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ABSTRACT

The *‘high drag’’ state of stratified flow over isolated terrain is still an impediment to theoretical and exper-
imental estimation of topographic wave drag and mean-flow modification. Linear theory misses the transition
to the asymmetrical configuration that produces the enhanced drag. Steady-state nonlinear models rely on an ad
hoc upstream condition like Long’s hypothesis and can, as a result, be inconsistent with the flow established
naturally by transients, especially if blocking is involved. Numerical solutions of the stratified initial value
problem have left considerable uncertainty about the upstream alteration, especially as regards its permanence.

A time-dependent numerical model with open boundaries is used in an effort to distinguish between permanent
and transient upstream flow changes and to relate these to developments near the mountain. A nonrotating
atmosphere with initially uniform wind and static stability is assumed. It is found that permanent alterations are
primarily due to an initial surge not directly related to wave breaking. Indeed, there are no obvious parameter
thresholds in the time-mean upstream state until ‘‘orographic adjustment’’ (deep blocking) commences. Wave
breaking, in addition to establishing the downstream shooting flow, generates a persistent, quasi-periodic, up-
stream transience, which apparently involves the ducting properties of the downslope mixed region. This tran-
sience is slow enough to be easily confused with permanent changes.

To understand the inflow alteration and transience, the energy and momentum budgets are examined in regions
near the mountain. High drag conditions require permanent changes in flow force difference across the mountain
and, consequently, an ongoing horizontal flux of energy and negative momentum. The source of the upstream
transience is localized at the head of the mixed region. Blocking allows the total drag to exceed the saturation
value by more than an order of magnitude. The implications for nonlinear steady-state models and wave drag
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Permanent and Transient Upstream Effects in Nonlinear Stratified Flow over a Ridge

parameterization are discussed.

i. Introduction

The theory of stratified, high-drag flow over isolated
terrain has borrowed much of its terminology from sin-
gle-layer hydraulic theory: surge, jump, upstream in-
fluence, and wave breaking are familiar terms in both
contexts. However, numerical modeling has shown that
the stratified phenomenon is more complicated than the
hydraulic analog, even in the case of uniform environ-
inental wind, static stability, and density. This has a lot
to do with the fact that internal waves are more com-
plicated than surface waves. The present study of the
continuously stratified problem has two main goals: 1)
to clarify the relationship discussed by Pierrehumbert
and Wyman (1985) between wave breaking and per-
manent upstream changes, and 2) to assess the impact
of upstream influence on steady-state models like that
proposed by Smith (1985). Both issues relate to the
practical problem of estimating wave drag from large-
scale conditions.

Corresponéiing author address: Dr. Stephen Garner, Geophysical
Fluid Dynamics Laboratory, P.O. Box 308, Princeton University,
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In their numerical study of stratified flow over a
ridge, Pierrehumbert and Wyman ( 1985, hereafter PW)
argue that ‘‘columnar modes’’ excited by wave break-
ing are directly responsible for the permanently decel-
erated layers of fluid that stretch far upstream along the
ground from the mountain. Direct causality between
wave breaking and ‘‘upstream influence’’ ( permanent
changes in the inflow ) contrasts with hydraulic models,
which produce upstream surges without lee waves (as
noted by PW), and with laboratory experiments on
stratified, finite-depth fluids, which produce upstream
influence, including blocking, without wave breaking
(Baines 1979). Conversely, in a numerical study of
anelastic mountain waves, Bacmeister and Schoeberl
(1989) find that high-level overturning produces no
significant, permanent changes in the background flow
despite a vigorous wave breaking signal.

The connection between wave breaking and up-
stream influence is worth clarifying, since, if PW are
correct, additional importance would attach to the way
in which experiments and theories treat wave-induced
instability. The uncertainty stems mainly from the fact
that both the wave breaking process and the initializa-
tion of the wind across the terrain can produce low-
frequency transients with upstream-directed group/
phase velocity. Thus, Laprise and Peltier (1989a) dis-
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tinguish between *‘the columnar transients that might
be generated by impulsive start-up and the process that
leads to the formation of the downslope windstorm.”’
These two processes correspond to the ‘initial surge’’
and the ‘‘wave breaking surge’’ in PW’s discussion,
since the development of severe downslope winds is
directly related to the wave breaking. Pierrehumbert
and Wyman avoid ‘‘wave breaking surge’’ in favor of
“‘initial surge’” when describing solutions with block-
ing; however, they do not attempt to clarify this differ-
ence or the one proposed between the ‘ ‘near mountain’’
and ‘“far upstream’’ disturbance.

The uncertainty about the long-range effects of wave
breaking is compounded by the difficulty of distin-
guishing experimentally between temporary and per-
manent changes due to transients. Thus, Scinocca and
Peltier (1989, hereafter SP), concentrating on the
downstream disturbances, point out that simulations
should continue long past the transition to high drag. It
appears that even longer experiments than theirs are
now needed to characterize the slow upstream tran-
sience. Such simulations are feasible if one-gives up
trying to resolve the extremely small-scale downstream
transience highlighted by SP.

Upstream influence also impacts steady-state nonlin-
ear models. The nonlinear model developed by Smith
(1985) makes progress by assuming an idealized ver-
tical structure above the terrain and uniform flow pro-
files far upstream. The latter assumption is a reasonable
way to study slowly varying initial wind and static sta-
bility if there is no significant upstream influence
(Long’s hypothesis). However, if the incident condi-
tions are permanently altered during a start-up process,
as suggested by studies like PW’s, not only wave drag
estimates but most other characterizations based on
Long’s hypothesis are suspect. Ideally, the severe wind
state should be studied as a development from initial
conditions. A gradual start-up of the wind is the most
realistic way, but an impulsive start-up (to be used
here) has the advantage of comparability with past
work. In the interest of realism, one should then focus

- on the long-timescale transience and ignore timescales
on the order of only minutes.’

In some studies (e.g., Clark and Peltier 1984; Bac-
meister and Pierrehumbert 1988 ), high drag conditions
are determined by the existence of an environmental

! Laprise and Peltier (1989b) use Long’s solution as their initial
state in order to highlight modes of instability previously analyzed
for that flow. This is not at all the limiting case of gradual start-ups
from rest. The latter involve an extended period with large nondi-
mensional mountain height, when Long’s solution is meaningless. In
the context of upstream influence, there is little point in comparing
solutions like Laprise and Peltier’s with those obtained using initial-
ization from rest: permanent upstream alteration is insignificant in
the part of parameter space where Long’s solution applies (up to and
just beyond the point of overturning stationary waves), regardless of
the start-up procedure.
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critical level. Here, we will consider only the more ru-
dimentary case of an initially unsheared, uniformly
stratified environment, where mountain amplitude is
the sole determining factor in the development of high
drag. High-level wave breaking over short obstacles is
avoided by assuming incompressible flow. Although
Kim and Arakawa (1990) find that wave breaking may
involve nonhydrostatic gravity waves to a significant
degree, we focus on mountains that are broad enough
to produce nearly hydrostatic disturbances. Miranda
and James (1992) describe a reverse transition from
high to low drag that occurs as the mountain becomes
high enough to split the low-level flow. We ignore this
possibility by working in a two-dimensional frame-
work.

Time-dependent models using fixed or reentrant up-
stream boundary conditions (e.g., Bacmeister and Pi-
errchumbert 1988; Bacmeister and Schoeberl 1989)
can provide only limited indications about mean-flow
modification. The present study relies on new, long-
term numerical integrations with open boundaries. Spu-
rious boundary reflections and sources are unaccepta-
ble in an investigation of steady states or long-term
time-mean quantities arising from initial conditions.
Since sponge layers alone are an inadequate remedy,
in PW’s experience, we resort to a much deeper and
wider domain, as in the study by SP, but with radiation
conditions at both the upper and lateral boundaries.

A set of experiments based on the idealized initial
environment and topography used by PW are described
in section 2. The topic of section 3 is the momentum
and energy budget for the developing and steady high
drag state. The discussion in section 4 attempts to up-
date the conceptual model of the high drag state and its
development.

2. Experiments

Since we are assuming uniform wind and stability,
incompressibility, and no background rotation, the re-
sponse to a ridge in the topography is determined en-
tirely by a Froude number, except for nonhydrostatic
effects. Following PW, we define

Fr = Nho/uo, (1)

where Ay is the maximum height of the mountain, u, is
the undisturbed wind speed, and N is the undisturbed
buoyancy frequency. Since Fr is the mountain height
normalized by the scale of (hydrostatic) stationary
waves,

hg = u()/N, (2)

it is a measure of the nonlinearity of the simplified sys-
tem. Here we are interested only in cases with Fr of
order unity or larger.

To neglect background rotation is to assume large
Rossby number: uy/(flo) > 1, where [, is the horizontal
scale of the mountain and f is the Coriolis parameter.



15 JANUARY 1995

When Fr is of order unity or larger (the nonlinear re-
gime), the disturbance is essentially hydrostatic over
mountains with small aspect ratio, hy/l, < 1. We are
interested in the combined limits of small aspect ratio
and large Rossby number. In this case, the only rele-
vance of [, is in determining the advective time unit,

(3)

Ta = l()/u07

by which transient phenomena are measured.
According to PW, the upstream response following
an impulsive start-up consists of decelerated flow in a
near-mountain disturbance and in a separate propagat-
ing disturbance launched by wave breaking. Wave
breaking and its far-field manifestations are present
when the Froude number is greater than about 3/4. Near
Fr = 3/,, stagnant fluid begins to appear on the wind-
ward slope of the mountain. Finally, for Fr > 2, a layer
of this blocked fluid surges upstream, according to PW.
We will refer to these parameter boundaries as the wave
breaking, stagnation, and blocking thresholds, in that
order. The purpose of this section is to reexamine each
threshold with special attention to the amplitude and
duration of the changes with which it is associated.

a. The numerical model

The numerical model integrates the incompressible,
nonhydrostatic equations in two dimensions, in vortic-
ity—streamfunction format. The terrain-following grid
has similar resolution to PW’s near the ground: Az
~ 0.2h, and Ax =~ 0.2/,. However, the vertical reso-
lution is finer at higher levels because the grid is not
stretched. The domain width in the standard experi-
ments is 50/y. The upstream boundary is at x = —30/,,
with the mountain centered at x = 0. The size of the
domain is similar to that used by Lilly and Klemp
(1979) and SP, but the horizontal resolution is much
coarser than in the latter study. We forego accurate rep-
resentation of extremely small space scales and time-
scales in order to obtain extremely long-term solutions
in a wide range of cases. The experiments will be car-
ried out to a time of 1007, where 7, is defined by (3).
This is at least twice as long as in previous studies.

The upper boundary is ‘‘opened’’ by imposing the
numerical radiation condition devised by Klemp and
Durran (1983) for upward propagating, linear, hydro-
static gravity waves [the implementation is discussed
further by Garner (1986)]. Although the boundary
condition is also appropriate at finite amplitude for sta-
tionary hydrostatic waves (e.g., Lilly and Klemp
1979), it can still allow reflections of nonlinear tran-
sients. To test its effectiveness in highly nonlinear
cases, a couple of the large Fr experiments to be pre-
sented were rerun with a sponge layer added to the
upper part of the domain. Solutions using the sponge
by itself were noticeably altered, but the combination
of radiation and extra upper-level damping recovered
the results achieved with radiation alone. Without the
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radiation condition, a deeper domain is required. Fur-
ther control of reflections is achieved by locating the
upper boundary at levels z = (2n + l/4)mh,, with n an
integer. These are levels of relatively small vertical dis-
placement, where advection and transient waves are
treated most accurately by the boundary condition. We
willuse n = 3 when Fr < 2 and n = 4, 5, or 6 when
Fr > 2 (to keep the domain much deeper than h,).”

The best results at the lateral boundaries are obtained
by applying the standard wave advection condition
(Orlanski 1976; Raymond and Kuo 1984) to the hori-
zontal velocity u. The u profile may then be adjusted
to maintain the initial horizontal mass flux, but this has
little effect on the solutions if the domain is deep com-
pared to the scale of internal waves. The lateral bound-
ary scheme can become unstable if the temperature and
momentum are extrapolated in the same way. There-
fore, we assume zero normal gradient of the perturba-
tion potential temperature (defined at doubly staggered
points relative to the streamfunction and vorticity) in
forming the normal component of temperature flux at
inflow boundaries. Tests with an additional upstream
sponge yielded essentially the same results as without,
except that the sponge controls domain-averaged tem-
perature trends otherwise present at large Fr. The ex-
trawide domain provides room for dissipation and ver-
tical dispersion of spurious reflections and more un-
corrupted time for initialization.

Diffusion is applied explicitly to the vorticity, with
a condition of zero eddy momentum flux, du/0z = 0,
at z = h (lower boundary) and z = H (upper bound-
ary). Additional mixing (scale-sensitive diffusion) of
temperature and vorticity is turned on whenever and
wherever the local static stability falls below 10% of
the ambient value. This scheme is certainly not as so-
phisticated as parameterizations based on the local
Richardson number (e.g., SP). However, one may
fairly conclude from previous modeling that the details
of the convective adjustment scheme are not crucial for
representing transience—including far-field tran-
sience—on timescales longer than the buoyancy pe-
riod. The model diffusivity in overturning regions is
limited to 10 times the background value. Heat is not
diffused outside the regions of convection.

We adopt PW’s choice of a Gaussian mountain pro-
file, A(x) = hy exp(—x>/13), and impulsive start-up of
the wind. The choice for mountain aspect ratio is hy/l,
= 0.05. This keeps the flow essentially hydrostatic ex-
cept in regions of convection. Convection starts at the
steepening levels over the mountain, z =~ (2n + 3/h)wh,
near x = 0, and extends downstream from there. Steep-
ening levels are where u is a minimum in the linear

2 With increasing Fr, it is increasingly difficult to keep the model
depth large compared to the mountain height while resolving the
waves adequately in the vertical. There is enough continuity in the
present solutions to believe in their accuracy up to about Fr = 6.
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FIG. 1. Perturbation horizontal velocity (top) and total potential
buoyancy (bottom) at time ¢t = 1007, for the case Fr = 0.70, where
Fr = Nhy/u,. The horizontal and vertical axes are scaled by the moun-
tain half-width /, and height h,, respectively. Contour intervals: du
= 0.1u, and 6b = 1.0N?h,,.

stationary wave pattern. The internal hydraulic jump at
the end of the shooting flow is also convective.

b. Transient and time-mean behavior near the wave
breaking threshold

We equate wave breaking with the development of
convective furbulence in the form of small wiggles in
the isentropic contours. At the ground, turbulence is
identified as the sudden appearance of drastically
smaller space and time scales than in laminar solutions.
These definitions are more practical than theoretical. A
normal-mode analysis of Long’s solution made by La-
prise and Peltier (1989a) indicates that low-level wave
breaking involves a type of resonant shear instability
along with convective instability. With its slower
growth rate and greater depth, the shear instability by
itself may not generate the small time and space scales
that would be recognizable as turbulence, especially in
a diffusive model. There will be more to say later about
the possible role of shear instability.

The model diffusivity is calibrated to provide mar-
ginal control of grid noise in nonbreaking solutions. At
that setting, wave breaking first occurs at Fr = 0.76.
This is some 10% smaller than the theoretical predic-
tion® but consistent with previous results from time-

3 The result for a bell-shaped mountain is Fr = 0.85 (Miles and
Huppert 1969; Lilly and Klemp 1979).
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dependent models. The turbulence in the solution with
Fr = 0.76 occurs intermittently. Turbulent conditions
become permanent for Fr = 0.77, in which case a
shooting flow and high drag conditions develop. Thus,
a small technical distinction (which we will not em-
phasize) may be made between the model’s wave
breaking and high drag thresholds. These thresholds are
slightly sensitive to the diffusive flux condition at the
lower boundary, as well as the diffusivity coefficient.
An alternative condition of zero eddy vorticity flux
(0%ul8z” = 0 instead of Ou/dz = 0) reduces the break-
ing threshold by about 5%.

The solutions shown in Figs. 1 and 2 are for Fr
= 0.70 and 0.80, respectively, at t = 1007,. The first
case has remained laminar for the duration of the ex-
periment, and the flow shown is essentially Long’s
(1955) solution, with far-field conditions only min-
utely altered. In the other experiment, a distinctive high
drag flow has developed. The wave breaking and low-
level mixing begin at ¢ =~ 127,. The mixed region starts
out near 7z = Sh, over the mountain (the linear over-
turning height is 5.9 mountain units), whence it grows
downstream, abreast with the shooting flow on the
boundary. These structures terminate at an internal hy-
draulic jump, seen near x = 81, in the figure. The bulk
of the turbulence shifts from the mountain to the vicin-
ity of the jump. These downstream developments are
well known from previous studies. '

In contrast to the drastic developments in the lee, the
upstream disturbances in the two solutions are com-
parable. Conditions at higher levels are also compara-
ble, although there is occasional overturning at the sec-
ond steepening level in the second solution. The
streamlines over the mountain are adjusted to critical
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FiG. 2. As in Fig. 1 but for the case Fr = 0.80.
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FiG. 3. Horizontal velocity perturbation at the ground as a function
of time and distance from the mountain for the case Fr = 0.70. Con-
tour interval: du = 0.1u,.

steepness by the combination of explicit and parame-
terized convection. As we will see in section 3, the total
drag differs by a factor of about 3 between the laminar
and breaking solutions. It is clear already that most of
the difference is due to the shooting flow on the down-
slope.

The transition to wave breaking in time and with
respect to Froude number can be studied in Figs. 3, 4,
and 5. These are time—distance diagrams of horizontal
velocity anomaly, 4’ = u — uy, measured at the ground
for the three cases Fr = 0.70, 0.75, and 0.80. The con-
vective adjustment is turned off for all three experi-
ments in order to make intercomparison as unambigu-
ous as possible. This is the reason for the intense tur-
bulence and grid noise in the third experiment (Fig. 5).
The appearance of turbulence at the ground generally
follows the onset of wave breaking in the interior by
one or two time units.

There is persistent, quasi-periodic transience near the
mountain on both sides of the wave breaking threshold.
The timing (phase) of the transience changes only
slightly across the threshold. However, there is a dra-
matic increase in the upstream penetration of the quasi-
periodic signal. Unlike the long-term mean upstream
value, which changes only slightly from —0.4u, to
—0.5u,, the transience becomes significantly stronger,
increasing to about 0.4, from about 0.2y, in total vari-
ation. Farther upstream at x = —20/,, the maximum
deceleration jumps from zero to about —0.1u,. In PW’s
results, the far-upstream wind perturbation changes
from zero to about —0.2u, across the breaking thresh-
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FiG. 4. As in Fig. 3 but for the case Fr = 0.75.

old. Their integrations are not long enough to extract
any time-mean quantities for comparison. However,
the present results suggest that the jump in upstream
conditions across the breaking threshold belongs
mostly to a temporary disturbance caused by the wave
breaking.

There are two kinds of surface convergence zones in
the lee of the mountain. The sharper one in Figs. 3-5
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FiG. 5. As in Fig. 3 but for the case Fr = 0.80.
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FiG. 6. Horizontal velocity perturbation at the ground as a function
of time and distance from the mountain for the case Fr = 0.8. The
expenment is the same as for Fig. 5 except that convective adjustment
is activated. Contour interval: éu = 0.2u,.

is a response to the potentially warm strip located atop
the ridge in the initial state. The other forms only in
the breaking solution, at the base of the hydraulic jump.
This is the chinook front (e.g., Scinocca and Peltier
1989). Compared to the warm front, which follows the
basic flow at dx/dt =~ u, (for a nondimensional
x—t slope of unity), the chinook front moves slowly
and spasmodically. In the present solution, it becomes
stationary near x = 4/, for a short time beginning at ¢
= 457,.* The halting movement of the hydraulic jump
and the persistence of the near-mountain transience, es-
pecially in solutions below the breaking threshold, are
unexpected. We return to this issue at the end of the
section.

c. Transient and time-mean behavior near the
stagnation threshold

The upstream disturbance first develops a region of
stagnation for Fr between 1.3 and 1.4. This is smaller
than PW’s stagnation threshold of 1.5. Other changes
across this parameter boundary can be seen by com-

4 At early times, the flow near the warm front resembles that as-
sociated with the more slowly developing chinook front. The down-
slope convergence feature in Peltier and Clark’s (1979) Figs. 7 and
8, which Laprise and Peltier (1989b) identify as the chinook front, is
probably the start-up warm front instead. The development of a chi-
nook front appears to require wave breaking.
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FiG. 7. As in Fig. 6 but for the case Fr = 1.4. Stippling indicates
a region of stagnated or reversed flow.

paring Figs. 6, 7, and 8, which are time-distance plots
of u’ at the surface for Fr = 0.8, 1.4, and 2.0, respec-
tively. The convective adjustment routine is activated
for all of these solutions, which accounts for any dif-
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ferences in data between Figs. 5 and 6. The main dif-
ferences among the three solutions are 1) the time of
the initial wave breaking, 2) the time-mean upstream
deceleration, and 3) the speed of the hydraulic jump.

In the case Fr = 1.4, just past the stagnation thresh-
old, there is wave breaking by r = 107, and stagnant
fluid on the windward slope by ¢ = 177, (recall that
wave breaking is considered to begin with the devel-
opment of small wiggles in the isentropic contours). In
the case Fr = 2.0, stagnation occurs first, at around ¢
= 27,, followed by wave breaking approximately one
unit later. This last result shows that wave breaking
turbulence is not necessary for upstream stagnation.
For Fr = 1.4, the hydraulic jump develops rapidly
enough to involve air from the start-up warm strip: note
that the usual surface convergence along x = uyt is
missing or weak in Figs. 7 and 8. A vertical cross sec-
tion from the Fr = 2 solution is shown in Fig. 9. The
strongest turbulence has shifted to the vicinity of the
hydraulic jump, which has become an isolated source
of quasi-stationary gravity waves.

The difference between the maxima and minima of
u, (the anomaly at the surface) is about 0.4u, in all
three cases shown in Figs. 6—8. The onset of blocking
as Fr increases is, therefore, mainly due to the smooth
intensification of a background disturbance, that is, a
time-mean upstream alteration. The time-averaged
value of u; at x = —20/,, which is a measure of the
background disturbance, intensifies smoothly from
—0.1u, when Fr = 0.8 to —0.6u, when Fr = 2.0. It has
been noted that the wave breaking process is not nec-
essarily heralded by turbulence. However, as long as
there is no sharp transition in time-averaged conditions
near the overturning threshold, one is obliged to rule
out a significant wave breaking contribution to the
background disturbance.

A further demonstration that the upstream back-
ground conditions do not depend on wave-induced in-
stability is obtained by adjusting the terrain shape. Lilly
and Klemp (1979) observe that, by broadening the lee
slope of the mountain, the stationary wave train can be
‘‘unsteepened’’ at the levels z = (2n + 1) wh, without
weakening the upstream deceleration at the levels z
= 2nwh, (in fact, steady-state linear theory predicts an
infinite upstream response in the limiting case of a
“‘ramp’’ profile). Such a mountain should yield a
strong initial surge with suppressed wave breaking
transience. That result is clear in Fig. 10, which shows
vertical cross sections for the lee-broadened mountain
experiment with Fr = 2 (convective adjustment is
turned off to emphasize the weak production of tur-
bulence in this case). Although the flow is only at the
verge of critical steepening at the time shown, the up-
stream columnar disturbance is well established. More-
over, the wave steepening occurs far enough down-
stream to have minimal impact on the upstream distur-
bance at early times. The time—distance plot of u_ for
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FiG. 9. Perturbation horizontal velocity (top) and total potential
buoyancy (bottom) at t = 607, in the case Fr = 2.0. Contour intervals:
bu = 0.2u, and 6b = 0.5N?h.

this experiment is shown in Fig. 11. It clearly connects
the background disturbance to the initial surge.

d. Transient and time-mean behavior near the
blocking threshold

The final threshold identified by PW involves what
could be called a ‘‘blocking surge.”” The present so-
lutions do not show any abrupt change in time-mean
conditions corresponding to such a threshold or surge.
As Fr increases, the time-mean size of the region with
u,; <= -1 increases gradually and the time variability
of this blocked area decreases. Figure 12 shows u(x,
t) for the case Fr = 3.0. (The size of the equilibrated
shooting region begins to decrease for Fr beyond 2.0.
The reason for this behavior is not known.) It is near
this value of Fr = 3.0 that the blocked region extends
permanently to the upstream boundary (x = —30/,).
Closer to the mountain at x = —20/,, the time mean of
u, changes sign at a somewhat smaller value. The limit
on the size of the time-mean blocked area is probably
imposed by frictional damping of upstream-propagat-
ing signals, as there are no inviscid, stationary distur-
bances with finite horizontal scales over flat terrain. It
is reasonable to infer a Froude number threshold some-
where between 2.5 and 3.0, depending mainly on the
model dissipation, at which the background disturbance
becomes fully blocked. Recall that PW locate their
blocking threshold at Fr ~ 2.0. Evidently, we have re-
fined this parameter boundary by filtering the contri-
bution from the persistent transience.

Beyond Fr = 2.5, there is good evidence of the ‘‘oro-
graphic adjustment’’ mentioned by PW. In this process,
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FiG. 10. As in Fig. 9 but for the lee-broadened mountain with
half-widths /, (upstream) and 6/, (downstream).

a layer of fluid becomes permanently blocked upstream
with sufficient depth to keep the effective height of the
mountain (as measured above the stagnant layer) at the
marginal value for permanent blocking. Shown in Fig.
13 are time-averaged vertical profiles of u’(z) at the
upstream point x = —10/, for Fr ranging from 1 to 5.
Following PW’s argument, the depth d of the blocked
layer should vary according to d/hy = 1 — Fr,/Fr,
where Fr, refers to the permanent blocking threshold.
If we take Fr, to be 2.5, the data seem to support the
hypothesis of orographic adjustment.

Shown in Fig. 14 are profiles of time-averaged total
streamfunction (z) measured in the downstream
shooting region of the numerical solutions for a range
of Froude numbers. The mass flux of the hydraulic

2
<
%
2
w
-
-
-5
HORIZ. DISTANCE (x/Io)
FiG. 11. Horizontal velocity perturbation at the ground as a func-

tion of time and distance from the summit of the lee-broadened
mountain with Fr = 2.0. The convective adjustment is deactivated.
Contour interval: du = 0.2u,.
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FiG. 12. Horizontal velocity perturbation at the ground as a func-
tion of time and distance from the mountain for the case Fr = 3.0.
Stippling indicates a region of stagnated or reversed flow. Contour
interval: du = 0.2u,.

layer, say ¢, is the value of s at its local maximum,
since the fluid immediately above is overturning. For
Fr < Fr,, the mass flux increases with Fr in qualitative
agreement with the model of Smith (1985). In fact, the
hydraulic mass flux at the blocking threshold, say i,
is well approximated by Smith’s absolute maximum,
(37/2)uph, (numerically about 4.7). For larger Fr, the
nondimensional flux is a nearly linear function of Fr.
This is consistent with orographic adjustment, which
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FiG. 13. Vertical profiles of time-mean horizontal velocity at x
= —10/, for Fr ranging from 1 to 5. Vertical unit is the mountain
height hy,.
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z/hg

Y/ lughg)

FiG. 14. Vertical profiles of time-averaged streamfunction at x
= 4l, for Fr ranging from 1 to 5. Streamfunction and height are
normalized by ugh, and h,, respectively.

implies that ¢, = ¢, + Fr — Fr,. Smith’s model
grossly underestimates the maximum possible height
of the mountain for unblocked high drag flows. We
return to that problem in section 4.

e. Persistent transience

All solutions above Fr =~ 0.5 show persistent quasi-
periodic transience upstream, usually with synchro-
nized downstream effects. This variability has a char-
acteristic timescale ranging from 257, to 357,. There
is an indication of similar low-frequency behavior in
PW’s solutions: in their Figs. 4 and 5, a lull can be seen
in the upstream surface wind anomaly during the period
t =97, to 117,. The oscillation is clearly different from
the downstream pulses discovered by Scinocca and Pel-
tier (1989) but is probably the same thing as the ‘‘in-
teresting transience,”” which the same authors mention
in passing remarks about the upstream disturbance.’

Each episode of enhanced upstream deceleration in
the low-frequency oscillation begins with the collapse
of steepened isentropes at the lowest steepening level
over the mountain (Fig. 2 happens to show a time of
maximum wave steepness). The collapse is turbulent
in the breaking solutions. The steepened pattern is rees-
tablished during the episodes of upstream maxima in
u;, when the upstream disturbance is weakest. This is
especially clear in the nonbreaking solutions: for in-
stance, in Fig. 4 at t =~ 507, and 957,. In breaking
solutions with Fr < 2 (cf. Figs. 6-8), the oscillation
is clearly synchronized with the downstream surges of
the internal hydraulic jump.

% Scinocca and Peltier’s downstream pulses have a timescale of
less than 7,,. The streaks that appear in the shooting region late in the
experiment shown in Fig. 5 are similar in some respects to their
pulses, but are much weaker.
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Further experiments reveal some sensitivity, in both
the amplitude and the frequency of the transience, to
the placement of the upper boundary (there is no com-
parable sensitivity to the lateral boundary location).
However, we find that the period of the oscillation does
not depend linearly on the distance to the upper bound-
ary and that the amplitude is not very sensitive to the
introduction of an upper sponge. For these reasons, the
transience is not believed to be a numerical artifact. In
special experiments in which linear damping is applied
at the first steepening level, the oscillation can be
strongly suppressed after the first cycle, even when the
long-term mean is essentially unaffected. Only the first
cycle appears to be sensitive (in amplitude) to the way
in which the large-scale flow is started.

In Fig. 15, the vertical structure of the low-frequency
oscillation is shown in time—height format. The aver-
age of u between x = 0 and x = 1.0/, is plotted as a
departure from the long-term mean for the laminar case
Fr = 0.75. The vertical axis is the model coordinate ,
which is not quite the same as height [{ is a linear
mapping from (0, H) to (h, H)]. A more useful vertical
reference is available in the pattern of stationary waves
along the axis ¢ = 0, where the long-term mean vertical
structure appears with reversed sign. Note that the tran-
sient pattern has approximately the same wavelength
as the stationary wave train but is phase shifted by a
quarter wavelength. The buoyancy (not shown) also
has this phase shift, relative to the long-term mean. The
vertical phase shift is consistent with a quarter-wave-

Transient u-u,
S R AN N A

HEIGHT (z/ho)

TIME (ugt/l)

FIG. 15. Transient part of horizontal velocity averaged between x
= 0 and x = [, as a function of time and { (the terrain-following
vertical coordinate) for the case Fr = 0.75. The vertical coordinate
is normalized by h,. Contour interval: éu = 0.05u,, zero suppressed.
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length horizontal (specifically downstream) displace-
ment over sinusoidal topography.

The time- height tilt suggesting vertical propagation
above the first steepening level in Fig. 15 is similar to
the tilt of the edge of the start-up region: both follow
the group speed of stationary hydrostatic modes with
horizontal wavelength comparable to the mountain
width, t/7, =~ 7w~ 'z/h,. A time—distance plot of the
transient part (departure from the overall time mean)
of u; is shown in Fig. 16. As might be expected from
the group speeds, the horizontal scale of the transience
is similar to that of the stationary disturbance (the
mountain scale ). However, there is obviously horizon-
tal as well as vertical propagation here. The apparent
source of the upstream-propagating pulses is between
x = lyand x = 2/,. Upstream of x = 0, where steepening
occurs at a higher level and is less severe, propagation
becomes faster and the pattern weaker. There is no ev-
idence of downstream signal propagation in Fig. 16,
except for the start-up warm front. Downstream signals
are mainly confined to the shooting flow, which is
much shallower than the layer used for the vertical av-
eraging.

The unexpected low-frequency variability undoubt-
edly results from internal absorption, reflection, and
reradiation of momentum fluxes, focused mainly at the
first steepening level but possibly involving higher lev-
els. The vertical phase of the disturbance in Fig. 15 is
fairly fixed over time, but the time variation of the am-
plitude (presumably due to wave groups) suggests par-
tially ducted waves. Thus, there is considerable energy
reflection in the layer between the ground and the first
steepening level (near z = 5h,) but free group propa-
gation from there upward. Bacmeister and Schoeberl
(1989) are able to demonstrate internal reflection with
comparatively little ambiguity because of the greater
distance from the breaking level to the surface. Break-
ing occurs at high levels in their solutions because of
a background vertical density gradient. The period of
the present oscillation is less likely to be determined by
linear dynamics. The discrepancy between the lateral
and vertical energy propagation speeds already implies
nonlinear conditions over a wide region.

The ‘‘deep resonant modes’’ found by Laprise and
Peltier (1989a, hereafter LP) also depend on the re-
flectivity of the medium at the top of the overturning
layer. These linear modes (of Long’s nonlinear solu-
tion) have a vertical wavelength close to that of the
stationary wave pattern (cf. LP’s Fig. 11), as do the
present experimental modes. However, they do not
clearly exhibit the surface maximum of kinetic energy
that is seen in the experiments. Nor do they propagate
relative to the mountain. These differences may be
mostly attributable to the linearity of LP’s analysis. A
linear analysis also cannot incorporate changes in the
reflectivity that could cause an oscillation in the am-
plitude of the trapped mode. In speculating about the
nonlinear evolution of their unstable modes, LP do not
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FIiG. 16. Transient part of horizontal velocity at the ground as a
function of time and distance from mountain for the case Fr = 0.75.
The horizontal coordinate is normalized by /,. Contour interval: éu
= 0.05u,, zero suppressed.

consider the possibility of periodic behavior. However,
they do show that the shear modes expend energy
working against buoyancy, and this is consistent with
a mechanism for restoring the vertical thermal gradient
and propagation medium. Laprise and Peltier point out
that neutral shear modes are important because they
can be forced at the lower boundary. Indeed, we ob-
serve persistent transience even in experiments below
the breaking threshold, where the linearized shear
modes are stable.

3. Momentum and energy

Wave drag parameterization schemes for large-scale
models normally obtain their estirnate of total drag
from a model of linear, hydrostatic, stationary gravity
waves. During ‘‘severe wind’’ conditions, such esti-
mates fall well short of the drag known from mesoscale
simulations. To correct for high drag conditions, Shutts
(1990) suggests changing smoothly to a nonlinear es-
timate like that of Smith (1985) as the high drag state
becomes more probable. Pierrehumbert (1986), con-
centrating on the fluxes above the hydraulic layer, pro-
poses a similar procedure based on marginal low-level
wave saturation. Both of these alternatives yield a stress
that is O (Fr~?) times the linear result for total drag. As
we will see, that is still the wrong parameter depen-
dence for the total drag in the nonlinear regime.

Since the drag in severe wind states is deposited in
the layer beneath the first breaking level (Peltier and
Clark 1983; Durran 1986), steady near-mountain con-
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ditions in that layer require steady horizontal momen-
tum fluxes and an ever-widening disturbance. Natu-
rally, the momentum budget provides the best picture
of how blocking and stagnation are connected to the
mountain forcing. Scinocca and Peltier (1989) observe
that low-frequency variability in the movement of the
hydraulic jump, which we have related to steepening/
unsteepening transience, is synchronized with plateaus
in the wave drag time series. Here we are interested in
the upstream imprint of these local saturation events,
as SP refer to them. The perturbation energy budget
will also be considered, partly because it helps to es-
tablish the analogy with hydraulic theory.

The momentum budget in the inviscid Boussinesq
system is

Ou

or V- F,, 4)
where F, = 4’V + p'% (the perturbation momentum
flux), V = uX + wi, and p is the pressure divided by
the constant density. The prime denotes a departure
from the state with constant velocity and stratification.
The unit vectors have been written as X and Z. Inte-

grating (4) over a region Z yields

fo u'dA = F,ds,
ot » oR

where the integral along the perimeter 0% is in the
clockwise tangential (s) direction and F,, = u' 9/ 0s
+ p’8z/0s, the inward normal flux component.

Since 0¢y/0s = 0 on the solid boundary, the total
momentum sink, assuming zero flux at infinity, is

3<—u’)_f L
o - C:Opdz—D,

where the angle brackets denote a full volume integral
and D stands for total drag. The integral is taken along
z = h(x). In linear, hydrostatic flow over a Gaussian
ridge, we have D = 0.9 Fr in units of ujh,. At marginal
saturation (order-unity Froude number), both »’ and w
change from O(Nh,) to O(u,), and the scaling for the
vertical flux accordingly changes by a factor of 1/Fr?
(e.g., Lindzen 1981; Pierrechumbert 1986).

We also consider the quantity E = 3(|V'|2 + b'?/
N?), where N? is a constant (we will use the undis-
turbed value of the static stability) and b is the usual
potential buoyancy for the Boussinesq model. In the
absence of dissipation, the energy E obeys

OE

ot V-Fe,
where Fz = EV + p'V’. The budget for E is inform-
ative if the environment has small variations of static
stability [ E satisfies (7) in any case]. Since F; = (E
+ p" )V — uyp’x, a volume integral of (7) may be
written

(3)

(6)

)

GARNER

237

3l
=~ || Eaa=] F
8t 2 d14 oR Endsa (8)

where Fg, = (E + p')(O¢/0s) + upp’' (9z2/0s).
Integrated over the full atmosphere, the energy flux
convergence is proportional to the drag. Thus,
HKE)
ot
It follows from (6) and (9) that the total energy, E;
= E + u3/2 + uou’, obeys the simpler constraint,
XEr)
ik el Ay o
ot

= uoD. (9)

(10)

Since E; has no external sources, it is more natural to
describe disturbances in terms of E.

a. Local budgets

The values plotted in Fig. 17 are of the integrated
flux of negative momentum across the model coordi-
nate surfaces, { = 0 and { = 5wh,, averaged in time
between t = 407, and 607,. The flux across the higher
surface, the residual flux, differs from the flux across

30r

2
0 hO)

Drag/(u

Fr

Fic. 17. Total vertical flux of negative momentum as a function of
nondimensional mountain amplitude Fr according to a number of
experiments and models. Mountain shape is Gaussian. Solid lines
show the numerical model result at the ground ({ = 0) and in the
residual wave train (§ = 5wh,). Dashed line is the linear drag predic-
tion D = 0.9Fr. Dotted lines show the nonlinear estimates D, and D,
derived in section 4. Experimental values, indicated by X, are aver-
aged over a period of 20 advective time units (7,) centered at ¢
= 507,. Vertical axis scaled by u3h, (density understood).
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{ = 0, the total drag, only in the high drag cases. The
total drag jumps by a factor of about 3 at the wave
breaking threshold. In Long’s solution for flow over a
bell-shaped rnountain, the drag increases smoothly by
the same factor between Fr ~ 3/4 (the breaking thresh-
old in initial value experiments ) and Fr ~ 2 (Lilly and
Klemp (1979). Pierrechumbert (1986) computes the
drag exerted by a Gaussian mountain up to Fr = 2 in
experiments like the present ones. His results are
slightly larger for the residual flux and slightly smaller
for the total drag, especially for the larger values of Fr
in his range.

The linear solution, shown by the dashed line in Fig.
17, is an acceptable estimate of drag in the nonbreaking
solutions. Beyond the breaking threshold, the residual
flux is in reasonable agreement with the saturation hy-
pothesis, which implies inverse proportionality to Fr in
the present units. This was previously established by
Peltier and Clark (1983). On the other hand, the total
flux at the ground increases with Fr. Smith’s (1985)
model drag has the saturation parameter dependence D
~ Fr~! and therefore gives an even worse prediction
of total flux than the linear model. In section 4, we will
see whether an adjustment for upstream stagnation can
bring Smith’s formula more in line with the experi-
ments.

Given finite signal speeds, only locally steady states
can be established in a finite time. To examine the
steady-state budgets, we choose a control volume over
the mountain and compute time-averaged fluxes there
during the second half of the experiments. The interval
=5y < x < 5l 1s used for the momentum and —2/,
< x < 2l, for the energy (the energy budget in the
larger interval is strongly affected by dissipation). The
top of the volume is put at { = 37/2h,, the nominal
upstream height of the hydraulic layer and the lowest
overturning level. During the averaging period, the
downstream measurements fall within the region of the
shooting flow in the breaking cases. The pressure is
diagnosed from the velocity data by spatially integrat-
ing the momentum equation in the form

Vp' = -VEc+ Vi — (3/00V + b2 (11)

from a point with p’ = 0O at the upstream top corner.
Here Ex = |V |?/2 (the total kinetic energy), ¢ is the
streamfunction, and 7 is the vorticity.

As in section 2, we concentrate on the symmetric
mountain with Fr = 2.0. The vertical and horizontal
momentum flux profiles are shown in Fig. 18. The ver-
tical component (Fig. 18b) has been computed as
F..(ds/dx) so that the total flux across the surface is
an integral with respect to x. The total flux across {
= 0 comes to about 7.6u3h,, exceeding the linear es-
timate of total drag by a factor of 4. (This is somewhat
larger than the result plotted in Fig. 17. The latter was
obtained using a deeper domain with slightly less res-
olution. Also, the averaging periods are different.) The
contribution from the leeward slope dominates, but
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the asymmetry here is smaller than at the breaking
threshold.

The near-saturation flux out of the top of the volume
represents only 6% of the budget. The drag is therefore
balanced mainly by convergence of the horizontal mo-
mentum flux (Fig. 18a). The vertical integral of this
flux,

Hy

(F,-%)dz = F.., (12)

0

is the so-called flow force (Benjamin 1968) perturba-
tion. It is roughly equal and opposite on the upstream
and downstream sides. The negative flux in the lee is
mainly due to low hydrostatic pressure, which is en-
hanced by the cascading structure. At values of Fr
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FiG. 18. Time-averaged horizontal (top) and vertical (bottom) com-
ponents of momentum flux as a function of height or horizontal dis-
tance for the case Fr = 2. The four curves correspond to the four
sides of the control volume described in text. Units are u3 for F,, and
ud(hy/ly) for F,..
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FiG. 19. Time-averaged horizontal (top) and vertical (bottom) com-
ponents of perturbation energy flux for the case Fr = 2. Units are
u3 for Fg, and ug(ho/lo) for Fg,.

nearer the wave breaking threshold, this effect domi-
nates. The flux diverges in the lowest two grid points.
Elsewhere in the column, it is directed toward the
mountain from both sides. Taking into account the flux
out of the top of the volume, we compute a residual
momentum source of about 5% due to dissipation and
differencing error.

The energy flux profiles are shown in Fig. 19. At {
= 0, the vertical flux has the same horizontal profile as
the drag {cf. (6)]. The total source of perturbation en-
ergy is the same as the momentum sink multiplied by
. About three-fourths of the energy is radiated later-
ally. The remainder is either dissipated (18%) or lost
to the upper atmosphere (6% ). The horizontal energy
flux is divergent at all levels (Fig. 19a). It is generally
directed upstream on the windward side and down-
stream on the leeward side. Since the fluxes in the lee
are stronger than the windward fluxes, we infer that
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total energy Er is transferred systematically across the
mountain from points upstream to points downstream
(the horizontal component of Fgz; = Fz + uF,
+ (u3/2)% is positive).

The time—distance plot in Fig. 20 shows the verti-
cally integrated horizontal momentum flux (flow force)
as a function of x. Note that the background pattern is
established during the first 5 time units or so. The tran-
sience is similar to that of the surface momentum (Fig.
8). It is fair to conclude that the wave breaking epi-
sodes at t =~ 307, and ¢ ~ 607, (cf. Fig. 8) leave no
significant permanent imprint on the upstream distur-
bance. The imprint is not clear downstream, where we
see a negative trend in the horizontal flux. This trend
is also present in the drag and dissipation (not shown).
The trend in the flux is mainly due to the pressure
anomaly, which naturally dominates the flow force at
large Froude number. The implied intensification of the
downstream horizontal pressure gradient corresponds
to an acceleration of the overturning circulation at the
top of the control volume.

The horizontal flux of perturbation energy is shown
in Fig. 21. While the hydraulic jump does not block or
dissipate much of the vertically integrated momentum,
it is evidently a strong barrier to the energy fiux. This
evokes the classic picture of momentum-conserving
shocks (e.g., Stoker 1957, section 10.6) and helps es-
tablish the analogy between the turbulent jumps in the
stratified and true hydraulic systems. There is energy
flux convergence everywhere in the lee, but especially

Horiz. Momentum Flux
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FIG. 20. Vertically integrated horizontal momentum flux (flow
force) as a function of time and distance from mountain for the case
Fr = 2. Vertical integral covers { = 0 to { = (37/2)h,. Contour
interval: 8F,, = 0.5u?h,.
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Horiz. Energy Flux
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FiG. 21. Vertically integrated horizontal energy flux as a function
of time and distance from mountain for the case Fr = 2. Integral
covers the same vertical interval as for Fig. 20. Contour interval: 6F,
= 0.5u3ho, except the —0.25 contour is also drawn,

at the hydraulic jump. Since very little energy escapes
vertically, most of the horizontal convergence must be
balanced by dissipation. In particular, the hydraulic jump
absorbs and destroys nearly all of the energy that sur-
vives the shooting flow. The extension of the shooting
region requires increases in the horizontal flux near the
mountain (the energy supply ) to balance the dissipation.
The supply increases in spurts that are synchronous with
the wave breaking episodes and hydraulic surges. Up-
stream, the wave breaking transience produces factor of
2 increases in the flux, but these are known to be tem-
porary.

Finally, we return to the laminar case Fr = 0.75. The
quasi-periodic transience discussed in section 2 now
appears in the time—distance plot of energy flux, Fig.
22. The bursts over the leeward slope (Fig. 22a) cor-
respond to the upstream-propagating pulses in the sur-
face wind (Fig. 16). Since energy advection is strictly
downstream (positive), the sign of the energy flux is
controlled by a comparatively strong pressure flux as-
sociated with a negative flow-relative group velocity.
For ease of interpretation, the averaging interval for this
calculation is extended to z = 2mwh,. Over this layer,
there is zero net energy flux across vertical lines in the
steady-state, linear solution. Figure 22b shows the net
divergence of vertical energy flux within the layer. The
pattern indicates that the transient energy originates
over the downslope, where the flux is convergent.
Much of the energy then escapes to higher levels before
getting far upstream, as shown by the region of net
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divergence between x = 0 and x = —/,. There is a
similar transfer of drag across the mountain (not
shown). The upstream transfer takes about 4 time units.
This is the solution with the strongest nonturbulent
transience. As Fr increases, the energy bursts eventu-
ally become turbulent and the energy reaches much far-
ther upstream. The distinction between near mountain
and far upstream (PW) seems almost meaningless in
that case. The next subsection takes a closer look at
signal speeds in the turbulent solutions.

b. Signal speeds

Energy in hydrostatic gravity waves travels horizon-
tally at the same speed as the phase. Since the phase
speed depends only on vertical structure, a horizontally
localized disturbance may retain its shape for long
times if the amplitude is concentrated in a small range
of vertical scales. In the time—distance analyses of flow
force and energy flux, Figs. 20 and 21, there is consid-
erable coherence in the shape of both the initial surge
and wave breaking surges. From the slope of the con-
tours in the plots, we estimate a signal speed of about
—4u, for both types of surge. This corresponds to a
vertical wavelength 5 times that of the stationary
modes. (Hence, it is consistent to neglect a vertical den-
sity variation with scale height greater than about

Horiz. Energy Flux
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FiG. 22. Vertically integrated horizontal energy flux (top) and ver-
tical flux divergence (bottom) as a function of time and distance from
the mountain for the case Fr = 0.75. Integral covers { = 0 to {
= 2mh,. Contour interval: 6Fg, = 0.2ugh, and 6F, = 0.2uj(hy/lp).
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FIG. 23. As Fig. 20 except flux is calculated with pressure set to
zero at the top of the control volume. Contour interval: 6F,,
= 1.0udho, except the +0.5 contour is also drawn.

107h,.) Typical upstream signal speeds deduced from
the energy flux (Fig. 21) appear a bit slower, indicating
a slight bias toward smaller vertical scales in the case
of the energy spectrum. These estimates of far-up-
stream signal speed are much faster than the near-
mountain transfer described in the previous subsection.

Estimating a signal speed, say c,, from contours of
a quantity ¢ is based on

() (3

c ox) \o)
In the case of ¢ = [ (u — ug)dz, which we call &, we
may use (4) to replace the time derivative in (13) by
the flow force convergence, — oF, /9x, since the ver-
tical fluxes are negligible. To check the consistency of
the computed fluxes, we can then assume that the x
scale of the ¢ disturbance is the same as that of its flux
F,. Thus, we have c; = F,./i. In the case of Fr = 2,
the perturbation in # is about —0.4ugh,, while F,,
=~ 2.0u}hy. Hence, ¢; = —5Suy, roughly consistent with
the foregoing graphical estimates. The energy data
yield a similar result.

In Fig. 23, the flow force has been recomputed with
an assumption of zero pressure perturbation along the top
of the control volume. Since most of the flux contributed
by the large vertical scales is due to the pressure integral,
this calculation crudely isolates the contribution from
shallow modes. The shallow modes appear to carry a
large part of the wave breaking signal at the relatively
slow speed of about —1.0u,. On the other hand, compar-

(13)
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ison with Fig. 20 suggests that the shallow modes are not
very important in the initial surge (¢ < 57,). A linear
analysis by Baines (1988) shows that upstream signals
due to small adjustments in (nondimensional) mountain
height are dominated by long (columnar) waves with ver-
tical structure resembling a stationary solution prior to the
adjustment. The signal speeds are determined by the am-
plitude of the adjustment. Except for the effects of vertical
dispersion, Baines’s model may apply to the generation
of wave breaking surges. From the present results, it
seems much less applicable to the initial surge.

This recomputed flow force is especially informative
in the case of the lee-broadened mountain, which
causes almost no wave breaking transience. The time—
distance plot of the modified flux for the lee-broadened
mountain with Fr = 2, shown in Fig. 24, confirms the
importance of the initial surge in establishing the quasi-
steady state (much of the disturbance in the lee is not
plotted because of the grid noise). It is clear that the
upstream dynamics of this state do not depend on tur-
bulence associated with wave breaking.

Details of the energy and momentum fluxes can be
used to assess the effectiveness or consistency of an
open lateral boundary condition. The condition used in
the present model is based on the assumption that the
flow of information is strictly outward across the bound-
aries. This may be inconsistent with actual solutions if
they develop any inward flux. As it happens, a weak
inward flux of perturbation energy generally appears
within a narrow ‘‘window’’ at the upstream boundary,
near the top of the hydraulic layer (cf. Fig. 19a). How-
ever, since the influx window shifts only a little during
the simulation, there is not much danger that the wave
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FiG. 24. As Fig. 20 but for lee-broadened mountain of Fig. 11.
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advection boundary condition is imposing spurious val-
ues because of a reversal of signal direction.

It is riskier to simulate open lateral boundaries by
inserting a sponge layer into a periodic model (e.g.,
Bacmeister and Pierrehumbert 1988). In order to de-
velop and preserve the correct mean-flow modifications
at the margins of the sponge, the width L; and damping
time 7, of the sponge must satisfy L, > ¢,T;, where ¢,
is a conservative estimate of the signal speeds. In order
to avoid reflections off of the sponge itself, there is the
independent constraint that T, > wy', where w, is a
conservative estimate of the wave frequencies. In the
columnar disturbance, wq ' can be quite large compared
to the advection time 7,. From these inequalities and
the known phase speeds, we estimate that L, should be
at least an order of magnitude larger than /.

4. Discussion

The steady-state model introduced by Smith (1985)
yields a prediction of the hydraulic-layer mass flux that
nicely matches the present experimental result at the
onset of permanent blocking. Unfortunately, Smith’s
model gives an unrealistic upper bound of Fr = 1 on
the range of mountain amplitudes supporting asym-
metrical (high drag) steady states (as well as the wrong
parameter dependence for total drag). In the true hy-
draulic problem (that is, in a strictly homogenous
fluid), the mountain can be much higher for the same
inflow depth. Denoting this depth as H, and defining F
= yg'Hy/u,, where g’ is the reduced gravity, we have
from hydraulic theory (Long 1972; PW) that

L + P2 =2,

m=1+3 (14)

When Smith’s limiting value, Fr = Fry,, = 37/2, is used
for F, the above ratio is 49%, close to result of the strat-
ified experiments at the blocking threshold. By contrast,
Smith’s solution for A, yields a maximum of only 21%
of H,. That the present time-dependent, stratified solu-
tions are closer to the homogeneous steady-state model
than to Smith’s (steady state, stratified) model probably
has a lot to do with boundary conditions. We consider
first the upper, and then the upstream, condition.

The interval between the two occurrences of = 1,
~ (the hydraulic-layer mass flux) in Fig. 14 contains the
overturning circulation and mixed region (cf. Fig. 10).
If the flow is steady and not very dissipative, such a
circulation implies relatively high pressure at the up-
stream origin of the mixed layer, according to Bemoul-
1i’s principle (e.g., Moncrieff and So 1989). Yet Smith’s
solution assumes uniform pressure across the mountain
at the undisturbed height of the hydraulic layer. Notice
that the overturning becomes more active with increas-
ing Fr in Fig. 15. Since the pressure anomaly varies as
the squared speed of the circulation, and since the over-
turning speed can be comparable to u,, the contribution
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to the momentum budget may be significant compared
to the total drag in Smith’s solution. The latter is D =
1.1u3H, in the case of the deepest layer and highest
terrain. (That the hydraulic disturbance is not fully iso-
lated from the overlying atmosphere is also known from
the existence of a residual wave train.)

The upstream boundary condition may be even more
important. In the stratified experiments, the far-upstream
hydraulic layer develops a weakly stratified sublayer be-
neath an anomalously stable capping layer. Smith and
Sun (1987) studied this type of flow by introducing a
homogeneous (neutrally stratified) layer at the ground
in a generalization of Smith’s (1985) model. Their cal-
culations show that a single stratified layer is quantita-
tively like a homogeneous layer of roughly half the
depth, capped by a thin stable layer containing the full
buoyancy variation of the single stratified layer. This
could explain why a capped, homogeneous layer sup-
ports roughly twice as high a mountain as Smith’s strat-
ified layer. In the stratified experiments, the homoge-
neous limit is approached without a significant lowering
of the total hydraulic inflow depth.

It is not immediately clear how the alteration of the
velocity profile affects this picture, or why Smith’s
value for H, remains valid as both the velocity and
stratification profiles change. To see the effect of alter-
ing both stratification and velocity, we have general-
ized Smith’s model using continuous upstream profiles.
The solution procedure is described in the appendix.
The velocity profile is chosen with u reduced at low
levels and increased at high levels, with no change in
the mean value u,. For simplicity, we have retained the
linear relationship between the streamfunction and the
potential buoyancy, namely, ¢y = (#o/N?)b. This keeps
the vertical stratification everywhere proportional to the
velocity. The potential temperature anomaly is negative
throughout the modified layer, with a lower bound im-
posed by the constraint # > 0. Any initial relationship
between i and b would be preserved in a linear model.
The initial relationship is also preserved quite well in
the finite-amplitude experiments.

The diagrams in Fig. 25 show the shape of the di-
viding streamline (top of the hydraulic layer) over a
Gaussian mountain for two different upstream profiles.
The velocity/stratification profile is shown at the left
for each case. The values in the modified profile are
reduced to 5% of the mean at the minimum level.
Smith’s upper bound, H, = (37/2)h,, is chosen as the
upstream height of the layer for both the modified and
uniform profiles. We see that altering the inflow pro-
files increases the terrain height by about 50% and
yields a steeper cascade over the mountain. Both of
these changes are realistic.

The maximum value of H, that allows steady asym-
metrical states is only slightly increased by the strong
alteration of upstream profiles. The bound on H, is ul-
timately due to the requirement that the terrain height
h should be zero at two values of the interface displace-
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F1G. 25. Shape of the dividing streamline over a Gaussian mountain
for the case of modified (top) and uniform (bottom) upstream wind
and stratification. Vertical unit is h,. Both streamlines start at the level
z = (3n/2)h, far upstream. Mountain heights are 1.6k, and 1.04, in
the first and second cases, respectively. The depth of the downstream
shooting layer is 1.3h, in the first case and 1.64, in the second.

ment 6., namely, §. = 0 and some 4§, < 0. The satis-
faction of this condition depends on the phase of the
stationary internal wave at z = H, above the upstream
foot of the mountain (there is no obvious interpretation
in terms of a resonance ). Apparently, this phase is not
very sensitive to the particular velocity and stratifica-
tion changes that we have introduced. It is easy to find
realistic upstream profiles that allow even larger values
of hy/H, (as large as 49%, which is close to the ex-
perimental value at the blocking threshold) but for
which no solution exists for A(é..) in a small neighbor-
hood of 6, = 0. It is plausible that a small change in
the upper boundary condition or in the conservation
constraints could make these solutions continuous
through 2 = §. = 0 and therefore physically realizable.
Under the present restrictions, the case depicted in Fig.
25 is the one that yields the highest terrain.®

As noted in section 3, the total drag in Smith’s model
has the wrong parameter dependence beyond the
threshold for permanent blocking. It is worth trying to

¢ The average upstream velocity in the simulated hydraulic layers
can be as much as 20% smaller than the initial value, corresponding
to an average N that is about 10% smaller. Renormalizing with these
new averages (for a fairer comparison with the steady-state model)
makes the experimental layer depth about 10% larger than indicated.
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extend the model to account for the ‘‘orographic ad-
justment’’ that appears to take over beyond this thresh-
old. If we retain Smith’s assumption of zero vertical
flux out of the hydraulic layer, the total drag can be
equated to the difference in flow force across the moun-
tain. Although there are a variety of structural changes
occurring as Fr increases, we start as simply as possible
by considering the flow force perturbation to be non-
zero only on the downstream side, and by assuming
that the downstream perturbation is due to the pressure
anomaly of a mixed layer occupying the full depth Hj.
The errors thus introduced are partially offsetting, but
they grow considerably as Fr increases beyond the
breaking threshold. The dimensional estimate becomes
D =~ (1/g)N*H3. In units of u3hy, this is

1 (Ho\’_ _,

D 6 ( hg) Fr—.

Smith’s result is obtained from (15) by replacing H,

by Hy, — H,, where H, is the depth of the shooting layer.

Next, we recall that orographic adjustment, as de-

scribed in section 2, implies Hy/h, = H,/h, + Fr — Fr,,,

where H, and Fr, are blocking threshold values. Sub-
stitution into (15) yields

(15)

D, =é(Fr+a)3Fr", (16)
where @ = H,/h, — Fr,. Using Smith’s upper bound
for H, and the experimental result Fr, = 2.5, we have
a =~ 2.2. The resulting dependence of D, on Fr is plot-
ted in Fig. 17.

There is a qualitative improvement, but the large dis-
crepancy remaining between D, and the model flux at
{ = 0 suggests that the upstream changes are not un-
important in this range of Fr. In order to incorporate
the change in upstream layer depth and flow force, we
try inserting a linearly increasing function of Fr
(Smith’s upper boundary condition is retained because
the residual flux is too small in Fig. 17 to account for
the present discrepancy). Thus,

D, = é (Fr + a)X(1 + BF0)Fr~'.  (17)
This dependence is shown in Fig. 17 for the choice
= 1/g, which assumes that the previously neglected ef-
fects become comparable to the included effects when
Fr = 8. The experimental values are obviously much
better approximated with the extra factor.

5. Summary and conclusions

Long-term experiments for a range of Froude num-
bers fail to show any significant time-mean upstream
flow transition corresponding to the transition to wave
breaking over the mountain. The transience due to start-
up and wave breaking (PW’s “‘initial’”” and ‘‘wave-
breaking’’ surges, respectively) can be distinguished
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either by comparing solutions on opposite sides of the
breaking threshold or by using highly asymmetric to-
pography. Upstream influence, defined as permanent
inflow alteration, is essentially due to the initial surge
in both blocked and unblocked cases. The only signif-
icant time-mean upstream transition as a function of Fr
appears at the threshold for permanent blocking, where
orographic adjustment sets in.

Whereas the time-mean upstream surface wind falls
off only gradually with increasing Fr, the structure of
the downstream time-mean flow undergoes a sudden
change at the wave breaking threshold. This change,
well known from previous studies, establishes the up-
stream—downstream flow force difference needed to
balance the enhanced mountain drag in the absence of
any comparable vertical fluxes above the wave break-
ing. At high Froude number, flow force anomaly is
mainly due to the pressure disturbance, rather than the
flow speed perturbation. Near the breaking threshold,
the low pressure in the lee is crucial, as all upstream
changes are negligible. The small fraction of negative
momentum that is transferred to the upper atmosphere
is approximately the saturation value.

Unlike hydraulic flows, in which asymmetrical con-
figurations are associated with upstream bores and rar-
efaction waves, upstream changes in the stratified flow
" do not become important in the momentum balance
until well beyond the breaking threshold. This suggests
that simple hydraulic theory will not provide a very
useful analogy for upstream surges in the stratified
model. Another reason for not pursuing the analogy is
that the depth of the surges has been found to be at least
5 times the stationary wave scale. Viewed on this scale,
the upstream environment contains nothing that could
act in a manner analogous to a density interface or a
reflecting lid. The multilayer hydraulic method of
Baines (1988) for finite-depth stratified flows holds
some promise for describing the upstream wave break-
ing signal, except for the effects of vertical dispersion.

Permanent blocking occurs for mountain heights
greater than about half the upstream hydrauhc layer
depth—a threshold reasonably well predlcted by hy-
draulic theory if Smith’s (1985) result is used for the
upstream layer depth. Smith’s model is for continu-
ously stratified flows. Apparently, the mixture of the-
ories succeeds because the height of the second node
in a stationary, internal gravity wave is not very sen-
sitive to changes in inflow velocity and stratification
(for fixed mass flux and total buoyancy variation). The
same vertical scale occurs in a theory involving par-
tially resonant internal waves (Clark and Peltier 1984).
Especially as it has been developed by Laprise and Pel-
tier (1989), this theory clarifies the transition to high
drag and the associated trapping of energy in the hy-
draulic layer. We have argued that it may also contain
a partial explanation for the low-frequency upstream
transience. .
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The low-frequency transience is associated with
quasi-periodic wave breaking events or, in nonturbu-
lent solutions, unsteepening events. The chief differ-
ence between the two, apart from the turbulence, is the
sharply greater upstream penetration of the quasi-pe-
riodic signal in the breaking solutions, as also noted by
Pierrehumbert and Wyman (1985) but interpreted by
them as permanent alteration. The ‘‘plateaus’ ob-
served by Scinocca and Peltier (1989) in the wave drag
history are due to the combination of wave breaking
transience and a weak trend in downstream conditions.
(We have minimized the relationship between wave
breaking and upstream influence but could not rule out
a connection, possibly involving wave breaking, be-
tween the downstream trend and small permanent ad-
justments upstream.)

The fact that upstream effects are permanent in Bai-
nes’s (1988) finite-depth model suggests that the tran-
sience of the wave breaking signal in the semi-infinite
atmosphere depends crucially on vertical dispersion.
Steepening/unsteepening transience is probably due to
internal absorption, reflection, and scattering of verti-
cally propagating waves. These processes are difficult
to analyze (e.g., through WKB theory) because the in-
ternal waves are nonlinear everywhere and because the
mixed layer is deep and localized in the horizontal. In
Long’s solution, the refractive index,

- ob/ 0z
T (OY18z)?

(neglecting the contribution from flow curvature), is
largest in regions of reduced stratification (9b/0z
< N?) because  is a linear function of b. There may
be a feedback between steepening and the implied ab-
sorptivity increase as [? increases over the mountain
following start-up. Exactly what triggers the unstee-
pening events and the resulting radiative bursts is not
clear, especially in the nonturbulent cases. As well as
shear instability, the full mechanism may depend on
the changing proximity of the overturning to the lower
boundary and/or changes in the refractive index due to
diffusion and flow curvature.

The problem of incorporating high drag into wave
drag parameterizations splits into three issues: 1) iden-
tification of high drag conditions, 2) reformulation of
the forcing function as these conditions become satis-
fied, and 3) application of the forcing to the resolved
variables. Pierrehumbert (1986) and Shutts (1990)
have suggested how to quantify the total drag on the
atmosphere above the hydraulic surface layer, based
on nonlinear models of such layers. There are also well-
tested schemes for distributing this stress in the vertical
(e.g., Palmer et al. 1986). The chief weakness of the
latter schemes appears to be the assumption of zero
internal reflection due to height- or time-dependent
variations in refractive index. Other problems are
due to the assumption of steady or two-dimensional
forcing.

(18)
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The present work relates to forcing within the hy-
draulic layer. This part of the wave drag parameteriza-
tion effort will have an interesting new constraint: since
global models do not resolve the trapping properties of
the surface environment, high drag forcing must be ap-
plied on horizontal scales that do not excite vertically
propagating gravity waves. This means that the hori-
zontal forcing scale, say Ly, should be at least as large
as the inertial distance: fLr/u, = O(1). Since high
drag states have Nhy/uy, = O(1), the condition is sat-
isfied if fLg/(Nhy) = O(1), that is, if the forcing is
applied on the scale of the mountain’s deformation ra-
dius. In typical global models, this could involve 2 or
3 adjacent grid points.

Trapping beneath a mixed-out critical level (as op-
posed to a steepening level) may also be amenable to
parameterization, perhaps based entirely on numerical
studies like that of Clark and Peltier (1984 ). Near the
high drag threshold, most of the horizontal momentum
flux occurs downstream. It may be possible to use this
information in imposing the momentum sink. Some of
the work by PW deals with transience associated with
background rotation. An important step in the param-
eterization effort is to check whether the effect of ro-
tation is the same in a model with resolved orography
and one with parameterized orography at high Rossby
number and high Froude number.
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APPENDIX

High Drag Configuration with Modified
Upstream Conditions

Here we generalize Smith’s (1985) model to allow
a wider variety of upstream flow profiles. In the hydro-
static, incompressible limit, Long’s (1955) equation
for steady, stratified flow in two dimensions becomes

a8 + (y/lu)s =nl(8)* — 261, (Al)

where 6(z) is the vertical streamline displacement, vy
= dbl/dz, and n = dul/dz. The overbar denotes up-
stream conditions evaluated at the undisturbed height 7
= z — 6, and the primes denote a derivative. Following
Smith, we apply the boundary conditions

6=h at z=h
§=0 at z=Hy+6=H,

(A2)
(A3)

where h (the height of the terrain) and H,, (the upstream
height of the uppermost streamline) are specified con-
stants. Since the horizontal velocity is u(z) = u(1
— §'), the second condition is the same as u = i at
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z = H. The solution is physically meaningful only if u
has the same sign everywhere.

When derivatives in (Al) are replaced by centered
finite differences, discrete values of § may be obtained
successively as solutions of a quadratic polynomial
equation. Either 2 or H must be treated as an eigen-
value. At the upper boundary, (A3) provides condi-
tions on both 6 and §’ in terms of H and H,. Hence, it
is easiest to integrate downward from z = H. The
height of the terrain 4 is determined when (A2) is first
satisfied; that is, when § = z. _

The upstream mass streamfunction has the form
= upZ + ,(z), with ¢y, = 0 at both z = 0 and z = H,
(so that the total mass flux is uyH;). We assume for
simplicity that the potential temperature is proportional
to ¢, as in the initial profiles for the time-dependent
experiments. Thus, b = (N*/uy ). This makes the co-
efficient, ¥ /u, in (Al) a constant. Based on the ex-
periments, we try

#1(2) =y S logl1 + @’(z = 2)°] - (Ciz + G,
()

where C; and C, are constants determined by the mass
flux condition. The factor « determines the depth of the
transition between the decelerated and accelerated lay-
ers of upstream flow. The height of the transition layer,
and of the minimum potential temperature anomaly, is
approximately z = z,.

The solutions shown in Fig. 25 are for H, = (37/
2)h,, z. = (w/2)h,, and @ = (0.02h,)~". The profiles
show u or y as a function of z. The choice for u, in
Fig. 25a reduces the flow to nearly zero at its minimum
value. Smith’s solution, with u, = 0, is shown in Fig.
25b. The alteration of the profiles increases the maxi-
mum terrain height by more than 50%.

Let 4, be the displacement of the uppermost stream-
line; that is, §. = 6 (H). The relation h(6,) for each of
the above solutions is shown in Fig. 26. In Smith’s case,
the physicality condition & > 0 for 6, < O is violated
when the upstream depth H,, exceeds 3m/2. This bound
on H, changes very little for the modified profiles. In
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FiG. 26. The relationship h(6,) for the height of the terrain as a

function of the displacemént of the dividing streamline in the two
solutions shown in Fig. 25.
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general, h(6.) has several disconnected branches.
Some of these allow higher terrain than the solutions
in Fig. 26, but are unphysical in that they do not extend
all the way to 6. = 0.
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