) height of the fluid column [=H, — A(\, 6)]
P longitude and latitude respectively.

The equation for the zonally symmetric flow U is
obtained by integrating (1) with respect to 6 and then
averaging over A to give

6U _ i
} or
where the overbar denotes the zonal mean and the
prime the deviation from it. Here

=00 +—v'h + DU, - 0), (2a)
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1 3{u'v’ cosh}
a cosf a9

v = -

is the eddy momentum flux convergence, (f/Ho)v'h’
is the “form drag” or the mountain torque and D(U,
— U) is the relaxation term.

The equation for the zonally asymmetric part of the
flow is obtained by linearizing (1) after subtracting its

zonal mean
a¢’ U o ( 1 af)
— - + Y 4+ - —
+ i Caer
U dh

ot  acosf N
A=ty
S — D¢ 2
. Hy \a cosf 9 D¢, (2b)

where

1 & 1 ' ):|
’ - ) ——
f.0) = l:coszﬂ N T cosh 36 (°° a0 /)]°
the eddy vorticity,

1 !
u=-- _é% the eddy zonal velocity,
v = Lo , the eddy meridional velocity,
acosf O\’

and ¥'(A, 0) the eddy streamfunction, a the radius of
the earth, and 8 = 2Qa™! cosf, the planetary vorticity
gradient.

Egs. (2a) and (2b) form the quasi-linear system. In
the linear calculation, U is prescribed and the steady
state {" determined by solving (2b) as a boundary value
problem. In the quasi-linear calculation U, is specified
in (2a) and the solutions ¢’ and U are determined by
integrating Egs. (2) forward in time.

A semi-spectral model is constructed to numerically
integrate the quasi-linear system. The model has a high
meridional resolution having 401 grid points equally
spaced between the North and the South Poles. The
eddy vorticity is represented as

M
YO 0,0 = 2 2 Re[{n(0, 1) expimN)],  (3)

m=1

where {0, 7) is the complex eddy vorticity amplitude
of the mth wavenumber. The eddy streamfunction and
topography are similarly represented. The Euler scheme
is used to start the integration of (2) which is then
carried forward using the leapfrog time scheme. The
quasi-linear system is initialized by setting U = U, and
§» = 0.0. At each time step, {, is inverted to obtain
¥ by using the technique of Lindzen and Kuo (1969).

The drag coefficient D is chosen to represent an e-
folding damping time of 13.5 days and Hj, is set equal
to 8000 m. Even though the model is global, the to-
pography in all cases is confined to the Northern
Hemisphere alone. The Appendix contains a detailed
description of the difference equations resulting from
time and meridional finite differencing of Egs. (2) and
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of the quantities that these difference equations con-
serve when inviscid and unforced.

3. Theoretical preliminaries

In this section, we summarize some relevant prop-
erties of Rossby waves on a latitude-dependent mean
flow. On a §-plane, the equation determining the me-

_ridional structure of a linearly damped barotropic
Rossby wave outside the region of forcing is

2¢
+ (v, kg = 0, 4
where
Y'(x, , 1) = 2 Real{{(y)e’ ™"} is the eddy stream-
function;
B
2, — _ 12
POl = = —pp=1 ~ ** the square of the
meridional wavenumber,
5 *U
B(y) = B — — , the zonal mean absolute vor-

a?’
ticity gradient.

The phase velocity c is real. Away ffom the critical
la_titude, where U = ¢, the eddy momentum flux
u'v’ is independent of latitude in the limit D — 0.
Latitudes at which / = 0 are referred to as turning

latitudes. The phase ® of ¢ is defined as
_ \0:')
&(y) = tan '(~— ,
v 7

where the subscripts { and r denote the imaginary and-
real part respectively. The eddy momentum flux can
now be expressed as

— ~ ., 0P
7 kg 2

If the WKB approximation § ~ /™2 exp[i [ I§)d¢)
is valid; that is, if

11/2 (1 ) < P2, (5)

then one can speak of northward and southward prop-
agating components of the wave. One finds that u'v’

> 0 (<0) for southward. (northward) propagation and

that ¥'v’ = 0 if the two conanents have equal am-
plitudes. There is a jump in u'v’ at the critical latitude
y. (e.g., Lindzen and Tung, 1978), where
Byl )

30/ay), ©

Wy — W, = 2m

the transition occurring over -a distance of the order
of D(kdU/dy)~'. The value of D chosen for the cal-
culations described here, (13.5 days)™!, is sufficiently
small that waves can propagate into the tropics and
back to midlatitudes retaining significant amplitudes,
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while being sufficiently large that the momentum flux
transition at y. is smoothly resolved by our numerical
model.

In the simple case in which the wave is evanescent,
Re(/?) < 0 for all y < y., uv'l,- =0as D — 0. If 8
happens to equal zero at y = y,, then we also have
u'v'|,+ = 0, implying perfect reflection of the incident
wave. Geisler and Dickinson (1974) obtain near perfect
reflection in their quasi-linear model because the wave-
induced accelerations force 8 to zero at y.. If 8 is
greater than zero at y, is the wave partially reflected
or totally absorbed at CL? One smooth and continuous
flow profile which has been analytically investigated
and for which one can answer the above question is
the linear shear flow profile

U=s(y—y); s= constant slope.
Dickinson’s (1968) énalytic solutions for the equation
N -8 .
STV O]
sy —yo

whith determines the meridional structure of baro-
tropic Rossby waves in a linear shear flow in the long
wave limit, show the wave absorption to be essentially
complete at CL. However, in the case of more general |
smooth and continuous flow profiles, the wave may

- be partially reflected at CL instead of being totally

absorbed there. In particular, it appears that if there
is no overlap between the region where the WKB ap-

proximation is valid and the region near the critical

latitude where solutions are well represented by Eq.

(7), then partial reflection is possible even in the linear

problem. We return to this point in Section 4, as it is

central to our interpretation of the solutions to be

described.

When (2b) is rewritten in Mercator coordinates it
is transformed into an equation isomorphic to the
barotropic vorticity equation on a Cartesian S-plane
(Kuo, 1949; Hoskins and Karoly, 1981); the new
quantity analogous to 8 is

2Q cos’@  cosf Kl I: 1

Bm = -

P praey’ — (U cos0):| (8)

cost ad

4. One wave experiment

_In the calculations described in this section, the eddy
fields and topography consist of a single zonal wave
(m = 3). The mountain is located in midlatitudes in
the Northern Hemisphere: )

h(\, 8) = h(9) cos(m\),
where .

h(6)

. [(6 — 34.65°)1r] ‘

—_— 4.65° < 0 < 54.9°

_ { ho sm[ 20.25° , 3
0, otherwise.
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For the first set of calculations, we set U.(8) = U1(8),
where U1(#) is an idealized profile of the 300 mb zonal
mean zonal wind during the Northern Hemisphere
winter and is defined as

Ul() = E sin[:%r a. + sino)] + F(1. —sin%), (9)

with E = 18 m s™! and F = 14 m s™!; the analytic
expression is taken from Webster (1981). The Ul pro-
file has a critical latitude at § ~ 8.6°N and a turning
latitude for wavenumber 3 at § ~ 58°N. In the cor-
responding linear calculation, U is set equal to U1(8).
To isolate the influence of the CL on stationary waves,
these calculations are repeated with another profile
U2(#) which is similar to U1(#) but which does not
have a critical latitude. This is obtained from (9) by
setting E= 15ms'and F= 18 ms™.

a. Calculation with Ul

Figs. 1-7 describe results for 4, = 300 m. The quasi-
linear solution approaches a steady state as 1 — oo,
and we find the same steady state for a variety of initial
conditions. For this value of 4, the stationary wave
streamfunction amplitude is roughly a factor of 2-3
smaller than the observed deviations from zonal sym-
metry in the extratropical upper troposphere during
winter. If one tries to increase the wave amplitude by
increasing /1, to 900 m, one finds that unrealistic mean
flow is generated in low latitudes, a problem which we
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return to when discussing realistic topographic forcing
in Section 5. If one tries to enhance the wave amplitude
by decreasing the damping coefficient to (30 days)~!,
one finds that the wave amplitude responds only
slightly (~15%).

Fig. 1 shows U and the associated 8, in the linear
and the quasi-linear steady states. The two profiles are
indistinguishable in the Southern Hemisphere since
very little wave activity penetrates through the tropical
easterlies. In the quasi-linear case, the flow is decel-
erated mainly to the north of the critical latitude of
the U1 profile, resulting in the northward displacement
of the critical latitude by ~4°. The quasi-linear 3,
varies rapidly in a narrow band (an S-shaped structure)
and is driven to quite small values near the critical
latitude. The discussion in Section 3 would then lead
one to expect enhanced reflection in the quasi-linear
case. In contrast with Geisler’s and Dickinson’s study,
B does not vanish at the new critical latitude—pre-
sumably due to the restraining influence of the relax-
ation term D(U, — U).

Fig. 2 shows the meridional structure of the eddy
momentum flux. It is poleward (positive) south of the
mountain and equatorward (negative) north of it, the
direction of eddy momentum flux (x'v’) being opposite
to the direction of energy propagation for stationary
waves in a westerly flow. North of the mountain, the
eddy momentum flux has an exponentially decaying
structure due to the presence of a turning latitude near
58°N. At and in the vicinity of the CL, u'v’ in the

U (m/s)
-5.0 0.0 10.0 20.0 30.0
90T T T =
- ]
a5t TR O ~ 4
N,
2
- |
a e e e =T
2 0 < - _ _t iyl LT T P
= = .
=5 m
451 .
linear
———- quasi-linear
= 1 1 J
9(-}0.5 0.0 1.0 2.0 3.0
112114 ’
By (100 ms™)

FIG. 1. Meridional structure of U and the associated §,, in the linear and
quasi-linear steady state. The thick solid line represents U while the thin
solid line represents 3,, in the linear case. The corresponding dashed lines
distinguish the quasi-linear solution from the linear in regions where the

two differ.
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* FIG. 2. Meridional structure of the eddy momentum flux. The dashed
. line distinguishes the quasi-linear case from the linear in regions where the

two differ.

quasi-linear case is noticeably smaller than in the
linear case (e.g., reducing from the linear value of 1.27
units to 0.6 units at 10°N), indicating that the quasi-
linear steady CL is more reflecting.

Fig. 3a shows the eddy streamfunction amphtude
and Fig. 3b the phase in the linear (l,l/,) and quasi-linear
(nl/q) calculations, as well as for their difference, (¢q
— n//,) In the quasi-linear case, the amplitude is en-
hanced in low and ‘middle latitudes and reduced in
the subtropics. A similar subtropical minimum in am-
plitude and a phase change across the minimum- are
present in the observed wintertime statlonary wave
field (Lau, 1979). This structure in \lzq is suggestive of
interference between equatorward and poleward prop-
agating waves. Indeed, we see that the phase of y,
decreases with increasing 8, while that of w[/q ¥, in-
creases, implying that y, and tpq Y, are dominated
by equatorward and poleward propagating waves re-
spectively. Fig. 4 is a plot of the correlation coefficient
(R) defined as

u'v'
= (uﬂvﬂ)l/Z ’

and computed for ¢, and y,. Since ¥, yields a corre-
lation of very near +1.0 between the source and the
critical latitude, it consists in this region of an essentially
pure equatorward propagating wave..In the neighbor-
hood of the CL, the correlation cogfficient in the quasi-
linear case is reduced to ~0.4. This reduction in co-
herence between u’ and v’ is due to the presence of a
poleward propagating wave (‘pq ¥, resulting from
reflection of the incident wave y; at the CL.

Fig. 5 shows the balance between form drag, eddy
momentum flux convergence, and mean flow relax-

(10)

ation in the quasi-linear steady state. Form drag is
nonzero only in the region of the mountain, where its '
negative value implies that the trough is downwind of
the mountain. The waves generated by the mountain
redistribute this drag by removing angular momentum
from low and (to a much lesser extent) from high -
latitudes. The sum of the form drag and eddy mo-
mentum flux convergence balances D(U, — U7). The
midlatitude mountain is seen to retard the zonal flow
throughout the Northern Hemisphere, as one might
intuitively expect when an obstacle is placed in the
path of a westerly current. Somewhat less intuitive is
the result that the largest retardation, (U, — U) =~ 4.5
m ™', occurs in low latitudes northward of the critical
latltude

Because of the interference between incident and
reflected waves in the quasi-linear solution, one expects
it to be more sensitive than the linear solution to vari-
ations in the strength and/or structure of the basic
zonal flow. To illustrate this point, we vary U, as fol-
lows:

U.(0) = [1. + € sin?(20)]U1(9), (11)

where e ranges from —0.4 to +0.4. The nine profiles
so generated are shown in Fig. 6. F1g 7 shows domain
averages of |{/[%, ¥,|> and |, — ¢/ as functions of e.
The quasi-linear solution shows greater sensitivity than
the linear solution, with a peak in sensitivity at
= —(0.1 (a plot of total form drag as a function of
€ is qualitatively similar). However, note that |¢q
- ¢,|2 averaged over the domain shows no structure
as a function of e. This suggests that the peak in am-
plitude at ¢ = —0.1 does not represent a resonance but
is simply the result of constructive interference between
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FIG. 3. Meridional structure of the (a) amplitude and (b) phase

of ¥, ¥, and (J, — ¥,) shown by the solid, dashed and dotted lines,
respectively.

the wave reflected from the tropics and the one em-
anating directly from the source. If this reflected wave,
upon a second reflection from its polar turning latitude,
constructively interfered with itself, then one would
be exciting a “normal mode” created by partial re-
flection from the tropics and total reflection from the
turning latitude, and one would then expect structure
in |, — ¥/I%. As it is, the value of e at which maximum
response occurs is determined by the position of the
source and not by the requirement that a “mode”
trapped between the critical and turning latitude be
stationary.

Once a steady state is achieved in the quasi-linear
model, the wave response is simply the linear response
on the modified zonal flow. How then is one to un-
derstand the reflection from the critical latitude in the
quasi-linear and not in the linear model? We know
that when the WKB approximation is valid, there is
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FIG. 4. Meridional structure of the correlation coefficient (R). The
dashed line distinguishes the quasi-linear case from the linear in
regions where the two differ.

no reflected wave and that its breakdown near CL in
case of the linear shear profile results in essentially
complete absorption of the incident wave (Dickinson,
1968; Yamagata, 1976). However, a different wave-
behavior near CL is possible in the case of more general
continuous flow profiles. We argue that if the WKB
approximation breaks down before the wave reaches
the region near CL where U can be approximated by

.a linear shear profile, i.e., when there is no overlap of

regions where both WKB and (7) are valid, then partial
reflection is a possibility. We determine the latitudinal
region where the WKB approximation is ipvalid in
our calculation by evaluating W [defined below, cf.
(5)] in Mercator coordinates

801

60

LATITUDE

40t

30

A (10492%a)
F1G. 5. Meridional structure of the momentum balance in the
quasi-linear steady state. The contribution of the eddy momentum

flux convergence, relaxation term and form drag is shown along the
x-axis by the solid, dashed and dotted lines, respectively.
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FIG. 6. The nine different zonal wind profiles generated from (11)
shown and identified with their ¢ value. The dashed profile is that

of Ul.

W= ”:1‘3/2 ﬁ (1—1/2)] (12)
dy? )
We find that W > 1.0, so that the WKB approximation
is violated, within 1.2° of the critical latitude in the
linear case and within 3.0° in the quasi-linear case.
However, the comparison equation (7) is evidently
adequate over a much larger latitudinal range in the
linear case than in the quasi-linear case. The fractional
error F, a measure of the invalidity of the linear ap-
proximation near the CL, is defined as

F= (13)

G=5) T~ G=51

with a = [B,/U, cos(8)],,. We find that F becomes
larger than 0.5 at 33.3° north of the CL in the linear
case, but at only 4.05° north of the CL in the quasi-
linear case. Thus, in the latter case there is little overlap
of the regions in which WKB and (7) are both valid,
so that Dickinson’s analysis which yields complete ab-
sorption need not apply.

.30

20}

Lo

STREAM FUNCTION SQUARED (1077 02a*)"

FIG. 7. Domain averages of [/, I¥,|? and |{, — ¥4* shown in the
steady state as a function of ¢ by the solid, dashed and dotted lines,

respectively.
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FIG. 8. As in Fig. 1 but for calculations with zonal wind profile U2.
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FIG. 9. As in Fig. 3 but for calculations with zonal wind profile U2. .
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b. Calculation with U2

In this subsection, a calculation similar to the pre--
ceding one but with zonal wind profile U2 (defined
earlier) is briefly discussed. Fig. 8 shows U and the
associated 3,, in the linear and the quasi-linear steady
state. The calculation shows that a much weaker S-
shaped structure in 3,, is obtainable even in the absence
of a critical latitude. In the latter case, westerly flow
deceleration is noticeable everywhere (even south of
the equator) along with modest excursions in 3,, in
equatorial latitudes which result in a slightly modified
response in the Northern Hemisphere. In addition, the
absence of tropical easterlies enables the Southern
Hemisphere to respond to Northern Hemispheric
forcing, as shown in Figs. 9a and 9b.

5. 15-wave experiment

In this section, we describe calculations in which
zonal wavenumbers 1-15 are retained in the forcing
and the eddy fields. The Northern Hemisphere to-
pography shown in Fig. 10 and used in these calcu-
lations is constructed from the amplitudes of the first
15 waves which were obtained by Fourier analyzing
the 1° resolution Scripps topography (Gates and Nel-
son, 1975). The Himalayan complex has a maximum
height of ~5000 m while the Rockies have elevation
less than 2000 m. The topography in the Southern
Hemisphere is set identical to zero. Following Charney
and Eliassen (1949), the topography is multiplied by
a constant v, 0 < ¥ < 1, before it is used in Egs. (2).
Results are presented for v = 0.2. At this parameter
setting, the quasi-linear model approaches a steady
state as ¢t — oo for both profiles Ul and U2. As in the

90°W

F1G. 10. Northern Hemisphere topography used in the 15-wave
calculations. The contour interval is 500 m and the zero contour is
not shown. Concentric circles are drawn at intervals of 20° latitude.
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previous section, calculations with profiles Ul and U2
will be described. ) B

a. Calculation with Ul

Fig. 11 shows U and the associated 8,, in the linear
and quasi-linear steady state. In the latter case, the S-
shaped structure in 8, associated with a ledge in the
U profile near CL is similar to that found in the 1-
wave model, and one again expects significant reflec-
tion from the tropics. The time evolution of 8,, in the
15-wave quasi-linear model initialized by the linear
model solution shows that the CL attains a reflecting
configuration fairly rapidly (within a week); the quasi-
linear steady state is realized in ~20 days during which
time B, has been through negative values in the vicinity
of CL (overreflection). .

The Northern Hemisphere eddy streamfunction in
the quasi-linear steady state is shown in Fig. 12a.
Rossby wave trains emanating from the Himalayan
and Rocky Mountains are evident, with the dominant
troughs immediately downstream of the mountain
complexes showing a southwest-northeast tilt. The
Himalayas produce a distinct split wave train, one-
half propagating poleward initially and the other equa-
torward, as in Grose and Hoskins (1979). The northern
of the split wave trains changes orientation from
northeast to southeast over.the Pacific due to reflection
off a turning latitude located near 60°N (for m ~ 3).
The result of subtraction of the eddy streamfunction
in the linear case from that in the quasi-linear case is
shown in Fig. 12b where the contour interval is a fifth
of that in Fig. 12a. Since the two zonal flows are nearly
identical except in the vicinity of the critical latitude,
this difference field can be thought of as the response
to the rather small change in mean winds in the tropics.

U (m/s)
-10.0 0.0 10.0 20.0 30.0
90 T T T T
45 T
N)
ﬁ N
N\ ]
o P ey
2 o} < T .
—
=
_45) i
linear ;
——— quasi-linear
-90 1 )
-10 00 ' 15 3.0

Bm (lo-llm-ls—l) .
FIG. 11. As in Fig. 1 but for calculations with realistic topography.
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FIG. 12a. Northern Hemisphere eddy streamfunction in the quasi-
linear steady state. Dashed (solid) contours represent negative (pos-
itive) value. The first solid contour is the zero contour. The contour
interval is 1.49 X 10° m?s™' (5.0 X 10~* Qa? m? s™"), which at 45°N
is equivalent to 15.63 gpm.

This figure clearly shows the reflections resulting from
the encounter of the Himalayan and Rocky wave trains
with the critical latitude. The reflected wave train over
the Pacific is stronger than the one over the Atlantic
because the incident wave is stronger in the former
case. The Pacific reflected wave train originates at
~120°E, which is roughly the longitude at which the

FIG. 12b. Northern Hemisphere difference field resulting from
subtraction of the eddy streamfunction in the linear steady state
from that in the quasi-linear case. Contours as in Fig. 12a except

. for the contour interval which is a fifth of that in Fig. 12a.
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Himalayan wave train impinges on the critical latitude
in this calculation, and attains maximum amplitude
near its turning point at 40°N, 165°W. The reflected
wave train has sufficient amplitude to modify the linear
wave response significantly along its path.

Results from the 1-wave calculation lead one to ex-
pect greater sensitivity to mean flow modifications in
the quasi-linear than in the linear model. As in the
previous section, the sensitivity of the stationary wave
response is determined by using the nine different pro-
files (for U in the linear and U, in the quasi-linear
models) shown in Fig. 6. In Fig. 13a, the domain av-
erage of the toral form drag is plotted against ¢ for the
linear and the quasi-linear cases; and a similar plot of
the individual contribution of the dominant wave-
numbers 2-5 is shown in Fig. 13b. The total shows
very little difference between the linear and the quasi-
linear response, but this is evidently due to considerable

cancelation between contributions of different wave- -

numbers. It is noteworthy that wavenumber 3 does
not show the resonant-like behavior seen in the 1-wave

linear
— ——~quasi-linear

linear
=12 ———quasilinear . /2 n

FIG. 13a. Domain averages of total form drag shown as a function
of ¢ in the linear (solid) and quasi-linear (dashed) steady states.

Fi1G. 13b. Individual contribution of the dominant wavenumbers
to the domain-averaged total form drag.
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quasi-linear model at ¢ = —0.1. This is not because
the basic zonal wind in the quasi-linear steady state
in the I-wave experiment is very different from that
in the 15-wave experiment, but because of the very
different meridional location and structure of the
wavenumber 3 component of topography in the latter
case. The result is consistent with our understanding
of the dependence of the interference between the wave
incident on the tropics and the one reflected from the
tropical zero wind line on the position of the wave
source.

b. Calculations with U2

The calculation described here is similar to the one
discussed in Section 5a except that zonal wind profile
U2 is used instead of Ul; U2 has westerlies everywhere.
The resulting difference map, analogous to Fig. 12b,
is shown in Fig. 14, The differences between linear
and quasi-linear solutions are now considerably smaller
and of a different character than before, emphasizing
again the importance of the critical latitude. The wave
train in Fig. 14 can be traced back to a small difference
in the transmission of the lower Himalayan wave train
as it passes through the slightly modified tropical flow.
(The difference in zonal mean winds is much smaller
than in Fig. 11, but larger in the tropics than elsewhere
because of the small meridional group velocity and
resulting large wave dissipation in a region of small
U.) This wave train propagates across the equator into
the Southern Hemisphere and returns to the Northern

" Hemisphere after reflecting off a turning latitude lo-

cated near 55°S (for m ~ 3), not having dissipated
entirely during its round trip despite the presence of
a linear drag.

¢. Discussion

As stated earlier, all of the results in Sections 5a and
5b were obtained after multiplying the topographic
stretching by v = 0.2. The resulting wave amplitudes
(Fig. 12a) are smaller by a factor of 2 when compared
with the orographically-forced component of the sta-
tionary eddy field as estimated from general circulation
models [e.g., the east Asian trough is ~ 150 gpm deep
in the difference map obtained from “mountain™ and
“no-mountain” GCMs in Held (1983)]. Furthermore,
the comparison of barotropic and baroclinic linear
models in Hoskins and Karoly (1981) indicates that
v must be of order unity in the barotropic model, in
effect blowing upper tropospheric winds over realistic
topography, to obtain wave amplitudes comparable
with those of the baroclinic models in the upper tro-
posphere. If one is willing to use different dissipation
values in (2a) and (2b), one can easily increase the
amplitude of the response without changing its struc-
ture. For example, if one simultaneously increases the
topography by a factor of 2 and D in the zonal mean
equation (2a) by a factor of 4, while leaving D in the
eddy equation (2b) unchanged, then U remains un-
changed in the quasi-linear model and the eddy
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F1G. 14. As in Fig. 12b but for calculations with zonal wind profile U2.
The Southern Hemisphere difference field is also shown.

streamfunction in the linear and quasi-linear models
(and the difference between the two) are simply mul-
tiplied by 2. One obtains qualitatively similar results
if the fourfold increase in D is confined to the tropics
where the most significant mean flow modifications
occur.

One of our purposes in examining Egs. (2) was to
see the extent to which the results of Charney and
Devore’s (1979) beta-plane model carry over to a
spherical model in which the mean flow is easterly in
the tropics. In Charney and Devore’s work, it is the
modification of the mean flow in the vicinity of the
mountain by the form drag created by the mountain
which results in the non-uniqueness of stationary states.
An important difference in the present spherical model
with uniform damping coefficients is that the bulk of
the mean-flow modification occurs in low latitudes
and not in the vicinity of the mountains (Fig. 5). As
in the 1-wave model, as we increase the strength of
the forcing so as to generate more substantial mean-
flow modification in midlatitudes, the model’s tropical
flow becomes unrealistic. While one could try to avoid
this difficulty by introducing strong damping of tropical
mean flow, one must recognize that this mean flow
damping also controls the wave-mean flow interaction
responsible for wave reflection. This issue is not pur-
sued further here as the problem is, in fact, more fun-
damental: the zonal mean flow in low latitudes is
maintained against Rossby wave stresses by the Hadley
circulation, which acts very differently than a linear

relaxation of U to a prescribed U. ().

6. Meridional structure of 8, determined from ob-
servations '
Monthly mean global circulation statistics compiled
by Oort (1983) have been used to compute the me-
ridional structure of 8,, in the winter (December—Feb-

ruary) upper troposphere (300 mb). Monthly mean
data are provided at 73 equally-spaced points along
each latitude circle and at an equal number of points
from pole to pole, covering the period May 1963-April
1973. The zonal velocity field is first averaged over 10
winters and then over longitudes. The resulting profiles
of U and B,, are shown in Fig. 15a. Structure in 8,
similar to that responsible for wave reflection in our
calculations, is seen to be present near the Northern
Hemisphere critical latitude. Because of the similarity,
it is tempting to argue that this structure is created by
the stationary waves forced in the extratropical North-
ern Hemisphere. The absence of an analogous structure
in the Southern Hemisphere is consistent with this
interpretation, because of the much smaller stationary
wave amplitudes in the Southern Hemisphere. An al-
ternative interpretation that the strong wintertime
Hadley cell maintains small absolute vorticities and,
therefore, small vorticity gradients cannot be dismissed.
Indeed, we suspect that both mechanisms are operating.

Examination of the rawinsonde network during these
ten winter seasons reveals the stations reporting upper
tropospheric data in the latitude belt (0-10°N) to be
very unevenly spaced (Oort, 1978), with not a single
reporting station over vast regions of the Atlantic, In-
dian and the eastern Pacific, but with comparatively
more stations reporting over the western Pacific (120-
180°E). Therefore, it seems reasonable to average the
zonal velocity field. over only the “data-rich” longi-
tudes, particularly since this is also the region where
the equatorward-propagating Himalayan wave train is
incident on the tropics (see Figs. 12a and 12b). Fig.
15b shows U and the associated §,, when zonal av-
eraging is confined to 120-180°E. The @8,, profile is
broadly similar to that in Fig. 11. One again sees a
sharp drop in 8,, near the latitude where U = 0 and
a positive spike further equatorward.
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FIG. 15. The 10-year winter averaged U profile (solid) and the
associated 8,, (dashed) computed from observations (a) at 300 mb
and (b) with longitudinal averaging restricted to the data rich sector
(120-180°E).

These features in S,,, whatever their explanation,
can result in significant reflection of incident Rossby
waves and are created by small, localized changes in
the zonal wind structure. The inadequacies of the ob-
servational network force one to be cautious.

7. Discussion and conclusions

Results from a barotropic model of topographically
forced waves which interact with the mean flow and
topography indicate that the strongest of such inter-
actions occur in low latitudes, near the zero-wind line,
and that the resulting modifications to the zonal mean
wind are quite capable of reflecting a substantial frac-
tion of the incident stationary wave energy, more or

less as in the idealized calculation of Geisler and Dick-

inson (1974). Our results admittedly depend on the
damping mechanism in both the eddy and zonal mean
equations. In particular, a more realistic treatment of
the balance of forces maintaining the mean tropical
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winds is essential for a satisfactory treatment of the
problem. The extent to which these quasi-linear baro-
tropic results are modified by full nonlinearity and
three-dimensionality remains to be seen.

Inspection of the observed mean vorticity gradients
in the tropics suggests that wave-mean flow interaction
similar to that found in the barotropic model may be
occurring in the real atmosphere and that Rossby wave
reflection is a distinct possibility. If so, it follows that
the extratropical stationary wave field is sensitive to
the tropical zonal flow, particularly to the presence or
absence of easterlies in the upper troposphere at those
longitudes at which the dominant wave trains enter
the tropics. Variability in quasi-stationary Rossby
waves emanating from the tropics may, therefore, have
a component due to variability in the reflection prop-
erties of the tropical winds as well as a component
directly forced by variability in tropical latent heat
release.
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APPENDIX
Numerics

Meridional finite differencing of the eddy vorticity
equation (2b) on a regular grid results in the difference
equation

6 _ imU; g imy,, ; [29 cos(8))
ot acos(8) "™ acos() a
1(8¢ . f im0 , .
+-\= - m'——_———hm'a =2aNs
a (60 j] DS Hyacos(6) ™’ /

with the subscript m denoting the zonal wavenumber
and j the meridional grid point, and where

(Qf -1 {[C'm cos(l;+1) — U cos((),-)]
%), & a cos(8;+17)

_ [Uf cos(8) — U cos(d-,)]}

a COS(0 ‘_1/2)
and .
Jf; = 292 sin(6)),
™ .
P 01 + 8)
j+172 2 >
T
A=—,
N
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Here ¥, ;j is obtained from $m,; by solving the tri-
diagonal system

1

fm, i= m {[‘Zm, 1 \Zm,j] cos(0412)
o m? ~
= [¥m;— ‘Pm j—11 cos(8;- 1/2)} p Cosz(ﬂj) Yo, js

J=2,N,

with the boundary conditions ¢,,; = 0 at j = 1 and
Jj = N + 1 and the algorithm of Lindzen and Kuo
(1969).

The finite difference version of the zonal mean
equation (2a) is
%Y pw.;~ 0)

ot
ta cjsw,) { = ’"["”’"’( i I{r; 7"")]} ‘

where the asterisk denotes the complex conjugate.

A leapfrog scheme is used for time-stepping, except
for the damping terms —D¢” in (2b) and D(U, — U)
in (2a), which are carried at the previous time step,
e.g.,

(0t+l Ut—l)
2At

When inviscid and unforced, differential equations
(2a) and (2b) together conserve total angular momen-
tum, vorticity, energy and enstrophy. The correspond-
ing difference equations likewise conserve the finite
difference analog of these quantities, which are:

= (damping term)""' + (other terms)’.

1) Total angular momentum

J

(2ra’s) 3 (U +
j=1

2) Total vorticity
J-1 .
(21ra2A) >
=1
« {[U’“ + U3 cos() — [T} +
alA

U?) cos*(9))

,"+1] COS(@H)}

3) Total energy
. J-1
(2ma?a) 3 (U0 —

Jj=2

4) Total enstrophy
J_
Craa) 3 {2 cos0) > RelH )

j=2 m=1
[T+ 005(9,'+1) -U; cos(Oj)]
X [U1 cos(b;1) — U cos(0,)]}
(aA) cos(8;.1/2)

-2 Z Re[{ 2§31} cos(6)

+
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Here the superscript ¢ denotes the tth time step.
Expressions 1)-4) make reference to the fields at ad-
jacent time steps due to the use of the leapfrog time
scheme.
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