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ABSTRACT

A ‘‘biased twin’’ experiment using two coupled general circulation models (CGCMs) that are biased with

respect to each other is used to study the impact of deep ocean bias on ensemble ocean data assimilation. The

‘‘observations’’ drawn fromoneCGCMbased on theArgo network are assimilated into the other. Traditional

ensemble filtering can successfully recover the upper-ocean temperature and salinity of the targetmodel but it

usually fails to converge in the deep ocean where the model bias is large compared to the ocean’s intrinsic

variability. The inconsistency between the well-constrained upper ocean and poorly constrained deep ocean

generates spurious assimilation currents. An adaptively inflated ensemble filter is designed to enhance the

consistency of upper- and deep-ocean adjustments, based on ‘‘climatological’’ standard deviations being

adaptively updated by observations. The new algorithm reduces deep-ocean errors greatly, in particular,

reducing current errors up to 70%and vertical motion errors up to 50%. Specifically, the tropical circulation is

greatly improvedwith a better representation of the undercurrent, upwelling, andWestern BoundaryCurrent

systems. The structure of the subtropical gyre is also substantially improved. Consequently, the new algorithm

leads to better estimates of important global hydrographic features such as global overturning and pycnocline

depth. Based on these improved estimates, decadal trends of basin-scale heat content and salinity as well as

the seasonal–interannual variability of the tropical ocean are constructed coherently. Interestingly, the Indian

Ocean (especially the north Indian Ocean), which is associated with stronger atmospheric feedbacks, is the

most sensitive basin to the covariance formulation used in the assimilation. Also, while reconstruction of the

local thermohaline structure plays a leading-order role in estimating the decadal trend of the Atlantic me-

ridional overturning circulation (AMOC), more accurate estimates of the AMOC variability require coupled

assimilation to produce coherently improved external forcings as well as internal heat and salt transport.

1. Introduction

Because of the lack of complete observations and the

existence of uncertainties in climate modeling, data as-

similation is needed to improve climate state estimates.

The model uncertainties arise partly from inadequate

measurements of natural and/or anthropogenic forcings,

incomplete understanding of their radiative effects, as

well as issues in the numerical implementation of

physical and dynamical processes. Because of these

uncertainties, models drift away from the real world,

which leads to what is called model bias. Generally,

observations provide only some samples of certain cli-

mate variables and are often sparse and noisy in time

and space. To obtain a more realistic estimate for cli-

mate evolution, data assimilation uses model dynamics

to extract observational information and reconstructs

the historical and present states of climate. The recon-

structed time series is fundamental to improving our

understanding of observed climate changes and varia-

tions. Practically, the estimated states are used as initial

conditions in numerical climate prediction and thus

largely determine the accuracy of the predictions.

Combining the needs of state estimation and forecast

initialization, the National Oceanic and Atmospheric

Administration/Geophysical Fluid Dynamical Laboratory

(NOAA/GFDL) uses its second generation fully-coupled

model (CM2; Delworth et al. 2006) to implement climate

data assimilation. A proof-of-concept study within a per-

fect model framework has been reported (Zhang et al.

2007). Based on estimation theory (Jazwinski, 1970), the

GFDL coupled data assimilation (CDA) system directly

solves for a temporally evolving joint probability distri-

bution function (PDF) of climate states by combining

the observational PDF and a prior PDF derived from

the dynamically coupled model. The ensemble filter first
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simulates the prior PDF by aMonte Carlo approach (i.e.,

launching a set of model integrations). Then the state

of each ensemble member is adjusted by observations

through amultivariate linear regression based on the first

(expectation) and second (covariance) moments of the

prior joint PDF, keeping all higher-order moments un-

changed. This adjustment scheme maintains the physical

balance between state variables (Kalnay 2003) and sus-

tains the feature of the nonlinearity of long-term climate

evolution (Anderson 2001, 2003; Anderson et al. 2009).

Instantaneously exchanged information among all cou-

pled components is expected to minimize coupling initial

shocks when the coupled model is initialized for numer-

ical climate prediction using the CDA-generated en-

semble initial conditions (Zhang et al. 2007, 2008,

2009).

Two outstanding issues in climate state estimation

combining model and data need to be addressed: the

representation of observing systems (e.g., Zhang et al.

2009) and the impact of model bias (e.g., Dee and Silva

1998; Dee 2005). Generally, a fundamental approach to

deal with the model bias issue in ocean data assimilation

(ODA) is the statistical bias correction (e.g., Cherupin

et al. 2005; Kepenne et al. 2005; Balmaseda et al. 2007).

Alternative approaches to relax the model bias issue of

data assimilation include 1) increasing uncertainties of

low modes in initial conditions by analyzing the initial

error subspace (e.g., Lermusiaux 2002), and 2) filtering

inflation (e.g., Anderson 2007; Lermusiaux 2006, 2007;

Uzunoglu et al. 2007; Counillon et al. 2009), in terms of

broadening the representation of unbiased forecast er-

ror covariances. However, understanding the impact of

deep-ocean bias on ocean state estimation is particularly

challenging. On the one hand, because of the lack of

deep-ocean observations (e.g., the modern twenty-first-

century Argo system samples the ocean temperature

and salinity only down to 2000 m), it is difficult to ex-

plicitly define deep-ocean bias (Dee 2005). On the other

hand, clearly identifying data-sampled signals and bias-

induced artifacts from the assimilation-generated vari-

ability is even more difficult because of the imperfection

of both observations and model.

To address the impact of deep-ocean bias on ODA

with a coupled general circulation model (CGCM), this

study first introduces a ‘‘biased twin’’ experiment using

two CGCMs that are biased with respect to each other,

which will be described in section 2. In this biased-twin

experiment, the ‘‘observations’’ that are drawn from the

simulation of one CGCM, according to the locations and

times of Argo observations, are assimilated into the

otherCGCM. In such a twin experiment, themodel bias in

the deep ocean is explicitly defined and the bias-induced

artifacts in the assimilation-generated variability can

be distinguished quantitatively by comparing the as-

similation product with the ‘‘truth’’ from which obser-

vations are drawn. Section 3 addresses a general problem

induced by deep-ocean bias in traditional ensembleODA.

Section 4 designs an adaptively inflated ensemble filtering

scheme to increase deep-ocean constraints coherently so

as to relax the problem. In section 5, based on the results of

25-yr parallel assimilations from both the traditional and

new schemes, the impact of the new scheme on the esti-

mation of oceanic climate features and variability are

thoroughly evaluated. Summary and discussions are given

in section 6.

2. Experimental design

a. Two biased CGCMs at GFDL

Combining two atmosphere models, atmospheric and

land model versions 2.0 (AM2.0/LM2.0) and 2.1 (AM2.1/

LM2.1), with the fourth version ofModularOceanModel

(MOM4) and Sea Ice Simulator (SIS), GFDL has de-

veloped two fully-coupled general circulation models

(CGCMs): CM2.0 and CM2.1 (Delworth et al. 2006).

These two atmosphere models are based on different

dynamical cores: B-grid finite difference (Wyman 1996;

GFDL Global Atmospheric Model Development Team

2004) for AM2.0 and finite volume (Lin 2004) for AM2.1.

Both have the same vertical (24 levels) and horizontal

(2.58 longitude by 28 latitude) resolution, as well as an
identical physical package and land model. These two

coupled models have their own tuned parameters in

both the atmosphere and ocean.

The MOM4 is configured with 50 vertical levels (22

levels of 10-m thickness in the top 220 m), 18 3 18 hor-
izontal B-grid resolution telescoping to 1/38 meridional

spacing near the equator. The model has an explicit free

surface with freshwater fluxes exchanged between the

atmosphere and ocean. Parameterized physical processes

include K-profile parameterization (KPP) vertical mix-

ing, neutral physics, a spatially dependent anisotropic

viscosity, and a shortwave radiative penetration depth

that depends on a prescribed climatological ocean color.

Insolation varies diurnally and the wind stress at the

ocean surface is computed using the velocity of the wind

relative to surface currents. An efficient time-stepping

scheme (Griffies 2005) is employed. The SIS in the cou-

pled model is a dynamical ice model with three vertical

layers (one for snow and two for ice) and five ice-thickness

categories. The elastic–viscous–plastic technique (Hunke

and Dukowicz 1997) is used to calculate ice internal

stresses, and the thermodynamics is a modified Semtner

three-layer scheme (Winton 2000).

Details of the simulated oceans in CM2.0 and CM2.1

can be found in Gnanadesikan et al. (2006). Here we
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only comment on a fundamental characteristic—their

bias with respect to each other. Figures 1a,b present the

time-averaged global mean temperature and salinity

profiles over the last 25 yr from the 140-yr integrations

of CM2.0 (solid black) and CM2.1 (dashed black) in the

Intergovernmental Panel on Climate Change (IPCC)

Fourth Assessment Report (AR4) historical simula-

tions (Randall et al. 2007). Both models use historical

greenhouse gas and natural aerosol (GHGNA) radia-

tive forcings (the date of GHGNA records is referred as

the model calendar) and start from the same coupled

initial conditions. The initial conditions are taken from

FIG. 1. Global mean (a) temperature (T ), (b) salinity (S), and (c) u-velocity profiles averaged over the last 20 yr in

the 140-yr model simulation produced by CM2.0 (solid black, also denoted by TRUTH) and CM2.1 (dashed black,

also denoted by CTL). Both models use historical (temporally varying) greenhouse gas and natural aerosol radiative

forcings and start from the same coupled initial conditions at 0000 UTC 1 Jan 1861 reset from a previous study

(Stouffer et al. 2004). The red line is produced by the traditional ensemble filter (ENSF) assimilation. The annual

mean rms of (d) temperature and (e) salinity adjustments over the tropical (208S–208N) Pacific produced by the

12-member ENSF (red) and AIEF (green) in a 5-yr (1976–80) test period.
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the previous study of Stouffer et al. 2004 and the date is

set as 1 January 1861. Figures 1a,b show that over 1–6 km

the global mean bias of CM2.1 is about 0.28C colder and

0.01 PSU fresher than in CM2.0. This relative ocean bias

mainly comes from the entirely different atmospheric

model (dynamical core and cloud parameters) in each

coupled system, but it is also associated with different

ocean model parameters. Since the deep-ocean biases

have a geographic dependence (e.g., 0.358C and 0.04 PSU

for the South Pacific and20.368C and20.15 PSU for the

North Atlantic), we show in this study that they signifi-

cantly affect the quality of ocean assimilation even if the

global bias at depth is small compared to the real model

bias relative to observations (Delworth et al. 2006).

b. Coupled ensemble filter

The probabilistic nature of state evolution of a coupled

model system is the basis of implementing ensemble cou-

pled data assimilation. The theory of filtering (Jazwinski

1970) views the temporal evolution of coupled model

states as a continuous stochastic dynamical process

described by a vectorized stochastic differential equation,

dxt /dt 5 f(xt, t) 1 G(xt, t)wt. Here, xt is an n-dimensional

vector representing the coupledmodel state at time t (n is

the size of the model state), f is an n-dimensional vector

function, wt is a white Gaussian process (uncorrelated in

time) of dimension r with mean 0 and covariance matrix

S(t), whileG is an n3 rmatrix that defines the relation of

the white Gaussian process and xt. The first and second

terms of the right-hand side in the equation represent the

contributions of deterministicmodeling and uncertainties

of modeling respectively. Based on a background joint

PDF of climate states provided by a dynamical model,

Bayes’s rule is used to produce an analyzed PDF by

combining the model-derived prior PDF and observa-

tional PDF. Ensemble-based filters use a Monte Carlo

approach to simulate the prior PDF through finite-

ensemble model integrations.

As described in Zhang et al. (2007), in a two-step local

least squares filtering implementation (Anderson 2003),

at the first step, the observational increment for the ith

ensemble member produced by the kth observation,

Dyoi,k, is computed [manipulated from Eqs. (2)–(5) in

Zhang et al. (2007)] as

Dyoi,k 5
y
k

11 k2(y
k
, yok)

1
yok

11 k�2(y
k
, yok)

1
y
i,k

� y
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 k2(y
k
, yok)

q � y
i,k
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where the first two terms on the right-hand side repre-

sent the shift of ensemble mean and the third term is the

adjustment of ensemble spread, given a Gaussian ob-

servation N(yk
o, sk

o). Here yk is the model estimate for

observation yk
o and an overbar represents the ensemble

mean. Here k(yk, yk
o) is the ratio of standard deviations

of the model ensemble and the observational error at

location k, that is, sk/sk
o. Note that under a perfect

model assumption, the observational increment ex-

pressed by Eq. (1) is only a function of forecast error

variances, and it does not account for the systematic

model uncertainty (bias).

At the second step, any oceanic state variable at

gridpoint j for the ith ensemble member xi,j is adjusted

[expanded from Eq. (6) in Zhang et al. (2007) to include

the covariance localization in Appendix A] as
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Here r(xj, yk) and r(xj, yk) represent the correlation co-

efficient and linear regression coefficient between xj and

yk, respectively. The k(xj, yk) is the ratio of the ensemble-

estimated standard deviations for xj and yk. The V is the

covariance localization function [Appendix A, see also

Zhang et al. (2005)], which is only determined by the

distance between locations j, k. Note all error statistics

used here, Cov(xj, yk), r(xj, yk), syk
,sx j

, and r(xj, yk), are

evaluated by the model ensemble and thus are a func-

tion of space and time. This means that the background

covariances used in the filtering are anisotropic and tem-

porally varying. For simplicity, the common time subscript

t in all terms of Eq. (2) has been dropped.

The ensemble filter outlined above has a few advan-

tages for oceanic climate studies. First, the filtering

conducts a multivariate analysis based on the prior joint

PDF and maintains the physical balance required by

model equations when data are blended into the model

dynamics. Second, the temporally evolving and spatially

anisotropic error covariances used at each analysis step

allow the assimilation to capture the features of local

waves and vertical variations of oceanic circulations.

Third, the filtering uses data to adjust the probability

distribution of climate states only up to the second-order

moments from the prior PDF but keeps all higher-order

moments unchanged. This sustains the nonlinearity in

a long-term evolution of oceanic circulations. For ex-

ample, an ensemble coupled data assimilation system

may maintain the bimodal feature of the Atlantic me-

ridional overturning circulation (AMOC), which reflects
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the regime transition between active and inactive over-

turnings in the longtime evolution of theAMOC. Finally

the instantaneously exchanged fluxes in a coupled sys-

tem transfer observational information into all coupled

components. It is expected that such a coupled ensemble

data assimilation system can minimize coupling shocks

in ensemble initialization.

The filtering theory described above assumes that both

the dynamical model and ensemble sampling of PDF are

perfect. In practice, the dynamical model is however bi-

ased and the ensemble integration time and ensemble

size are not infinite. A finite ensemble always has a dif-

ferent representation for error statistics of oceanic cir-

culations at different depth. Next, starting from a twin

experiment using two biased CGCMs, we present the

impact of deep-ocean bias on ensemble ODA.

c. Biased-twin ODA experiment with CGCMs

To examine the performance of an ensemble filtering

ODAwhen the assimilation model is biased, we use one

CGCM to produce the ‘‘true’’ climate variation and the

corresponding observations, and the other to assimilate

these observations in order to recover the truth. This

assimilation will be referred to as the biased-twin ex-

periment as model bias is unambiguously defined and

the bias-generated variability in assimilation can be es-

timated quantitatively. As in Zhang et al. (2009), the

GFDL’s IPCC historical simulation produced by CM2.0

is set as the target (hereafter TRUTH) of assimilations.

Another set of IPCC model integrations starting from

the same initial conditions and with the same GHGNA

radiative forcings, but produced by CM2.1, is used as

a free model control (hereafter CTL). The CTL simu-

lation does not include any data constraint and will serve

as a reference to evaluate the assimilations, and is also

used to form ensemble initial conditions from which the

assimilation starts. The ensemble initial conditions are

a set of atmospheric (including land) states taken at 1-yr

intervals combined with a common oceanic (including

sea ice) state. For example, the initial conditions of the

24-member ensemble are formed by combining the at-

mospheric and land states at 0000 UTC 1 January of

1964–87 with the oceanic and sea ice states at 0000 UTC

1 January 1976. The quality of the assimilation using 6-,

12-, and 24-member ensembles during a 5-yr test period

was compared. Probably related to the particular model

and data resolution as well as the strong localization in

the filtering, no significant improvement was found from

a 12-member ensemble to a 24-member ensemble.

Based on this result, a 12-member ensemble is used for

all assimilation experiments. Note that the calendar date

in this study refers to the model calendar that is defined

by the historical GHGNA records.

The observing system used in this study is the twenty-

first-century Argo network. First the IPCC integration is

rerun using the updated version of CM2.0 starting from

1 January 1976 up to 31 December 2000 to prepare daily

data of oceanic temperature and salinity. These model

data are projected onto the 2005 Argo network through

a trilinear interpolation to sample the truth based on the

Argo’s locations and depth (see Zhang et al. 2007, 2009)

so that, as for most of the real Argo array, the data (ob-

servations) used in this study are restricted to 2000 m.

Once oceanic observations (again, produced by CM2.0)

and ensemble initial conditions (from CM2.1) are ready,

using the CM2.1model with the ensemble filter described

in section 2b, the biased-twin ODA experiment is con-

ducted. Except for the following two aspects that are new

for this biased case, the traditional ensemble filtering

ODA algorithm (hereafter briefly as ENSF) used here is

the same as before in Zhang et al. (2007, 2009):

1) To reduce the assimilation adjustment initial shock,

the daily adjustment is evenly distributed onto each

time integration step instead of only being added

daily. In previous perfect model studies, the adjust-

ment shocks did not cause any serious problem, but

in this biased case, the amplitude is bigger and shocks

can significantly degrade the quality of assimilation

without doing so.

2) The adjustment of currents (U, V) based on cross

covariances between T, S and U, V is converted into

an acceleration amount and added into the time

tendency of velocity update equations. In this way,

the barotropic and baroclinic modes are updated

consistently as the model integrates forward, which

minimizes possible computational modes induced by

adjusting the velocity itself.

3. Impact of deep-ocean bias on ensemble ODA

a. Too small ensemble spread versus model bias in
deep ocean

The coupled systemwith the ensembleODA is run for

25 yr (January 1976–December 2000). Two particular

phenomena stand out when comparing the ENSF as-

similation errors to the CTL errors: 1) while the assim-

ilation dramatically reduces the errors of temperature

and salinity (Figs. 2a,b), the errors in the simulated

currents (Figs. 2c,d) and vertical motions (Fig. 2e) are

increased in the ocean interior; 2) the rate of error re-

duction of temperature and salinity from CTL to ENSF

has a strong depth dependency and the largest error

reduction is found between 500 m and 2 km. Consis-

tently, while the temperature and salinity errors in
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ENSF increase with depth, the temperature and salinity

profiles of ENSF are closer to the profiles of CTL

(Figs. 1a,b). Currents and vertical motions diverge from

TRUTH primarily when the rate of error reduction of

temperature and salinity of ENSF rapidly decreases with

depth (cf. Figs. 2c–e and 2a,b).

To understand the behavior of the ENSF assimilation,

we first analyze the ability of a finite ensemble to rep-

resent the upper- and deep-ocean variability. Figure 3

presents the time mean ensemble spread (first 6 mem-

bers) of atmospheric and oceanic states over the last

10 yr of a 25-yr free ensemble integration of CM2.1. The

FIG. 2. Time series of the global rms error reduction (%) from the model control (CTL), produced by the ENSF

assimilation in the GFDL’s coupled system for oceanic (a) temperature, (b) salinity, (c) u component of currents, (d)

y component of currents, and (e) vertical motions. The ‘‘truth’’ is the IPCC AR4 historical simulation produced by

CM2.0 (see section 2a) and ‘‘observations’’ are produced by using the 2005 Argo network to sample the truth. Then

these observations are assimilated into CM2.1 (see section 2a) for recovering the truth. The contour interval is 5% in

(a),(b) and 40% in (c)–(e). A 10-month running mean is applied for graphing.
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ensemble is initialized from atmospheric (including land)

states taken at 1-yr intervals combined with a common

oceanic (including sea ice) state (see section 2c). Each

solid line (different color) represents the departure of an

individual member’s atmospheric–oceanic (Figs. 3a–d)

temperature profile (Figs. 3a,c) or atmospheric-specific-

humidity–oceanic-salinity profile (Figs. 3b,d) from the

ensemble mean. The dotted black line in each panel

shows the vertical variation of the ensemble standard

deviation. Because of the strong internal variability in

the atmosphere, perturbations in both initial conditions

and model-generated SSTs (as a consequence of ocean–

atmosphere interaction)maintain the ensemble spread of

the atmospheric states, which is nearly uniform in the

vertical.

Unlike the ensemble spread of the atmosphere, which

results from its strong internal variability, the ensemble

spread of the ocean in this model reflects the sensitivity

of ocean circulations to the surface forcings provided by

the atmosphere. Because of effects of mixing and con-

vection, the atmospheric disturbances can easily penetrate

the upper ocean and alter the thermocline distribution,

where the largest oceanic spread is observed. In fact, the

ensemble spread of oceanic temperatures near the sur-

face has the same order of magnitude as that of atmo-

spheric temperatures in the lower troposphere. For each

ensemble member, while the temperature shows a nearly

continuous variation at the air–sea interface, the specific

humidity and oceanic salinity shows a discontinuity at the

interface. This different correlation pattern reflects the

nature of atmosphere–ocean coupling [i.e., the atmo-

sphere responds to SST but not to sea surface salinity

(SSS), while the SSS variability is strongly influenced

from precipitation, especially in the tropics]. Figure 3

FIG. 3. The ensemble spread of the (a),(b) atmosphere and (c),(d) ocean in CM2.1. Each solid line represents the

departure of individual ensemble member (marked by a member index) from the ensemble mean (only the first

6 members are shown) of the global mean (a) atmospheric and (c) oceanic temperature, (b) atmospheric specific

humidity, and (d) oceanic salinity averaged over the last 10 yr during a 25-yr ensemble integration. The coupled

model ensemble is initialized from 12 atmospheric states (including land) taken at 1-yr intervals combining with

a common oceanic state (including sea ice). The dotted black lines are the standard deviation of the corresponding

ensemble spread computed by the 12-member ensemble.
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also shows that the ensemble spread decreases dramati-

cally with depth below the thermocline, and compared to

model bias, it rapidly becomes trivial below 1000 m.

When the model ensemble spread is very small, as de-

scribed in Eq. (1), the observational increment, Dyoi,k,
becomes trivial because k(yk, yk

o)’ 0 as sk � sk
o. Then

the model is overconfident so that it rejects data (i.e.,

Dxi,j ’ 0). Thus, the assimilation diverges from TRUTH.

b. Spurious currents induced from the incoherent
vertical structure of ODA adjustments

When the upper ocean is converging to data while the

deep ocean is rejecting data because of a too small en-

semble spread in deep ocean as described in the last

section, ENSF constructs an incoherent vertical struc-

ture between the well-constrained upper ocean and the

poorly constrained deep ocean in a biased assimilation

model. Note that pressure (water mass) at a certain

depth is the vertical integral of the density, which is

a function of temperature and salinity. The pressure

gradient is thus determined by the horizontal distribu-

tion of water masses at depth. The incoherent vertical

structure of data adjustments on temperature and sa-

linity produces an incorrect horizontal distribution of

water mass, which leads to incorrect pressure gradient

and spurious velocities as shown in Fig. 1c. The maxi-

mum spurious velocity appears between 500 and 2000 m

corresponding to the layer where the convergence rate

of temperature and salinity dramatically decreases with

depth (cf. Figs. 2c,d and 2a,b). The velocities near the

surface and bottom appear slightly improved. The im-

provement of currents near the surface can be explained

by the ODA-improved mixing layer while the im-

provement at the bottom may be associated with better

surface forcings (as a consequence of the atmospheric

responses to the ODA-generated SSTs) through the

joint effect of baroclinicity and bottom relief (JEBAR;

see e.g., Myers et al. 1996).

When geostrophy holds, pressure gradient is a domi-

nant factor to determine ocean currents while vertical

motions are induced by the convergence and/or diver-

gence of currents. Recovering currents requires higher-

order accuracy than recovering temperature and salinity

and it is even more difficult to recover vertical motions.

Figures 1c and 2c–e show that while the temperature and

salinity are convergent to the data over the upper oceans,

the ENSF-generated pressure gradient is not.

4. AIEF—Adaptively inflated ensemble filter

a. Algorithm design

Covariance inflation is a common approach (Anderson

andAnderson 1999;Anderson 2007; Zhang andAnderson

2003) to improve the performance of ensemble filters

when the ensemble spread is small and the filter di-

verges. However, the implementation of the inflation

technique requires a very cautious examination of the

geofluid system to which it is applied.

First, given the character of variability of oceanic

circulations at different depth, as shown in Fig. 3, the

method applied to simple models in which a globally

uniform coefficient is used to inflate the prior ensemble

(Anderson and Anderson 1999; Anderson 2007; Zhang

and Anderson 2003), may not be applicable for the ODA

with a coarse-resolution ocean model in this CGCM.

Moreover, for the noneddy-resolving ocean model that

has small internal variability, directly inflating the per-

turbed surface forcings is inadequate to represent the

model forecast uncertainty, especially with small ensemble

sizes. Here we define a specific application of covariance

inflation according to the features of GFDL’s coupled

ensemble system (Zhang et al. 2007) using an adaptive

idea (Leslie et al. 2008), instead of including a stochastic

internal forcing to model the oceanic uncertainties

(Lermusiaux 2006).

Starting from a model simulated ‘‘climatological’’

standard deviation, the new algorithm adaptively in-

flates the prior ensemble according to the results of data

assimilation. First, a first guess of climatological stan-

dard deviation is computed using a long time series of

anomalies in a simulation of the assimilation model.

The climatological standard deviation at depth reflects

the variability resulting from the longtime response of the

ocean model to sea surface forcings. After a period of

assimilation spinup (usually 5 yr), the climatological stan-

dard deviation (called s0), which is used to inflate the

prior ensemble in the filtering, is updated by the assimi-

lation product every year. Then, the new filtering equa-

tion can be written as

Dx
i, j
5

V
j,k
r
t
(x

j
, y

k
) k

t
(x

j
, y

k
)Dyoi,k,t, Z#Z

0

V
j,k
r
t
(x

j
, y

k
)

(1� a)k
t
(x

j
, y

k
)

(1� a)k
t
(x

j
, y

k
)1ak

0
(x

j
, y

k
)
k
t
(x

j
, y

k
)Dyoi,k,t

"

1
ak

0
(x

j
, y

k
)

(1� a)k
t
(x

j
, y

k
)1ak

0
(x

j
, y

k
)
k
0
(x

j
, y

k
)Dyoi,k,0

#
, Z.Z

0

8>>>>>><
>>>>>>:

(3)

3912 MONTHLY WEATHER REV IEW VOLUME 138



and

V
j,k
5

V(ah,dhj,k)V(ay, dyj,k), Do 6¼ Do
bottom or Do 5Do

bottom but Z # Do
bottom

V(ah, dhj,k)V(ayb,d
y
j,k), Do 6¼ Do

bottom and Z.Do
bottom

8<
: . (4)

Here k0(xj, yk) is the ratio of the values of s0 for xj and yk
and correspondingly kt(xj, yk) is the ratio of the values of

st for xj and yk, where st is the standard deviation

evaluated by the model ensemble. Here Dyoi,k,0 is the

observational increment computed by s0 [the prior

background standard deviation, sk, in Eq. (1), is re-

placed by the corresponding sk,0]. Here ah and ay are the

e-folding horizontal and vertical scales in the covariance

localization function (see Table 2 for their typical

values), and dhj,k and dyj,k are the horizontal and vertical

distance between xj and yk. Here Do and Do
bottom rep-

resent, respectively, the current observation depth and

the maximum depth of an observed profile, and Z is the

vertical coordinate. The first tunable parameter, Z0, is

the threshold depth of using s0. The second tunable

parameter, ab
y , is the vertical scale of the impact of the

adjustment produced at the bottom of an observed

profile. It is an important parameter to address how to

FIG. 4. Standard deviations of oceanic temperature evaluated by (a) a 12-member ensemble (the time mean over

20 yr) (calledstmean) and (b) a time series of 25-yrmonthlymean anomalies of amodel simulation (called s0) in the

x–z plane at the equator. The contour interval is 0.02 (0.002) (8C) above (below) 0.01 (8C), and st is multiplied by 10

for graphing. Linear regression coefficients between temperature and salinity given a salinity observation at (1408W,

0, 2 km) computed using (c) kt(T, S) and (d) k0(T, S) [see Eq. (3)] in the x–z plane at the equator. The contour interval

is 0.04 (PSU 8C21) and the regions where the values are . (,) 0.2 (20.2) (PSU 8C21) are shaded as red (green).
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coherently extend the adjustments at the bottom of

observed profiles to deeper ocean. Here a is used to set

an on–off switch for the inflation.

In this study, Z0 is set as a globally uniform value as

a first version with the application of the weighting

combination technique in Eq. (3), although it could be

a function of geographic location. Obviously, if Z0 is set

to be greater than the bottom of the model ocean

(5316 m in CM2 models), this algorithm is degraded to

the traditional ensemble filter. Here, ay is defined by the

thickness of a grid box, allowing two model levels below

and above the current observation depth to be impacted

by the observation at most. The application of parame-

ter ab
y is a little complicated to deal with different ob-

servational profiles. The basic values of ab
y in our

ensemble ODA (e.g., Zhang et al. 2007, 2009) is set

based on the depth of a profile in 4 situations, called ab
y,0:

case 12ab
y,0 5 ay whenDo

bottom is less than 500 m; case 2

2ab
y,0 5 ay plus 1 more model level when Do

bottom is be-

tween 500 m and 1 km; case 3 2ab
y,0 5 ay plus 2 more

model levels when Do
bottom is between 1 and 2 km; and

case 42ab
y,0 5 ay plus 3 more model levels whenDo

bottom

is equal to or greater than 2 km. For example, the value

of ab
y,0 is about 1000 m asDo

bottom 5 2 km for most of the

Argo profiles. Note, because of the underdetermination

of deep-ocean variance by a finite ensemble in ENSF,

the adjustment at the bottom of an Argo profile is so

small that increasing the ab
y value does not strengthen

the adjustments below the bottom of profiles except for

a refined ramp for the adjustment from the bottom of

observed profiles. In the new algorithm since the magni-

tude of deep-ocean adjustments is enlarged by k0(xj, yk),

ab
y becomes an important parameter for enhancing the

consistency of assimilation adjustments, which will be

tested in section 4b.

Figures 4a,b give an example of the time mean stan-

dard deviation evaluated by the ensemble [st] compared

to the climatological standard deviation (s0) of ocean

temperature anomalies. From Figs. 4a,b, it is observed

that s0 is one order of magnitude greater than [st]. This

kind of inflation is performed according to what the

climatological variability of deep-ocean circulations al-

lows. In addition, in order to mostly sustain the tempo-

rally evolving nature of upper-ocean covariances and

model physical balances, the new algorithm consists of

a weighted combination of uninflated and inflated ad-

justments as shown in Eq. (3) with a5 0.5. The s0 that is

used in Eq. (3) for the filtering inflation is updated as the

average of s0
p (the climatological standard deviation

from the last update) and [st]. In this way, the filtering

inflation adaptively takes the effect of data-defined

variability as the assimilation proceeds.

Figures 4c,d gives an example of the relative amplitude

of the timemean of rtt(T, S) (Fig. 4c) computed from kt(T,

S) and rt(T, S) and rt,0(T, S) (Fig. 4d) computed from

k0(T, S) and rt(T, S). In the tropical oceans, the signals in

the time mean of rt,0(T, S) appear very weak below

500 m, while the signals in the time mean of rt,0(T, S) are

much stronger and extending down to 3 km. By com-

pensation, the new algorithm may let the linear re-

gression coefficients used in the filtering take into account

the strength of rt,0(T, S) below 500 m. On the contrary, in

the mid- and high latitudes (not shown), because of the

existence of the strong variability of gyres, the timemean

of rtt(T, S) shows stronger signals than the rt,0(T, S) in the

regions of subtropical and subpolar gyres. Given this

circumstance, it may be reasonable to keep the tempo-

rally varying information of rtt(T, S) in the filtering. This

issue will also be examined in section 4b.

TABLE 1. Experiments for tuning AIEF.

Expt

name Z0 ab
y Inflation domain

AIEF0 1 km ab
y,0(’1 km) Global

AIEF1 1 km 2ab
y,0(’2 km) Global

AIEF2 500 m 2ab
y,0(’2 km) Global

AIEF3 500 m 4ab
y,0(’4 km) Global

AIEF4 0 4ab
y,0(’4 km) 208S–208N [208N(S)–258N(S)

for transition] for 1985–2000

in long run, otherwise global

TABLE 2. Values of parameters in Eq. (3) used in section 5.

Name Physical meaning Value range Typical value Value in this study

a On–off switch for inflation [0, 1] 0.5 0.5 in 208S, 208N, 0.5–0 in 208N(S),

258N(S), elsewhere 0

Z0 Inflation starting depth [0, 1‘] 0, 500 m, 1000 m 0

ah e-folding horizontal scale [0, 1‘] 1000 km 1000 km 3 cos(f)

ay e-folding vertical scale [0, 1‘] 10 m as Do above

220 m 150 m as Do 5 1000 m

gridbox thickness

ab
y e-folding vertical scale for

expanding the adjustment

at the end of obs

[0, 1‘] 1000 m as

Do
bottom 5 2 km for ab

y,0
4ab

y,0 ’ 4 km for both ENSF and AIEF

3914 MONTHLY WEATHER REV IEW VOLUME 138



b. Tuning of the AIEF

Tuning parameters in this ensemble coupled system

for climate time scales requires huge computational

cost. To increase the efficiency of parameter tuning,

tests are performed with three different time scales.

First, 5-day tests with each time step output are com-

pared to choose the candidates of parameter values that

produce self-consistent good results, especially not cre-

ating any instantaneous upwelling–downwelling. Then

1-month tests with daily outputs are compared across

the chosen candidates to ensure the parameter value to

be optimal within 1 month. Finally the optimal param-

eter value is used in a long run (at least 1 yr) to ensure it

works for long-term climate estimates.

Generally, a small value for Z0 means less confidence

in st so that even for the upper ocean, the assimilation

adjustment is modified by s0. For example, ifZ05 0, the

application of Eq. (4) will modify the adjustment of the

mixed layer in ensemble filtering by the climatological

standard deviation, which may be necessary when

a small ensemble size is used. On the contrary, the use of

a largeZ0 will keep the temporally evolving character of

regression coefficients mostly by filtering. This may be

realistic when the ensemble assimilation is performed

for a long time and a large ensemble size is used. The ab
y

value reflects the confidence of both the adjustment at

the bottom of observed profiles and the ensemble-

evaluated correlation in the deep ocean.

Three Z0 values 20, 500 m, and 1 km, and three ab
y

values2ab
y,0, 2ab

y,0, and 4ab
y,0 are used in the AIEF tuning.

Each value of Z0 and ab
y is first tested in a 5-day length.

Results show that, generally, for Z0 (ab
y), a smaller (larger)

value produces better assimilation quality. Then some

cross-test experiments combiningZ0 and ab
y are carried out

for 1 month. For example, for the Argo network used in

this study inwhichmost of the profiles end at 2 km, 3 values

of ab
y (see Table 1) are applied to case 4 described in section

4a with Do
bottom 5 2 km. Finally, five experiments (see

Table 1) are compared and discussed in detail. As shown

in Fig. 5, when ayb 5 4ay,0b (’4 kmatDo
bottom 5 2 km), the

e-folding depth exceeds the bottom of the model ocean so

that the adjustment at the bottom of most Argo profiles is

extended to the full ocean depth, while the ramp functions

with ab
y 5 ab

y,0 and 2ab
y,0 cannot extend the adjustment to the

full model depth.

The root-mean-square (rms) errors of oceanic tem-

perature (left) and salinity (right) in different layers

produced by these test experiments are shown in Fig. 6,

in which the errors of CTL and ENSF are plotted by

black dotted and black solid lines as references. From

Figs. 6a,b (for top 500 m) andFigs. 6c,d (for 500–1000 m),

we find that AIEF consistently strengthens the data

constraint whenZ0 changes its value from 1 km, 500 m to

0, suggesting that with the small ensemble size, the sur-

face uncertainty is also underestimated to some extent.

For the top 500 m, only the rms error of AIEF4, in which

the inflation starts at the surface, gets dramatically re-

duced from ENSF [about 10% (12%) for temperature

(salinity)] while in the other 4 experiments—AIEF0,1,2,3,

which do not inflate until 500 m—errors are reduced by

only 4%. Between 500 and 1000 m, for three of the

experiments—AIEF2,3,4 in which all adjustments below

500 m are inflated—the errors are reduced by 20% and

25% for temperature and salinity, respectively. From

Figs. 6a–d, it is observed that the upper ocean also can be

corrected slightly because of a substantial correction of the

deep ocean, especially for salinity. For example, although

the filtering adjustment in the top 500 m in AIEF2,3 is the

same as in AIEF0,1, the rms errors in the top 500 m in

AIEF2,3 are noticeably smaller than the errors of AIEF0,1

because more substantial corrections are made in AIEF2,3

than in AIEF0,1 below 500 m. Figures 6e–h show that the

use of a proper ab
y value in AIEF is very important to get

sufficient corrections for ocean states below 1 km. Both

doubling (AIEF1,2) and quadrupling (AIEF3,4) ab
y values

from ab
y,0 produce the same error reduction for the 1–2-km

layer [10% (25%) for temperature (salinity)]. However,

AIEF3,4 nearly double the error reduction for the ocean

below 2 km, compared to AIEF1,2. This suggests that it

is very important to coherently extend the adjustments

at the bottom of observed profiles toward deeper depths

for estimation of deep-ocean states.

FIG. 5. The covariance ramp function that is used to extend the

adjustment at the bottom (usually 2 km) of Argo profiles for ab
y 5

1 km (dotted), ab
y 5 2 km (dashed), and ab

y 5 4 km (solid) [see

Eq. (4)].
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FIG. 6. Time series of global rms errors of (left) temperature and (right) salinity at different layers produced by CTL (black dotted),

ENSF (black solid), AIEF with Z0 5 1 km and ab
y 5 ab

y,0 (AIEF0, green dashed), AIEF with Z0 5 1 km and ab
y 5 2ab

y,0 (AIEF1, green

dotted), AIEF withZ05 500 m and ab
y 5 2ab

y,0 (AIEF2, blue dashed), AIEF withZ05 500 m and ab
y 5 4ab

y,0 (AIEF3, blue dashed–dotted),

and AIEF with Z0 5 0 and ab
y 5 4ab

y,0 (AIEF4, red solid), within 1-month test experiments: (a),(b) 0–500 m, (c),(d) 500–1000 m, (f),(e) 1–

2 km, and (g),(h) 2–6 km.
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Another interesting phenomenon is the interaction

of circulations between different layers. None of

AIEF0,1,2,3 experiments inflates the filtering correction

above 500 m. However, it is clear that the errors of top

500 m in AIEF2,3 are smaller than the errors in AIEF0,1.

It is the improved circulation below 500 m in AIEF2,3

that results in the improvement of the upper-oceanic

circulation. Comparing the errors of AIEF3 and AIEF4,

we find that the improvement for the top 500 m in

AIEF4 does not have much impact on the layer between

0.5–2 km but improves the layer below 2 km. This can

be explained by the effect of JEBAR (see Sarkisyan and

Ivanov 1971; Mellor et al. 1982; Myers et al. 1996) in

which the top ocean barotropic modes may have a direct

influence on the bottom ocean within about the 1-month

time scale.

It is also interesting to see how AIEF changes the

correction distribution in the filtering. With the same

positive and negative correction patterns as in AIEF3,

AIEF4 increases the correction magnitude (Fig. 7). In

the Pacific and Atlantic Oceans, the major correction-

strengthened regions, by order, are the subpolar gyre,

subtropical gyre, and the equatorial current system.

Correction strengthening is also observed in the South-

ern Ocean and Indian Oceans. Consistent with the rel-

ative rms error reduction for temperature and salinity,

the salinity correction is strengthened more than the

temperature correction. This suggests that it is more

difficult to use the ensemble integration to estimate the

variability of the deep-ocean salinity than temperature.

Overall, AIEF4 (Z0 5 0 and ab
y 5 4ab

y,0) produces the

best assimilation quality (Fig. 6). Finally, we examine

the rms errors of currents and vertical motions to see if

the inflated filtering corrections in five AIEF experi-

ments introduce extra imbalance into oceanic circula-

tions. Generally, all 5 AIEF experiments do not produce

FIG. 7. The horizontal distribution of monthly mean adjustments of (a),(c) temperature and (b),(d) salinity av-

eraged over top 500 m in (a),(b) AIEF3 and (c),(d) AIEF4 in 1-month test experiments. The contour interval is 0.004

(8C 1021 PSU) for (a)–(d). The regions . (,) 0.01 (20.01) (8C21 1021 PSU) are shaded as red (green).
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any extra imbalance in the circulations above 2 km. In

fact, because of the improvement of vertical consistency of

filtering corrections (e.g., see the green lines in Figs. 1d,e),

currents and vertical motions above 1 km in all AIEF

experiments have been improved after about 10 days of

spinup. As discussed in section 3b, the accuracy of pres-

sure gradient decreases because of the accumulation of

assimilation errors in the vertical integral of water density

by depth. Thus, a longer assimilation period is required to

reduce the errors of currents and vertical motions in

deeper ocean.

Finally, AIEF0 is run for 1 yr (1976), AIEF2 for 3 yr

(1977–79), and AIEF3 for 5 yr (1980–84). Two parallel

experiments of AIEF4 with the inflation in a global or

tropical domain [208S–208N, setting 208N(S)–258N(S) as

a transition region to minimize the shocks] are run for

1985–90 to test the impact of the inflation in extratropics

as discussed at the end of section 4a. Results show that

the use of rt,0(T, S) in extratropics weakens the signals of

strong variability of gyres and produces extra assimila-

tion errors in high latitudes (especially in the North

Atlantic Ocean). Therefore AIEF4 with the tropical

inflation is run for the final 15 yr until 2000. The results

of this long run show AIEF has more potential to im-

prove the salinity assimilation than the temperature (the

salinity assimilation is more sensitive to the values of pa-

rameters Z0 and ab
y; Fig. 8). For example, all AIEF0,1,2,3,4

experiments show almost the same level temperature

improvement (the maximum error reduction from ENSF

is 30%–40%between 2 and 3 km; Fig. 8a) but the inflated

filtering with a small ab
y value cannot improve the salinity

estimate deeper than 4 km although it reduces the sa-

linity error up to 40%–50% above 4 km (maximum error

reduction appears between 1 and 2 km; Fig. 8b). When

a 4-km ab
y value is used, AIEF4 starts improving the sa-

linity estimate below 4 km, while the currents and verti-

calmotions above 4.5 kmare improved dramatically. The

maximum error reduction is up to 70% for currents and

50% for vertical motions between 1 and 2 km. Note, as

expected, the smallest improvement on velocities is ob-

served at the bottom. We also note that the currents of

AIEF are still a little degraded compared to the CTL,

reflecting that the data adjustment of AIEF is not com-

pletely in the physical balance as in a model simulation.

5. Impact on estimation of climate features and
variability

With the knowledge of tuning AIEF described in the

last section, the impact of the new algorithm on esti-

mation of climate features and variability is examined by

rerunning the 25-yr ENSF and AIEF assimilation ex-

periments with the parameters listed in Table 2. Leaving

the first 5 yr as assimilation spinup, all diagnostics and

analyses next are based on the assimilation data of last

20 yr (i.e., from 1 January 1981 to 31 December 2000 of

the model calendar).

a. Global annual mean fields

The subsurface temperature (Figs. 9a,c) and salinity

(Figs. 9b,d) errors show that AIEF dramatically reduces

the assimilation errors in the tropics. The improvement

of the vertical structure of the tropical oceans gives rise

to the improvement of oceanic circulations in extra-

tropics. However, perhaps associated with gyres’ struc-

tures, the improvement ismore dramatical for the regions

with relatively weak temperature and salinity gradients

than the regions with strong temperature and salinity

gradients. In particular, over the northwest region of the

Atlantic Ocean in the Labrador Sea, the averaged errors

over the top 2 km for both temperature and salinity

appear a little larger in AIEF than in ENSF. This may

be associated with the structure of the Atlantic meridio-

nal overturning circulation (AMOC) and its variability,

which may require more accurate adjustments as will be

discussed in section 5b.

Consistent with the substantial improvement on the

vertical structure of the temperature and salinity in the

tropical ocean, the errors of the tropical u component

and vertical velocities in AIEF are much smaller than in

ENSF (Fig. 10). The improvement of currents and ver-

tical motions also gives rise to changes in the thermo-

haline properties at mid- and high latitudes. These

changes are also associated with the changes of other

coupled components (e.g., atmospheric conditions) due

to the improved SSTs in AIEF (Fig. 9e). The improve-

ment of SSTs in the extratropics is due to more consis-

tent currents and vertical motions in the tropical oceans.

The major error reduction of SSTs is observed in the

tropical PacificOcean, the northernAtlanticOcean, and

the high latitudes of the southern Pacific Ocean. The

error reduction of the tropical Pacific reflects the sensi-

tivity of the tropical Pacific SSTs to the undercurrent

and upwelling–downwelling. The error reduction in the

other two regions reflects the improvement of gyre’s

structures due to the improved velocities. The improved

tropical SSTs must improve precipitation, which leads to

the improvement of SSS in the tropical ocean (Fig. 9f).

Note that SST and SSS errors over the surface coastal

areas of the Atlantic–Antarctic Ocean in AIEF are

larger than in ENSF. This is likely associated with sea ice

variability in the Antarctic caused by the changes of

atmospheric and oceanic conditions in the assimilations.

However, further investigations are needed to better

explore the associated mechanisms.
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Interestingly, as a result of the responses of the at-

mospheric circulations to improved SSTs, the improve-

ment of meridional wind stress in AIEF is larger than

the improvement of zonal wind stress. For example,

from ENSF, AIEF reduces the rms error of ty by 22%

and 11% for the tropical ocean (208S–208N) and the

WorldOcean, respectively, while the corresponding error

reduction for tx is only 11% and 5%. It is not surprising

that the improved currents and vertical motions in AIEF

have a stronger impact on ty than on tx, since tx is gov-

erned by the meridional gradient of SSTs which repre-

sents leading order information in ODA data constraint

while ty is more tied with the zonal gradient of SSTs,

which is associated with more detailed local structures of

oceanic circulations. Consistent with the improved SSTs,

the regions with great ty improvement are, by order, the

Indian Ocean, the tropical Pacific Ocean, and the North

Atlantic Ocean. The north Indian Ocean is the most

FIG. 8. Time series of the global rms error reduction (%) from ENSF, produced by AIEF for (a) temperature,

(b) salinity, (c) u component of currents, (d) y component of currents, and (e) verticalmotions. The contour interval is

(a),(b) 5% and (c)–(e) 10%. A 10-month running mean is applied for graphing.
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FIG. 9. Timemean errors of the (a),(c) temperature and (b),(d) salinity averaged over 0–4 km in (a),(b) ENSF and (c),(d)AIEF, and the

difference of the (e) SST and (f) SSS rms errors betweenAIEF andENSF. The contour interval is (a),(b) 0.18C, (c),(d) 0.01 PSU, (e) 0.28C,
and (f) 0.05 PSU.
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sensitive basin to the covariance formulation used in the

assimilation, which will be discussed next.

b. Global/Atlantic overturning and heat–salt
transport

The maintenance of data assimilation for general hy-

drographic features in a coupled system is critically im-

portant to initialize numerical climate predictions from

seasonal–interannual to multidecadal time scales.

The global overturning in depth space reflects the pole-

to-pole circulation associated with the North Atlantic

DeepWater. As described in Gnanadesikan et al. (2006),

CM2.1 (CTL) and CM2.0 (TRUTH) share a common

character, with most of the water downwelling in the

northern oceans and traveling all the way to the Southern

Ocean. However, CTL shows a stronger and deeper-

penetrating overturning at high latitudes. In ENSF, be-

cause of too strong spurious upwelling–downwelling in

the tropical deep oceans induced by incorrect vertical

structures of temperature and salinity, the Pole-to-Pole

circulation is broken at the tropical ocean and a reverse

circulation appears there. More analyses in the next

section will show that it is the north Indian Ocean that

makes the tropical reverse circulation, where the coupled

balances are very sensitive to the oceanic data constraint,

and the vertically inconsistent data adjustment of ENSF

creates an imbalance. The improved vertical structure

of data constraints in AIEF essentially eliminates the

FIG. 10. Time mean (1981–2000) of the assimilation errors of (a),(c) u-component and (b),(d) vertical motions on the x–z plane at the

equator produced by (a),(b) ENSF and (c),(d) AIEF. The contour interval is (a),(c) 0.04 m s21 and (b),(d) 0.5 m day21.

OCTOBER 2010 ZHANG AND ROSAT I 3921



spurious velocity and thus AIEF reduces the global

overturning errors greatly. The fact that the AIEF’s

global overturning error is even a little smaller than the

CTL’s error, suggests that in a global view, the AIEF

adjustments sustain the model balance.

To address the maintenance of AIEF for the balance

of oceanic circulations with sea surface wind stresses, we

show the global overturning in potential density space

(s2) (in Figs. 11a,b). In a balancedmodel simulation, the

overturning streamfunction in s2 space represents the

surface wind-driven circulation, which plays an important

role in heat–salt transport (Gnanadesikan et al. 2006;

Bocaletti et al. 2005). However, the ENSF-produced

spurious velocities in the tropical ocean seriously damage

the wind-driven circulation below the mixed layer (s2 .
1032) and generate a much too strong watermass trans-

formation crossing isopycnal surfaces. This causes a seri-

ous error in the northward heat–salt transport at the

equatorial region (red lines in Fig. 12b,d) and a reverse

circulation (deep water travels from south to north)

is generated. Checking the geographic distribution of

northward heat–salt transport errors in ENSF, we found

that the worst region where the transport is damaged is

the north IndianOcean. Further analyses and diagnostics

in section 5d will show that with regard to the vertical

consistency of ODA data adjustments, the Indian Ocean

is the most sensitive basin, which may be explained by

stronger air–sea interactions there. While the spurious

velocities are eliminated in AIEF, the watermass trans-

formation represented by the global overturning stream-

function (Fig. 11b) and the direct heat–salt transport (blue

lines in Fig. 12b,d) are dramatically improved.

As an important part of global overturning, the

AMOC is also interesting to be examined. Because of

spurious velocities induced from inconsistent vertical

structures of data adjustments in the tropics, ENSF

produces a very spurious recirculation in the tropical

Atlantic Ocean when it reduces the errors of theAMOC

at high latitudes (Fig. 11c). This is consistent with the

fact that ENSF produces too strong northward heat and

salt transport in the tropical Atlantic Ocean. Because of

the improvement of the vertical structure of the tropical

Atlantic Ocean, AIEF eliminates the spurious velocities

and recirculation (Fig. 11d) and improves the corre-

sponding heat and salt transport accordingly. The time

series of the maximum value of the AMOC stream-

function between 408 and 708N from ENSF (red) and

AIEF (blue) (Fig. 11e) show that the improvement of

heat and salt transport in low latitudes by AIEF tends to

improve the variability of the AMOC, although the

AMOC in both assimilations tends to converge toward

the truth. Previous studies (Delworth and Greatbatch

2000; Delworth and Dixon 2000) have shown that the

surface forcings provided by the atmosphere is impor-

tant for the interannual variability of the AMOC. In

future studies, we shall examine the impact of a fully

coupled data assimilation including atmospheric data

constraints on the estimate of AMOC variability.

The zonal-depth integrals of the World Ocean heat

content (Fig. 12a) and salinity (Fig. 12c) show that al-

though the integral temperature and salinity in the

World Ocean converge to TRUTH (black lines) from

CTL (green lines) at nearly the same rate in both ENSF

(red lines) and AIEF (blue lines), the interior structure

of circulations generated by ENSF and AIEF are sub-

stantially different. In the future, when evaluating an

ODA product, one should be cautious about the con-

vergence of temperature and salinity, since the circula-

tion may not be improved if the convergence lacks

vertical coherence. In addition, Fig. 12d shows that in

some areas, the errors of the salt transport in AIEF is

greater than in ENSF, especially at the midlatitudes of

the Southern Hemisphere. We will further investigate

the mechanism of this phenomenon in future studies.

c. Pycnocline and sea surface height

Another interesting measure of the assimilation-

estimated hydrography is pycnocline depth, which repre-

sents a sharp discontinuous boundary layer between light

and dense water. The physical property of light (dense)

waters above (below) the boundary layer is determined

at the surface in low (high) latitudes. Thus, the timemean

pycnocline depth at mid- and low latitudes is another

interesting synthesis measure of the general transport of

heat, salt, and other tracers. Here the pycnocline depth is

computed according to the definition of Gnanadesikan

(1999) and Park and Bryan (2000) [see also Eq. (B1) in

Appendix B].

Given that the water properties at high latitudes are

strongly influenced by external forcings—atmospheric

fluxes, ice melting, runoff from land, etc.—the estimated

pycnocline will only be examined between 408S and

408N in this ODA-only study. Compared to CTL, both

ENSF andAIEF reduce the error of pycnocline depth to

some degree, reducing the rms error by 9% and 45%,

respectively. However, ENSF overshoots the correction

in most of the basins, with a mean error of 246 m for

CTL, 31 m for ENSF, and 10 m for AIEF (see also

Fig. 13). The negative errors in most regions in CTL re-

flect stronger overturning and a deeper penetration in

CM2.1 (Gnanadesikan et al. 2006). The overshooting in

ENSF is caused by the spurious vertical motions. The

lower correlation of the ENSF pycnocline depth with

the TRUTH (0.91) than the CTLwith the TRUTH (0.96)

means that ENSF cannot produce a correct structure of
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light–dense waters. With vertically consistent adjust-

ments, AIEF constructs a nearly correct structure of

light–dense waters and thus maintains a high correla-

tion between the assimilation pycnocline depth and the

TRUTH (0.95).

In a self-balanced oceanic state produced by model

simulation, the pycnocline depth is a mirror of the time-

mean sea surface height (SSH). Thus, the patterns of

SSH differences between the two models can be basi-

cally represented by the patterns of the difference of

their pycnocline depths. It is expected that the ODA-

generated adjustment for oceanic states also maintains

this kind of physical balance. Here we define a correla-

tion of time tendencies of pycnocline depth and SSH to

estimate the balance sustained by ODA. For example,

the correlation computed by 2-decade tendencies (the

FIG. 11. Time mean of the errors of the (a),(b) global and (c),(d) Atlantic overturning streamfunction in potential

density (s2) space produced by (a),(c) ENSF and (b),(d) AIEF and (e) time series of the maximum values of the

streamfunction of the AMOC (408–708N) in AIEF (blue), ENSF (red), TRUTH (black), and CTL (green). The

contour interval is 5 (10) Sv as the absolute value is, (.) 30 Sv in (a)–(d). In (e), thick lines represent the 12-month

running mean and the number in parentheses is the corresponding rms error.
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10-yr mean of the 1990s minus the 10-yr mean of the

1980s) of pycnocline depth and SSH is around 20.7 in

the two models (20.73 in CM2.0 and 20.63 in CM2.1).

However, the ENSF SSH tendency is persistently con-

taminated by spurious vertical motions and it completely

loses its correlation with the pycnocline depth (20.07)

although ENSF noticeably reduces the errors of SSH

from CTL. AIEF enhances the correlation between the

tendencies of SSH and pycnocline depth to20.43 while

further reducing the pycnocline and SSH errors.

d. Trends and decadal variability of basin-scale heat
content and salinity

From the time series of the temperature and salinity

anomalies over the upper 4 km of the ocean in CTL

(CM2.1) and TRUTH (CM2.0) (both with respect to the

TRUTH’s climatology), it is observed that both models

show a roughly 0.0028C yr21 warming trend in theWorld

Ocean and they exhibit a roughly 20.328C (CM2.1–

CM2.0) bias with respect to each other (Fig. 14). The

Atlantic and Indian Oceans are the major contributors

of the warming trend (black lines for TRUTH and green

lines for CTL in all panels). The warming trend can be

attributed to the common greenhouse gas and natural

aerosol external forcings that are used in the simulations

of both models. No significant trend is found in the in-

tegrated salinity anomaly in individual basins and the

World Ocean but a relative bias in salinity (CM2.1

versus CM2.0) is apparent in all basins.

Except for the North Atlantic Ocean, the assimilation

model (CM2.1) shows a cold bias compared to TRUTH

(CM2.0) in all other basins. The biggest cold bias about

218C is found in the north IndianOcean.While we see a

nearly uniform cold bias, every basin has its own fresh or

saltier bias (Fig. 15). The net result is that the upper-4-km

World Ocean maintains a tiny 0.002 PSU fresh bias.

Overall, except for a little overshooting in the tempera-

ture of the South Atlantic Ocean and the salinity of the

North Pacific Ocean, both ENSF (red lines) and AIEF

(blue lines) appear to be converging to TRUTH from

CTL (i.e., reducing the bias dramatically). For example,

the temperature bias of the north Indian Ocean is re-

duced from 218C (CTL) to 20.358C by ENSF, and the

salinity bias is reduced from20.16 to20.1 PSUbyENSF.

FIG. 12. Variation of the zonal-depth integral of (a) temperature and (b) salinity and northward (c) heat and (d) salt

transport with latitudes in CTL (green), ENSF (red), AIEF (blue), and TRUTH (black).
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Compared to ENSF, AIEF speeds up the convergence

of both temperature and salinity in most of the basins

and the World Ocean. Except for the South Atlantic

Ocean, AIEF further reduces the temperature bias in

every basin and the World Ocean. Because of the av-

eraged effect, no much difference is found for theWorld

Ocean’s salinity bias between ENSF andAIEF although

the salinity bias in each basin is clearly improved from

ENSF to AIEF.

Interestingly, the greatest improvement made by

AIEF is found in the north Indian Ocean and the Arctic

Ocean for both temperature and salinity. In the north

IndianOcean, the temperature bias is further reduced to

20.058C from20.358C of ENSF while the salinity bias is

eliminated almost completely. Another interesting phe-

nomenon in the north Indian Ocean is that the anomalies

of both temperature and salinity of ENSF show a com-

putational seasonal cycle–like fluctuation while AIEF

does not. Given the fact that the variability of the north

Indian Ocean is strongly influenced by the Indian mon-

soon system, one might attribute this variability to a dif-

ferent seasonal cycle phase of the Indian monsoon driven

by theENSF-generated SSTs.However, neither SSTs nor

wind stresses over the north Indian Ocean in ENSF

present such a seasonal cycle–like fluctuation. Instead,

the SST distributions inENSF andAIEF are very similar.

In fact, this seasonal cycle–like variability in ENSF is

induced by the vertically inconsistent data constraint in

the ODA algorithm, which persistently conflicts with

driving of the monsoon system. These phenomena sug-

gest that the north Indian Ocean is the most sensitive

basin to the covariance formulation used in the assimi-

lation. Thus, the atmospheric data constraint in a coupled

system is particularly important for oceanic state esti-

mation in this area where air–sea interactions are strong.

The advancement of modeling that will substantially re-

duce model bias over this region will be particularly im-

portant for the success of coupled data assimilation. This

will be further explored in a future studywhen the impact

of atmospheric data constraint on oceanic climate esti-

mation is examined.

While the ENSF-generated heat content in the other

basins converges to TRUTH, the heat content over the

Arctic Ocean diverges (the bias is bigger than the CTL

and tends to grow), but the AIEF-generated heat con-

tent in theArctic Ocean tends to converge. Since there is

no data constraint in the Arctic Ocean, the ENSF di-

vergence or the AIEF convergence has to be the con-

sequence of the model response to the oceanic data

constraints in other basins. This is due to either ocean

FIG. 13. Variation of the zonal mean pycnocline depth with latitudes in TRUTH (black),

CTL (green), ENSF (red), andAIEF (blue). The corresponding root-mean-square (Rms) error

and mean error (Mer) are marked in parentheses.
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FIG. 14. Time series of the upper-4-km heat content in individual basins and theWorld Ocean in CTL (green), ENSF (red), AIEF (blue),

and TRUTH (black).
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interior heat–salt transport or the changes in atmospheric

conditions based on different SSTs produced by the cor-

responding ODA schemes, or both. This aspect will also

be further explored in follow-up studies.

e. Variability of El Niño–Southern Oscillation

Figure 10 shows that ENSF and AIEF produce quite

different upwelling and undercurrents in tropical oceans.

FIG. 15. As in Fig. 14, but for salinity.
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This section discusses the impact of the improved tropical

upwelling and undercurrents on the seasonal–interannual

variability of the tropical Pacific Ocean.

We focus on the anomalies of the domain-averaged

temperature and salinity over Niño-3.4 (58S–58N, 1708–
1208W; Fig. 16). The two models have totally different

ENSO phase and variability (Wittenberg et al. 2006),

with ENSO events in CM2.1 (CTL, see the green line in

the bottom panel of Fig. 16) being much stronger than in

CM2.0 (TRUTH, the red line). Compared to CTL, both

ENSF and AIEF reduce the strength and correct the

frequency of ENSO events to some degree, decreasing

the rms error of anomalies exceeding 50% (64% for

temperature and 54% for salinity). While ENSF has

larger colder (warmer) errors near surface (thermo-

cline), AIEF further reduces the errors in the phase and

strength of ENSO events and produces an extra 20%

(12%) error reduction for the temperature (salinity)

anomalies from ENSF.

6. Summary and discussion

An ensemble filter uses ensemble model integrations

to instantaneously evaluate background error covari-

ances for assimilating observations into the model en-

semble. The temporally evolving error statistics are good

for capturing upper-ocean variability in ocean data

assimilation. The statistical character of oceanic cir-

culations varies from location to location, especially at

depth. For example, the variance of the tropical ocean

temperature, salinity, and currents is mostly concen-

trated above 500 m, and the ensemble spread decreases

dramatically below the thermocline. The subtropical

and subpolar gyres can extend the spread much deeper

in the extratropics. Generally, deep-ocean circulations

are dominated by lower-frequency fluctuations, making

it difficult for an ensemble filter to capture the signals of

interest smoothly because of the difficulties to estimate

the long time-scale variability, especially in the presence

FIG. 16. Time series of the anomalies of the Niño-3.4 temperature in (top to bottom) ENSF, AIEF, TRUTH, and

their vertical integrals. The contour interval is 0.58C in the first three and the number in parentheses in the bottom is

the corresponding rms error.
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of model biases. The infrequent observations in the

deep ocean combined with model bias also complex the

problem.

Different from previous work within a perfect model

study framework using a single model (CM2.0) (Zhang

et al. 2007, 2009), to examine the impacts of model

biases on ocean data assimilation with the ensemble

filter, this study designed a biased-twin experiment

framework using two CGCMs (CM2.0 and CM2.1). One

of them—the CM2.0—is used to produce the ‘‘truth’’

and ‘‘observations,’’ and the other—the CM2.1—is used

to assimilate the simulated observations that sample the

truth according to an observing network (the 2005 Argo

in this case). The results show that a traditional ensem-

ble filter (ENSF) can lead to vertical inconsistency in the

analysis solution with a biased assimilation model using

a limited ensemble size and within a relatively short

ensemble assimilation time, as the upper ocean is assim-

ilated more effectively than the deep ocean. The vertical

inconsistency between the well-constrained upper ocean

and the poorly constrained deep ocean generates spu-

rious currents and vertical velocities. An adaptively-

inflated ensemble filter (AIEF) has been designed to

improve the vertical consistency of the filtering ocean

data assimilation. A ‘‘climatological’’ standard deviation

that is adaptively updated by observational information

is used to inflate the prior ensemble in the filtering. While

maintaining the physical balance required by model dy-

namics through the interensemble structure of the as-

similation model, the new algorithm coherently increases

data constraints in the deep ocean according to the cli-

matological variance of local ocean circulations as well

as appropriate vertical localization scales. Thus, the new

algorithm enhances the consistency of adjustments to

the whole water column.

Experimental results show that compared to the ENSF,

the AIEF improves the assimilation quality dramatically.

It reduces the rms errors of deep ocean (1–4 km) by 30%–

40% for temperature and 40%–50% for salinity. The

AIEF-generated density distribution improves the esti-

mates of currents and vertical motions greatly. Relative to

the ENSF, the AIEF reduces the rms errors of horizontal

currents up to 70%and the rms errors of vertical velocities

up to 50%. Furthermore, the AIEF dramatically im-

proves the tropical undercurrent, upwelling, and associated

Western Boundary Current systems as well as the sub-

tropical gyre structure. Consequently, the hydrographic

features of the World Ocean such as global overturning,

pycnocline depth, andmeridional heat–salt transport are

better constructed. Consistently, the estimate of the cli-

matological feature and variability of the Atlantic merid-

ional overturning circulation (AMOC) is also improved.

Coherently, the estimates of longtime trends of basin-scale

heat content and salinity as well as seasonal–interannual

variability of the tropical ocean are much improved.

Results also show that the Indian Ocean, especially the

north Indian Ocean where stronger atmospheric feed-

backs are involved, is the most sensitive basin to the

covariance formulation used in the assimilation.

This study only focuses on the results of ODA using

a coupled system under a biased-twin experiment

framework, in which the AIEF only implements the

inflation in the tropical band and leaves the filtering in

mid- to high-latitude areas uninflated. On the one hand,

the biased-twin experiment could serve as a test bed to

locate problems and evaluate potential solutions for the

real assimilation experiment using instrumental data.

For example, how to extend the inflation to the extra-

tropical areas for further improving the assimilation

quality is worth to be explored within the biased-twin

experiment framework. In addition, the coupled data

assimilation in the biased-twin experiment that includes

the atmospheric data constraint shows that the reverse

circulation at tropics in the global overturning produced

by ENSF is weak. However, the recirculation in the

AMOC in the tropical Atlantic Ocean is still strong. This

suggests that while the atmospheric data constraint in

a fully coupled data assimilation experiment may relax

the destruction of coupled balances in the north Indian

Ocean to some degree, an inconsistency between upper-

and deep-ocean data constraints still exists in the case

with a strong surface forcing correction. On the other

hand, with these knowledge learned from the biased-twin

experiments, the coupled reanalysis using the instru-

mental oceanic data and the National Centers for Envi-

ronmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) atmospheric reanalysis (Kalnay

et al. 1996) has shown significantly improved estima-

tion for oceanic states. The improvements are not only

for the equatorial undercurrent and upwelling but also

for global climate features such as the global overturning

and heat–salt transport as well as the Atlantic meridional

overturning. These results may hold some promise for

longer-term climate projections, for example, the pre-

diction of decadal and multidecadal fluctuations in the

AMOC. Trial prediction experiments trying to simulate

AMOC decadal variability show that the performance of

AIEF is superior to that of ENSF but a substantial model

drift after initialization still exists. Perhaps an assimi-

lation scheme with adaptive bias corrections (Dee and

Silva 1998; Bell et al. 2004; Dee 2005; Kepenne et al.

2005; Balmaseda et al. 2007; Danforth and Kalnay 2008)

implemented in both atmosphere and ocean data assim-

ilations (e.g., Chen et al. 2000) and pursuing better bal-

anced oceanic analyses (e.g., Gerrit et al. 2002) would be

necessary to create further improvement. Furthermore,
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a new data assimilation approach with adaptive pa-

rameter correction (Zhang et al. 2010, manuscript

submitted toMon. Wea. Rev.) that adaptively performs

both state and parameter estimations using observed

data is expected to further relax the model drift during

prediction.

It is worth mentioning that the results of this study are

based on a relatively small ensemble size compared

to the degrees of the coupled system. In the future when

the computational resource is progressively advanced,

the impact of ensemble sizes on the AIEF shall be fully

explored. Also, in the future when the computational

resource is allowed, other approaches that deal with

deep-ocean biases such as using a larger and low mode

initial condition for the errors at depth (e.g., Lermusiaux

2002) and/or a stochastic error model at depths (e.g.,

Lermusiaux 2006) are worth being implemented for

improving the coupled data assimilation system.
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APPENDIX A
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Here d is either a Euclidean spatial distance (horizontal

or vertical), or a time difference, between themodel grid

point and the observation location; and a controls the

observational impact window.

APPENDIX B

Pycnocline Depth

Following Gnanadesikan (1999) and Park and Bryan

(2000), the pycnocline depth Zs is defined here as

Z
s
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z dz
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2
dz,

�
(B1)

where s2 is potential density referenced to 2 km and

Ds2 5 s2(z) 2 s2(zmax) (zmax 5 2.5 km).
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