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ABSTRACT

Numerical solutions presented in a companion paper show that two-dimensional mesoscale terrain becomes
a much stronger barrier to a continuously stratified flow when the flow contains warm advection. Here it is
shown that this baroclinic enhancement is a strictly nonlinear phenomenon. The linear analysis indicates a
weakening of the upstream response in warm advection. However, a weakly nonlinear analysis shows that
baroclinicity facilitates blocking in warm advection by strengthening the nonlinearity in the cross-mountain
momentum equation in such a way as to amplify the vertical shear on the windward flank of the ridge. This is
enough to send the flow past the blocking threshold even when conditions over the mountain are too linear to
produce wave breaking. A more intuitive mechanism whereby the upstream static stability is increased by the
nonlinearity in the temperature equation is found to be much less important.

1. Introduction

A companion paper (Garner 1999, hereafter Part I)
investigates the possibility that ‘‘regional’’ atmospheric
fronts like the ones on the east coasts of North America
and Asia could be a type of upstream influence by the
coastal mountain ranges. It was found that baroclinicity
in the form of a cross-mountain temperature gradient
had a strong impact on the blocking effect of an ide-
alized ridge if the relatively warm air is upstream. In
that case, surface stagnation occurs for lower mountains
and stronger winds than in the absence of warm ad-
vection. Here we wish to uncover the main reasons for
the baroclinic effect.

As in Part I, we idealize the blocking problem by
assuming a Boussinesq atmosphere with uniform strat-
ification in the vertical and horizontal, a constant Cor-
iolis parameter, and two-dimensional topography. In the
limit of hydrostatic and incompressible flow, the re-
sponse to the topography is then entirely determined by
a Froude number (Fr), a Rossby number (Ro), and a
nondimensional parameter measuring the baroclinicity.
We define the first two as

Fr 5 Nh /u and (1)0 0

Ro 5 u /( f l ), (2)0 0

where h0 and l0 are the height and width of the mountain
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ridge, respectively, N is the undisturbed buoyancy fre-
quency, and f is the Coriolis parameter. The problem
is linear in the limit of small Fr and quasigeostrophic
in the limit of small Ro.

The third parameter is defined as

b 5 L/N, (3)

where L is the vertical shear of the basic flow parallel
to the ridge: y (z) 5 Lz. The basic-state Richardson
number is thus Ri 5 1/b2. The basic potential temper-
ature varies linearly in x (across the mountain) in ac-
cordance with thermal wind balance. Warm advection
implies b , 0 and cold advection corresponds to b .
0. In the two-dimensional framework, the cross-moun-
tain temperature gradient does not alter the stability of
the linear waves or introduce critical layers.

We can establish immediately whether the known bar-
rier enhancement due to warm advection at finite am-
plitude (see Part I) is also present in linear solutions.
In Fig. 1, the steady, cross-mountain surface wind anom-
aly is plotted as a function of distance from the mountain
for b 5 0 and 60.6. These results are produced by the
numerical model used in Part I. The mountain has a
Gaussian profile with a nondimensional halfwidth of
Ro21 5 0.5. Linear results, obtained by running the
model to steady state with Fr 5 0.02, are shown in Fig.
1a, and nonlinear results, with Fr 5 1.0, appear in Fig.
1b. Since the velocity is normalized by Nh0, the dif-
ferences between these two sets of results are entirely
due to the nonlinearity. The nonlinear solution shows
the expected baroclinic enhancement. However, at small
amplitude, warm advection weakens the upstream dis-
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FIG. 1. Perturbation horizontal surface velocity u9s in units of Nh0

as a function of distance from the mountain for Ro 5 2.0, three
different values of b, and (a) Fr 5 0.02 and (b) Fr 5 1.0. Horizontal
distance is in units of u0/ f.

turbance while cold advection strengthens it. Further
experiments show this to be true at all values of Ro.
Thus, the blocking enhancement due to warm advection
first appears at finite amplitude.

To make analysis of the finite-amplitude problem trac-
table, we will rely on the ‘‘weakly nonlinear’’ assump-
tion that the nonlinearity is given entirely by the linear
solution. For context, it should be noted that the theory
of weakly nonlinear solitary waves (e.g., Segur 1973)
depends on a solvability condition to remove any pro-

jection of the nonlinearity onto the linear modes. This
device is not available when the shape and amplitude
of the waves are fixed by external (e.g., topographic)
forcing. Something like the present approach was used
by McIntyre (1972) in an analytical study of ducted,
nonrotating, internal gravity modes. A related method
used in Lighthill’s (1952) analysis of jet noise and in
Ley and Peltier’s (1978) study of wave generation
through frontal collapse attempts to extend the analysis
into the strongly nonlinear regime by assuming that the
nonlinearity is localized in space.

In their numerical study of mountain circulations in
a barotropic atmosphere, Pierrehumbert and Wyman
(1985) argue that even solutions that are nonlinear
enough to have upstream influence (permanent inflow
modification) may behave linearly far upstream because
of the long horizontal scales and low intrinsic frequen-
cies of the ‘‘columnar’’ disturbance. However, since sta-
tionary gravity–inertia waves are dispersive in the ver-
tical, a weakly nonlinear solution for continuously strat-
ified flow cannot show an unattenuated upstream dis-
turbance of any amplitude. True upstream influence
requires the systematic enlargement or intensification of
the nonlinearity. There is a well-known far-field sin-
gularity in the linear response to single-signed distri-
butions of terrain slope (Lilly and Klemp 1977) or heat-
ing (Bretherton 1988) that may suggest a more complete
way to understand upstream influence in a dispersive
medium. The present application places a weaker de-
mand on the analysis because baroclinic blocking does
not involve true upstream influence: the disturbance is
always confined in the upstream direction, according to
numerical solutions.

Weak nonlinearity due to the lower boundary con-
dition has already been studied by Smith (1977) in the
nonrotating limit. His analysis accounts for the steep-
ening of stationary waves at periodic levels above the
mountain. Experimental evidence was given by Garner
(1995) that wave steepening and wave breaking are not
directly important for upstream influence. Although that
study excludes background rotation, it gives us some
confidence that the effect of the remaining nonlinearity
may be analyzed separately. Further confidence will
come from direct comparisons to the nonlinear model
solutions.

The plan is first to analyze the linear sensitivity of
the steady solutions to baroclinicity and then to consider
the weakly nonlinear modification, particularly as it is
affected by the horizontal temperature stratification. In
so doing, we will continue to focus on the case Ro 5
2, which falls in the ‘‘mesoscale’’ range. In the non-
rotating limit, far-upstream nonlinear effects cannot be
understood from steady, linear solutions because sta-
tionary, hydrostatic gravity modes have no self-inter-
action (Long 1953; McIntyre 1972; Smith 1977) and no
streamwise energy propagation. At finite Ro, however,
stationary modes are self-interacting. Furthermore, baro-
clinicity allows streamwise energy propagation at some
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hydrostatic scales. The transient nonlinearity and the
weakly nonlinear response to it will also be considered,
but more briefly.

2. Linear analysis

We start by scaling the Boussinesq system used in
Part I. For disturbances containing a strong component
of gravity–inertia waves, it is appropriate to use (u*, y*)
5 Nh0(u, y) and w* 5 fh0w for the perturbation ve-
locity, and x* 5 (u0/ f )x and z* 5 (u0/N)z for distance.
Potential buoyancy will be scaled according to b* 5
(N 2h0)b, and time according to t* 5 f 21t. The asterisk
denotes the dimensional variable. By ignoring the O(Fr)
terms in the equations of Part I, we get the linearized,
two-dimensional system

(u)u 1 u 5 y 1 F (4)t x a

(y )y 1 y 5 2bw 2 u 1 F (5)t x

(b)b 1 b 5 2bu 2 w 1 F , (6)t x

where F (u,y ) and F (b) refer to frictional and thermal forc-
ing, respectively. All variables are departures from the
uniformly stratified basic state. The subscript a refers
to the ageostrophic part of the velocity, for example, y a

5 y 2 y g. The assumed y invariance of the velocity
implies that u is entirely ageostrophic, or u 5 ua.

For convenience, we assume hydrostatic balance,

(y g)z 2 bx 5 0, (7)

and restrict attention to the incompressible case,

ux 1 wz 5 0. (8)

The mass streamfunction c satisfies cx 5 w and cz 5
2u. The boundary conditions are w 5 dh/dx at z 5 0
and upward radiation or boundedness at z 5 `.

Note that b is the only parameter in (6)–(8). The
height and width of the mountain enter via the lower
boundary condition. Thus, h 5 O(Fr) and w 5 O(Ro).
We are primarily interested in narrow mountains, with
Ro of order unity or larger. The present scaling of the
horizontal velocity is based on this limit, so that u 5
O(1) at large Ro. The velocity in the most of the figures
of Part I is normalized by u0, which yields u ; Fr at
large Ro.

Steady, homogeneous solutions of (4)–(8) satisfy

4 2 2 2] ] ] ]
1 2 2b 1 c 5 0. (9)

2 2 2 21 2]x ]z ]x ]x]z ]z

The associated dispersion relation is discussed in the
appendix. Since the nondimensional scale of the moun-
tain is Dx ; Ro21, the differential operator in (9) is
dominated at large Ro by the first two terms. Solutions
in that case are hydrostatic gravity waves. When Ro is
small, that is, in the quasigeostrophic limit, a balance
requires Dz ; Ro21, so that the last three terms dom-
inate. These form an elliptic operator if |b| , 1 (N 2 .

0 is implicit in the scaling). The corresponding distur-
bance is confined to the vicinity of the forcing. For
intermediate values of Ro, solutions can be described
as hydrostatic gravity–inertia waves modified by ‘‘sym-
metric’’ baroclinicity.

Steady-state linear solutions for ‘‘bell shaped’’ ter-
rain,

h(x) 5 (1 1 L22x2)21, (10)

are shown in Fig. 2 for L [ Ro21 5 0.5 and different
values of b. The perturbation streamfunction, c (Fig.
2a), is obtained by numerically evaluating the Fourier
integral shown in the appendix. Recall that the cross-
ridge wind perturbation is u 5 2]c/]z. The long-ridge
perturbation, y (Fig. 2b), comes from spatially inte-
grating the streamfunction and using the steady-state
form of (5):

(y 1 bc)x 5 cz.

Notice that the cold-advection disturbance is narrowly
focused above the mountain, while the warm-advection
disturbance is more scattered.

Stationary waves generally tilt upstream with height.
In the case of cold advection, the same is true of the
basic-state surfaces of constant ‘‘absolute momentum,’’
M* [ fx* 1 Lz*. The relationship is illustrated sche-
matically in Fig. 3a, where the slope of the M surfaces
is shown by the steeper of the two heavy lines. As a
result, y (perturbation M) is reduced in cold advection
and the waves show less sensitivity to the background
rotation. In warm advection, y is amplified by the larger
angle between phase surfaces and M surfaces (Fig. 3b).
This makes the waves more sensitive to rotation and
accounts for the extra downstream dispersion evident in
Fig. 2. The amplitude of the potential temperature per-
turbation b (not shown) has a similar sensitivity to b,
as the basic isentropic surfaces tilt the same way as the
absolute momentum surfaces, shown by the shallower
heavy lines in Fig. 3. This has an impact on vertical
dispersion in the inertial modes, a fact that will be more
relevant in the case of interior forcing. The differences
in the wave fields can also be explained directly from
the dispersion relation and group velocity based on (9).
The details are covered in the appendix.

For the present investigation we are primarily inter-
ested in upstream effects. As noted in the appendix,
there are no scales at which energy can propagate up-
stream in stationary waves except in cold advection. In
cold advection, there is a slight upstream component of
the group velocity in the range k2 . (1 2 b2)/b2, where
k is the horizontal wavenumber, but very little of this
energy appears at low levels. At low levels, most of the
steady, upstream disturbance is due to the ‘‘trapped’’
response, associated with small k and large horizontal
scales. The response to the terrain (10) with L k 1, can
be written in closed form as
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FIG. 2. Steady, linear solutions for flow over a bell-shaped mountain with halfwidth Ro21 5 0.5 and (a) b 5 0, (b) b 5 20.6, and (c) b
5 0.6. Perturbation streamfunction c is shown on the left and perturbation long-ridge velocity y on the right. Horizontal and vertical distances
are scaled by u0/ f and u0/N, respectively. Contour intervals: dc 5 0.1u0h0 and dy 5 0.1Nh0.

L(Z 1 L)
c 5 , (11)

2 2X 1 (Z 1 L)

where X [ x 1 bz and Z [ rz, with r [ 1 2 b2.Ï
This is the quasigeostrophic (QG) solution. Since X is
proportional to M , the circulation tilts downstream with
height in the case of warm advection and upstream in
the case of cold advection.

An important physical consequence of the coordinate

transformation can be seen by expressing the velocity
perturbation as

u 5 rU 2 bW,

w 5 W, (12)

where the uppercase variables represent the velocity of
the barotropic solution, that is, (U, W) [ (2cZ, cX).
Since U and W tend to be out of phase over broad terrain,
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FIG. 3. Schematic diagram contrasting the relationship of stationary
hydrostatic waves to environmental surfaces of potential buoyancy
and absolute momentum in the case of (left) cold advection and (right)
warm advection.

the u anomaly is shifted by a distance of order bL in
the streamwise direction. In the case of warm advection,
this brings accelerated flow onto the windward flank
and weakens the decelerated region farther upstream, as
seen in the linear solution, Fig. 1a. The result also fol-
lows from familiar QG principles and the fact that
streamwise advection of b is frontolytical upstream
whereas vertical advection of y tends to intensify the
vertical shear in the same location.

Linear transience due to start-up was found to have
a negligible amplitude immediately upstream of the
mountain, compared to the steady disturbance there.
Why should this be so? In the frame moving with the
basic flow, the group velocity vector is always parallel
to the phase lines, since

c kgz
5 2 . (13)

c 2 1 mgx

For noticeable upstream effects, one needs k/m small
and positive. But (A2) implies that k/m 5 6 n2 2 1,Ï
where n is the intrinsic frequency (b is neglected for
clarity). Hence, upstream transients must have n ø 21.
Furthermore, since

cgx 5 1 2 m21(1 1 m2/k2)21/2 (14)

(neglecting b again), upstream energy propagation, or
cgx , 0, requires m K 1 and therefore k K 1. These
restrictions on n and k exclude most of the forcing in
the linear initial-value problem.

3. Weakly nonlinear analysis

We first restore the nonlinearity to (4)–(6) by defining
(u)F 5 2FrJ(c, u) (15)
(y )F 5 2FrJ(c, y) (16)
(b)F 5 2FrJ(c, b), (17)

where J(c, u) 5 cxuz 2 czux, etc. This nonlinear ‘‘forc-
ing’’ may also be expressed in terms of eddy flux di-
vergence. We will be evaluating the nonlinearity from

the actual linear response to topography. However, it is
revealing to consider immediately the Green’s function
solution of (4)–(6) for an interior point source that rep-
resents (15)–(17) collectively. Thus, we consider solu-
tions of

L(c) 5 F0d(x 2 xf , z 2 zf ), (18)

where L is the operator in (9), such that c 5 0 at z 5
0. The point (xf , zf ) is the effective location of the source
and F0 represents a volume integral of the source. The
result is then additive with both the linear topographic
solution and the correction for weak boundary nonlin-
earity.

The mathematical details of the problem (18) are
covered in the appendix. In Fig. 4 are shown Green’s
functions calculated directly from Fourier integrals for
different values of b and zf . In the two baroclinic cases,
b 5 60.6, the slopes of the basic b and M surfaces
are shown by dashed lines through the forcing points.
As we will see later, the actual nonlinearity above z 5
p is negligible. Since the Green’s functions have no
significant upstream component for zf , p, we can
therefore concentrate on the response near and below
the forcing. The forcing used in Fig. 4 is F 0 5 21
because a mostly negative nonlinear source is expected
over the mountain. The cross-mountain wind pertur-
bation, u 5 2]c/]z, is negative (upstream) below such
forcing.

For zf 5 p/4 (Fig. 4a), a unit-amplitude negative
source produces an anomaly of us ø 20.8 in the case
of both warm advection and no advection, and us ø
20.5 in the case of cold advection. The mass-flux per-
turbation is cmin ø 20.5 in all cases. For zf 5 p/2 (Fig.
4b), there is slightly more mass flux, cmin ø 20.6, but
the surface wind perturbation weakens to about 20.5
and 20.4 for the cold-advection and barotropic solu-
tions, respectively. Interestingly, the surface wind in the
warm-advection solution remains at 20.8 for the higher
source, as the center of the circulation is substantially
lower than in the other two cases.

The effect of baroclinicity on the trapped part of the
Green’s function can be understood by using the skewed
coordinate system introduced in (11). The velocity com-
ponents are

u 5 U 2 bW/r,

w 5 W/r, (19)

where the uppercase variables represent the barotropic
solution. At the ground, we impose W 5 0. Hence, the
quasigeostrophic contribution to the horizontal wind
perturbation is greatest where U is greatest, at x 5 xf

1 bzf . This point is on the same basic M surface that
contains the source. Hence, an upstream response to the
forcing is favored when b , 0.

The baroclinic effect on the propagating part of the
response can be understood largely from the properties
of the group velocity discussed in the appendix. For the
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FIG. 4. Steady, linear response to negative line sources located at points indicated by dots. Baroclinicity is (a) b 5 0, (b) b 5 20.6, and (c)
b 5 0.6. Results on the left are for a forcing height zf 5 p/4 and those on the right are for zf 5 p/2. Dashed lines drawn through forcing points
indicate slopes of basic absolute momentum surfaces (steeper line) and isentropes. Contour interval: dc 5 0.1u0h0. Axes as in Fig. 2.

same reason that cold advection focuses wave energy
above the mountain in the linear response to topography,
warm advection creates a broader range of downward-
propagating modes with negligible streamwise propa-
gation. This focuses and amplifies the disturbance below
the source. As noted in the appendix, the downward
propagating modes grow in relative importance as b →

21 or zf → `. Their effect compensates for the de-
creasing contribution from the modes with k k 1 as the
forcing is raised.

If b . 0, rotational effects are suppressed and energy
is concentrated above the source, as clearly seen in Fig.
4. A similar concentration above the forcing in the to-
pographic solution is probably responsible for the wave
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FIG. 5. Nonlinear source distribution and streamfunction response for (a) b 5 0 and (b) b 5 20.6. Contour intervals: dF 5 1.0 Fr and
dc 5 0.05 Fr, where F and c are normalized as indicated in text. Axes as in Fig. 2.

drag enhancement seen in Fig. 8 of Part I. In warm
advection, the linear mountain drag is enhanced directly
by the amplification of the buoyancy anomaly.

The distribution of the nonlinearity will be obtained
from small-Fr simulations using (15)–(17). From (4)–
(6), the problem for the O(Fr) streamfunction correction,
which we call c1, is

L(c1) 5 2 2 ,(b) (y ) (u)F F F0x 0z 0xz (20)

where , , and are evaluated from the linear(b) (y ) (u)F F F0 0 0

solution. For example,

5 2FrJ(c0, b0).(b)F 0 (21)

The first two forcing terms in (20) represent the ten-
dency of the stationary eddy fluxes to produce thermal
wind imbalance. The third may be ascribed to eddy
vorticity flux, since

2 5 2F (v) 5 FrJ(c, v),(u)F z (22)

with v [ ]u/]z, the horizontal vorticity.
Certain properties of the nonlinearity can be antici-

pated. The Eliassen–Palm theorem implies that the hor-
izontal integral of vanishes in the nonrotating limit.(u)F 0

Long (1953) and Smith (1977) showed that and(v)F 0

are identically zero in that limit. Of course, is(b) (y )F F0 0

also zero in the absence of rotation. Hence, all weakly
nonlinear corrections of the steady solution are due,
either directly or indirectly, to background rotation. On
the other hand, rapid rotation (Ro → 0) effectively re-
moves the nonlinearity, since u and w are O(Ro) smaller
than y in quasigeostrophic solutions.

It was supposed in G86 that the first forcing term,
] /]x, in (20) would dominate in the strongly baro-(b)F 0

clinic cases. The argument given there was that (b)F 0

incorporates the effect of altered vertical stratification
due to a tilting of the ambient horizontal stratification
by the lowest-order circulation. The vertical stratifica-
tion tends to be reinforced over the windward slope in
this way if b , 0. The buoyancy forcing does dominate
in the quasigeostrophic limit (with a different physical
interpretation) because vorticity advection is generally
negligible in that regime. However, the situation is dif-
ferent at order-unity Ro. While is maximized in the(b)F 0

right place and with the right sign in warm advection
in that case, we will see that it is dominated by .(v)F 0

McIntyre (1972) states a similar conclusion for the tran-
sient nonlinear ‘‘forcing’’ in the nonrotating problem.

The distribution of total steady-state sources in the
form F 5 2 1 2 and the streamfunction(v) (b) (y )F F F0x 0x 0z

response, c1, for the bell-shaped mountain (10) with L
5 0.5 are shown in Fig. 5a for b 5 0 and Fig. 5b for
b 5 20.6. The sources are obtained as a function of
time by running the numerical model from initial values
with extremely small Fr. The weakly nonlinear response
is then obtained by running the model again to steady-
state with the time-dependent forcing inserted into the
prognostic equations. In the second run, there is no ter-
rain (so the nonlinear sources are not duplicated). The
reason for using time-dependent sources is to be able
to assess the representativeness of the steady response
in the context of the initial-value problem.

The steady-state results in Fig. 5 are renormalized as
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FIG. 6. Source due to (a) vorticity advection (FA) and (b) combined
temperature advection and long-ridge velocity advection (FB) for Ro
5 2.0 and b 5 20.6. Contour intervals and axes as in Fig. 2.

FIG. 7. Streamfunction response to full nonlinear forcing in warm
advection (b 5 20.6) at t 5 1.5 during start-up. Countours and axes
as in Fig. 5.

though Fr 5 1. In the warm-advection case (Fig. 5b),
the response has us 5 20.32 at the point of maximum
surface deceleration. The barotropic result is almost an
order of magnitude weaker, and the cold-advection re-
sult (not shown) is weaker still. The near-field pattern
is established during an order-unity elapsed time fol-
lowing start-up. This is consistent with the principle that
the wave front separating disturbed and undisturbed
flow moves upward at roughly the vertical group speed
of the stationary waves, cgz 5 |k|/m2 ; Ro. The analysis
in the appendix shows that the transience becomes less
important in generating nonlinearities than the steady
waves after an elapsed time of O(R1). In the time-de-
pendent model calclulation leading to Fig. 5b, the near-
field source strength peaks at t ø 1.5 with about 150%
of the steady-state amplitude. The transient stream-
function response at t 5 1.0 is shown in Fig. 6 for the
case of warm advection. The result for b 5 0 (not
shown) is quite similar upstream of x 5 0.5. Notice that
the strongest initial deceleration is displaced to the lee
of the mountain. There is no evidence of this effect in
the fully nonlinear initial-value solutions (cf. Figs. 4a
and 5a of Part I). Thus, the start-up is poorly represented
by the steady-state weakly nonlinear expansion when
Fr 5 O(1).

In Fig. 7, the stationary nonlinearity in the warm-
advection case is separated into the two contributions,
FA 1 FB 5 F, where

(v)F [ 2F , (23)A 0x

(b) (y )F [ F 2 F . (24)B 0x 0z

The nonlinearity due to vorticity advection, FA, clearly
dominates. In computing FB, we found that the forcing
due to (not shown) largely offsets the expected neg-(y )F 0

ative values near the mountain due to buoyancy advec-
tion. However, each of the terms is already much smaller
than FA.

To see why FA must be at least comparable to the
other nonlinearity, we first express all of the sources in
terms of the meridional displacement, h. Consider the
steady-state forms of (4)–(10). Differentiating (4) with
respect to z, substituting from (7), and integrating in x

yields v0 5 2b0 1 h0z. Here h is in units of Nh0/ f
and satisfies

hx 5 y . (25)

From the steady-state versions of (5) and (6), we also
have that b0 5 by 0 2 r2c0. Hence, v0 5 2bh0x 1 h0z

1 r2c0. The term proportional to c0, due to vertical
displacements, will have no effect in (20). Therefore,
the source due to vorticity advection is

]
F 5 Fr J(c , h ). (26)A 0 0Z]X

Here we have changed to the absolute-momentum co-
ordinates, X 5 x 1 bz and Z 5 z. Using the same
coordinate system, the other sources may be written as

]
F 5 Fr J(c , h ). (27)B 0 0X]Z

From (26) and (27), there is no obvious way to choose
between FA and FB as the dominant nonlinearity.

Let lx and lz represent nondimensional horizontal and
vertical scales. Then since c0 5 O(1) and [in view of
(25) and (5)] h0 5 O( /lz), both (26) and (27) can be2lx

estimated as F ; Fr/ . The streamfunction correction,3lz

c1, is of the order of the volume integral of the source,
or ^F& ; Frlx/ . The mountain scale is lx 5 Ro21. If2lz

this is small, then lz 5 O(1) and

c1 ; FrRo21, (28)

which shows the expected vanishing of the forcing in
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the nonrotating limit. If the mountain is broad, then the
dominant scales have lz ø lx and

c1 ; FrRo. (29)

These estimates are upper bounds; the nonlinearity also
depends on the phase relationships between c(X, Z) and
h(X, Z). Indeed, (28) overestimates c1 by a factor of 5
in the warm-advection case with Ro 5 2 (Fig. 5b) and
by more than an order of magnitude in the barotropic
solution. The steady-state form of (9) implies

n0X 5 c0Z. (30)

This means that y (and therefore hX and hZ) tends to
be in phase with c for the small horizontal scales. Be-
cause of the Jacobians in (26) and (27), this gives the
large-scale components a disproportionate importance
near the mountain. For such scales, (29) overestimates
the forcing due to vorticity advection because v 5
O(Ro) compared to gradients of y and b. This degen-
eracy manifests itself as h0Z → 0 in (26) but does not
affect (27).1

From (26) and (27), we see that the sensitivity of the
nonlinearity to ambient baroclinicity is partly due to the
effect of b on the meridional displacement h. This dis-
placement increases, along with y , in warm advection.
The angle between the M surfaces and the phase surfaces
further impacts the forcing through the constant-M de-
rivatives in (26) and (27). In the case of (27), the first
effect represents the increased thermal wind imbalance
at lowest order due to the amplification of y 0 and b0 in
warm advection. The second shows the dependence of
thermal wind balance on the correlation between y and
b. For example, if b . 0, upstream-tilting h surfaces
yield a correlation that suppresses the baroclinic pro-
duction of any vorticity that can be advected by c0. The
fact that FB K FA (Fig. 7) stems from a particularly
unfavorable phase relationship between h0x and c0. The
physical interpretation of this is probably quite subtle.

Analysis of the Green’s function in the appendix
shows that the response to forcing is greatest when the
forcing height is about unity. In Fig. 5, the area integral
of the significant forcing over the mountain, say between
z 5 0.5 and z 5 1.5 and between x 5 20.2 and x 5
0.2, may be estimated as ^F& ø 20.4 Fr. Since the
Green’s function for Ro 5 2 and b 5 20.6 has a max-
imum surface response of us 5 20.8, this is consistent
with the result u1 5 20.3 Fr for the barrier enhancement
implied by Fig. 5b.

At lowest order, the maximal surface deceleration is usm

ø 20.4 near x 5 21.0 Ro21 (Fig. 1a). If we assume, for
the moment, that the maximum nonlinear correction of

1 The expansion in powers of Fr is unnecessary in the quasigeo-
strophic limit if b 5 0. In that case, the nonlinearity can be treated
exactly using a coordinate transformation (Pierrehumbert 1985). The
transformation thus isolates the nonlinearity due to b ± 0 (G86), but
adds little to the present discussion using (19).

20.3 Fr extends upstream to this point, then the surface
deceleration for the Ro 5 2 bell-shaped mountain is

usm 5 20.4 Fr 2 0.3 Fr2 1 O(Fr3), (31)

where usm is now in units of u0. The terms up to O(Fr2)
closely approximate the result for warm advection in
Fig. 1b. Thus, setting 1 1 usm 5 0 and neglecting O(Fr3)
effects leads to the estimate Fr 5 1.3 for the stagnation
threshold. This is quite close to the actual threshold
indicated in Fig. 3 of Part I for Ro 5 2 and b 5 20.6.
For b 5 20.9 and the same Ro (not shown), the weakly
nonlinear analysis yields u1 ø 20.5 Fr. Since the linear
response is relatively insensitive to b, we can write

usm 5 20.4 Fr 2 0.5 Fr2 1 O(Fr3) (32)

for Ro 5 2 and b 5 20.9. Stagnation is therefore pre-
dicted at Fr 5 1.1. The actual threshold in this case is
Frs 5 1.0. In cold advection, it is fair to take u1 ø 0
for the nonlinear correction, so that

usm ø 20.4 Fr 1 O(Fr3). (33)

This leads to Frs ø 2.5 for b . 0, which is a fairly
good description of the cold-advection results in Fig. 3
of Part I.

The quantitative success of the (31)–(33) at order-
unity Fr is somewhat fortuitous, since the surface flow
deceleration due to weak nonlinearity does not really
coincide with that of the linear solution. The assumption
of coincident surface perturbations compensates for an
underestimate of the overall strength of the upstream
correction. These circumstances can be seen in Fig. 8,
which shows the x dependence of the steady-state sur-
face wind perturbations for the linear, fully nonlinear,
and weakly nonlinear (two-term expansion) solutions.
The model parameters are Fr 5 1.2, Ro 5 2, and b 5
20.6, just below the stagnation threshold. While the
expansion misses the amplitude of the minimum us by
only about 10%, its failure to capture the upstream dis-
placement of the deceleration is significant. Recall that
the latter error was even worse for the transient solution
(Fig. 7). There is no significant improvement when the
first nonlinear correction is recalculated from a nonlin-
ear model run in which the sources are scaled back up
to Fr 5 1.2, as shown in Fig. 8. This means that the
nonlinear source is not sufficiently isolated from the
response to allow the method to be used with high ac-
curacy at order-unity Fr.

4. Summary and conclusions

Part I established that large-scale warm advection, b
, 0, favors stagnation by lowering the Fr threshold
while cold advection inhibits it. It also established a
maximum mountain width (inverse Ro) for stagnation,
and, in the case of strong warm advection (b , 20.5),
a minimum width as well. The upper bound on the width
limits the influence of background rotation. The lower
bound (in the case of strong warm advection) keeps the
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FIG. 8. Steady, cross-mountain surface wind perturbation in warm
advection (b 5 20.6) at Fr 5 1.2 as a function of horizontal distance.
Mountain ridge is centered at x 5 0. Various curves represent linear
(thin solid), nonlinear (thick solid), and weakly nonlinear (dashed or
dotted) model calculations. Weakly nonlinear calculations are based
on two terms in the Fr expansion, with dotted curve showing the
result of using fully nonlinear response to lowest-order nonlinearity.
The linear result is scaled up to Fr 5 1.2 to show first term in
expansion. Horizontal axis scaled by u0/ f.

terrain broad enough for the ambient isentropic slope
to be significant on the scale of the mountain circulation.

The linear response to isolated topography shows just
the opposite sensitivity to baroclinicity: warm advection
weakens the barrier effect, while cold advection
strengthens it. At small amplitude, the upstream distur-
bance is dominated by large scales because the group
velocity in the small scales is directed downstream.
Therefore, the linear result in each case can be under-
stood as mainly a quasigeostrophic response to stream-
wise advection of b and vertical advection of y .

The quasigeostrophic contribution to the weakly non-
linear correction is consistent with enhanced upstream
deceleration in warm advection. However, for mesoscale
terrain, Ro $ O(1), the weakly nonlinear analysis shows
that the correction is dominated by the nonlinearity in
the ageostrophic, cross-mountain momentum equation.
This overwhelms not only the the QG effect but also
the nonlinearity due to nongeostrophic scales in the tem-
perature equation. The large-scale warm advection in
the mesoscale regime amplifies the thermal wind im-
balance and horizontal vorticity production because of
the mismatch between the gravity wave particle dis-
placements and the ambient buoyancy and momentum
contours. When the low-level streamwise advection is
slowed down, in effect, by the weakly nonlinear cor-
rection, the enhanced vorticity production results in ad-

ditional low-level negative momentum perturbation up-
stream.

The weakly nonlinear analysis assumes that the up-
stream surface wind can be expanded as

2 3u 5 1 1 a (Ro, b)Fr 1 a (Ro, b)Fr 1 O(Fr ), (34)s 1 2

where us is normalized by u0. Linear solutions show
that a1 varies by only about 0.05 as a function of b at
Ro 5 2, whereas a2 was found to vary by about 0.5
(mostly in the warm-advection range of b). Hence, the
small-amplitude effect of b is dominated by the finite-
amplitude effect if Fr k 0.1. This is a weaker condition
on Fr than the condition for nonlinearity. The results in
Fig. 8 and (31)–(33) show that the weakly nonlinear
calculation can explain much of the baroclinic effect
near the stagnation threshold without transient effects
or higher-order nonlinear effects. The approach works
better upstream because the linear dispersion properties
filter out small horizontal scales there, partially isolating
the nonlinearity from the response. The approach is ex-
pected to be less successful in the downstream region,
although the downstream low-level acceleration (Fig. 5)
is qualitatively correct.

Wave breaking occurs at smaller amplitude in warm
advection than in cold advection mainly because the
ambient isentropic surfaces are tilted against the particle
displacements in stationary waves (the same reason that
vorticity production is enhanced). In cold advection, the
isentropes are more oblique to the particle displace-
ments. The symmetry of the drag dependence on b in
Fig. 8 of Part I seems to be accidental, as the physical
reasons for the increase suggested here are different for
warm and cold advection. The high sensitivity of the
total drag to Fr in warm advection and low sensitivity
in cold advection may be related to the similarly skewed
b dependence of a2 in (34). However, we have not ap-
plied the weakly nonlinear analysis specifically to the
drag. The unexpectedly smooth transition in drag across
the wave breaking threshold in warm advection may
simply mean that the sensitivity to Fr is strong enough
to mask the effect of a sharply altered downstream flow
due to wave breaking. This is a matter for further study.
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APPENDIX

Linear Response to Topography and Interior
Sources

From (8)–(12), linear disturbances are governed by

2 2 2 2 2] ] ] ] ] ]
1 1 2 2b 1 c 5 0. (A1)

2 2 21 2[ ]]t ]x ]z ]x ]x]z ]z
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FIG. A1. Graph of dispersion relation between horizontal and ver-
tical wavenumbers, k and m, for stationary waves in barotropic (b
5 0) and baroclinic (b 5 60.6) basic states. Arrows indicate the
direction of group velocity if the axis coordinates are regarded as
physical distance.

FIG. A2. Original and deformed complex Fourier integration paths
for (a) vertical and (b) horizontal transforms. Branch points appear
at k or m 5 6r, and essential singularities at k or m 5 61. In left-
hand diagrams, imaginary axis is multiplied by the sign of z 2 z0 or
x 2 x0 in order to avoid redrawing the branch cuts. The direction of
integration is indicated by arrows.

For normal modes of the form c 5 exp[i(kx 1 mzc̃
2 nt)], we therefore have

(k 2 n)2m2 2 k2 1 2bkm 2 m2 5 0. (A2)

The time-dependent problem will be considered below
in a simplified form. For steady modes,

k2 2 2bkm 1 m2 2 k2m2 5 0. (A3)

Hence, for a given k, there are two solutions for m,
corresponding to the two branches of the square root in

2 2 1/2bk k(k 2 r )
m(k) 5 1 , (A4)

2 21 2 k k 2 1

where r [ 1 2 b2. Real values of m(k) are graphedÏ
in Fig. A1 for b 5 0 and b 5 60.6.

The slope of the group velocity vector (cgx, cgz) is

c ]n /]m dkgz
5 5 2 . (A5)1 2c ]n /]k dmgx n5const

Therefore, if the coordinates in Fig. A1 are regarded as
horizontal and vertical distance, energy propagation in
a component (k, m) is in the direction perpendicular to
the graph and away from the coordinate axes. For lower-
boundary topography, the branch with cgz , 0 is irrel-
evant. For interior forcing above a lower boundary, both
branches are relevant below the forcing level.

As k → `, buoyancy oscillations become free of ‘‘in-
ertial’’ effects and the vertical wavenumber asymptotes
to m 5 1. Inertial oscillations become free of buoyancy
effects as m → `, which corresponds to the asymptote
k 5 1. The group velocity is exactly vertical in the first
limit and exactly horizontal in the second. If b ± 0,
such ‘‘pure’’ oscillations are also possible for certain
finite scales. Examining intrinsic frequencies reveals
that one of the k 5 r solutions is a pure buoyancy
oscillation and one of the m 5 6r solutions acts as a
pure inertial mode. It can be shown that the respective
particle displacements are exactly parallel to the basic
‘‘absolute momentum’’ surfaces (constant fx 1 y [ M)
and basic isentropes. This eliminates either the buoy-
ancy perturbation or the meridional velocity perturba-
tion. In cold advection, the tilt of the basic M surfaces
is of the same sign as the phase surfaces in an upward-
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propagating gravity wave train (cf. Fig. 3a). This sup-
presses inertial effects and maintains m ø 1 over a broad
range of horizontal scales, thereby focusing energy
above the forcing. At the same time, the lower branch
becomes more dispersive and energy is scattered more
broadly over the region below and downstream of the
forcing. If b , 0, the two branches are interchanged,
so that the upward-propagating signal becomes more
dispersive and the downward-propagating signal more
concentrated.

For the special mountain profile h 5 d(x), the per-
turbation streamfunction is

`1
c(x, z) 5 exp{i[kx 1 m(k)z]} dk, (A6)E2p

2`

which satisfies c(x, 0) 5 h(x). To satisfy a radiation
condition at z → `, we choose the upper branch in (A4),
that is, (k2 2 r2)1/2 . 0, in the intervals k2 . r2. For
all other real k, we choose Im{(k2 2 r2)1/2} , 0 for
boundedness at z → `. This converts (A6) to two in-
tegrals with real-valued integrands, namely

r1 bz
c 5 exp(2m̃ z) cos k x 1 dkE 1 21 2[ ]p 1 2 k0

`1 bz
1 cos k x 1 1 m z dk, (A7)E 121 2[ ]p 1 2 kr

where m1 5 k k2 2 r2/(k2 2 1) and m̃1 5 k r2 2 k2/Ï Ï
(1 2 k2). The quasigeostrophic part of the solution is
easily seen by letting k → 0 in the first integral and
ignoring the finite upper limit of integration. Thus,

`1
c 5 exp(2rkz) cos[k(x 1 bz)] dk, (A8)qg Ep 0

which may be evaluated, using the coordinates defined
for (11), as

Z
c 5 (1/p) . (A9)qg 2 2X 1 Z

This is valid in X 2 1 Z 2 k 1. The second integral in
(A7) provides the near-field solution but diverges at x
5 0 due to large k. Hence, the solutions displayed in
section 3 are for a regular mountain with halfwidth L
and Fourier transform ĥ(k) 5 (L/2) exp(2|k|L).

Now if the point source d(x 2 x0, z 2 z0) is substituted
for the right-hand side of (A1), (A4) may be used to
write the linear response to interior forcing as

`1 b(z 2 z )0c 5 2 exp ik x 2 x 1E 0 21 2[ ]2p 1 2 k
2`

exp(im |z 2 z |) 2 exp(im (z 1 z ))1 0 1 03 dk,
2 22ikÏk 2 r

(A10)

where m1(k) is defined as in (A7). The term involving
z 1 z0 enforces the boundary condition, c 5 0 at z 5
0, and can be interpreted as a reflection of the down-
ward-propagating components. The absolute-value op-
erator implicitly selects the lower branch of m(k) for
unreflected waves below the source.

Certain asymptotic approximations are possible for
(A10). The standard far-field approximation is a com-
bination of the QG solution and the stationary-phase
approximation. The QG solution was discussed in sec-
tion 3. The stationary-phase estimate, which is analo-
gous to tracing group-velocity ‘‘rays’’ into regions far
from the forcing, is treated in G86. Here we will be
interested in the near-field approximations, especially
below the forcing level.

a. Near-field approximations of the Green’s function

The horizontal near-field approximation of (A10),
valid in |x 2 x0| K 1, is obtained by assuming k k 1
and therefore m → 1. The result

`1 sin(k(x 2 x ) 1 |z 2 z |) 2 sin(k(x 2 x ) 1 z 1 z )0 0 0 0c 5 2 dk 1 C (A11)G E G22p kk1

is the contribution from the barotropic gravity waves.
The missing wavenumbers k , k1 determine CG, which,
for consistency, must be considered independent of x in
this approximation. The constraint k1 k 1 determines
the region of validity of the x-dependent part of cG,
which shrinks with increasing vertical distance from the
source. The estimate (A11) may be evaluated as

|x 2 x | (x 2 x )0 0c 5 2sinz cosz 2 log|x 2 x | sinzG 0 01 22 p

1 C (z)G (A12)

in z . z0. Below the forcing, z and z0 must be inter-
changed.
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The way to obtain the integration constant CG is sug-
gested by a procedure used by Queney (1947) and Pier-
rehumbert (1984) to find the velocity perturbation along
a topographic boundary. The Green’s function is first
rewritten as a vertical transform (G86) and reduced to
one dimension by setting x 5 x0. Thus,

`1 exp[im(z 2 z )]0c(x , z) 5 dm 1 (reflections).0 E
2 22p 2imÏm 2 r2`

(A13)

The integral for the reflected modes is not shown be-
cause it is unwieldy when b ± 0. Reflections are ob-
viously significant at z 5 0, but we assume that the
solution is dominated by unreflected waves at the forc-
ing level. Next, to isolate the gravity wave contribution,
the complex integration path is altered as shown in Fig.
A2. In the region of physical space where b(z 2 z0) .
0 (below the forcing if b , 0), the result is

`1 exp(2m̃|z 2 z |)0c(x , z) 5 2 dm̃0 E
2 22p m̃Ïm̃ 1 r0

`1 sinm|z 2 z |02 dmE1 2 22p mÏm 2 rr

1 sinm|z 2 z |01 dm . (A14)E 22 2mÏm 2 rr

The path along the imaginary axis has been parameter-
ized by m 5 im̃. The gravity wave contribution is now
contained in the two plane-wave integrals. In the region
where b(z 2 z0) , 0, these are replaced by a single
integral over (1, `) with the same integrand.

Inside |z 2 z0| ø 1, the long-wave (QG) contribution
contained in the first integral in (A14) determines CG.
However, for |z 2 z0| k 1, it is determined by the
intermediate vertical scales in the two plane-wave in-
tegrals. These can be related to the gamma function with
parameter ½ by letting m 5 r 1 « and assuming « K
1. Thus, the integration constant in (A12) is estimated
to be

1 sin(r |z 2 z | 1 p/4) 1 A sin(r |z 2 z | 1 f )0 1 0 1C (z) ø 2G 1/22r (2pr |z 2 z |)0

(A15)

far above and below the source. The second of the grav-
ity wave integrals in (A14) has been approximated by
the incomplete gamma function, G(z1; ½), with z1 5 (1
2 r)|z 2 z0| for the integration limit. As this limit in-
creases, A1 varies from zero to unity, and f 1 from zero
to p/4, each with a damped oscillation about the higher
limit. Therefore, if |z 2 z0| k 1/(1 2 r), the two integrals
are approximately the same and CG has twice the am-
plitude of the barotropic estimate. In the same limit, the
integral for b(z 2 z0) . 0 vanishes. This baroclinic
amplification above or below the forcing is consistent
with the group velocity of the finite-scale (baroclinic)
gravity waves, as mentioned in section 3. In |x 2 x0| K
1, the phase is stationary near the branch point m 5 r.
Consequently, we are not concerned that setting x 5 x0

may have produced a spurious approximation.
The vertical near-field approximation is obtained by

letting m → ` and k → 1 in the vertical transform
integral (G86). The radiation condition in x eliminates
any contribution from |m| . 1 in the half-plane x , x0.
In x . x0, taking m k 1 produces

`1 sin[m(z 2 z ) 1 x 2 x ] 2 sin[m(z 2 z ) 2 (x 2 x )]0 0 0 0c 5 2 dm 1 C . (A16)I E I22p mm1

Here CI is due to the interval (0, m1) with m1 k 1. The
closed-form evaluation of (A16) is

|z 2 z |0c 5 sin(x 2 x ) 1 C (x), (A17)I 0 I2

which shows an inertial lee wave train with even sym-
metry about the forcing level. An estimate for CI is
obtained by redrawing the k-integration path as indi-
cated in Fig. A2b to isolate the trapped components and
evaluating the contribution from the branch point (G86).
Since the finite-scale (baroclinic) inertial modes prop-
agate only downstream, it is not necessary to include
the baroclinic effect in this part of the analysis.

Thus, with b 5 0 and z 5 z0, the propagating modes
contribute

`1 sink(x 2 x )0c(x, z ) ø dk. (A18)0 E
2p kÏk 2 11

The result of excluding terms past second order in the
parameter « 5 k 2 1 K 1 is the closed-form expression

1
C (x) ø 2I 1/2[2p(x 2 x )]0

129/128 p
3 1 2 sin x 2 x 10251 2 1 2(x 2 x ) 40

5/8 p
2 cos x 2 x 1 .01 26x 2 x 40

(A19)

The coefficients of the higher-order terms in (x 2 x0)21
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are products of Taylor coefficients and values of the
complete gamma function with parameters 3/2 and 5/2.

The full integral (A10) was evaluated numerically as
described in G86. Some cases are shown here in Fig.
4. The maximum absolute value of the streamfunction,
say cm, always occurs downstream of the forcing point.
In the barotropic solution with zf 5 p/4 (Fig. 4a), we
see that cm 5 20.47 about one unit downstream of the
forcing. Setting x 2 x0 5 1 and z 5 z0 5 p/4 in (A12)
and neglecting CG yields cG 5 20.25, or only about
half of cm. The estimate (A19) has a minimum value
of CI 5 20.22, which shows that the rest of cm is mostly
due to the inertial waves. The first local extremum of
the estimate (A19) occurs near x 5 x0 1 1.5, slightly
downstream of the actual streamfunction center for z0

5 p/4 in Fig. 4. For much lower forcing, (A19) sig-
nificantly overestimates the inertial contribution to cm,
as the reflections begin to interfere. If z , z0 K 1, the
contribution from the reflections approximately multi-
plies (A18) by . Thus, the inertial wave contribution22z0

to the average horizontal velocity perturbation below
the forcing, say u9avg 5 2cm/z0, varies linearly with z0

for shallow forcing.
The impact of the stationary waves upon the surface

flow should depend sensitively on the height of the
source because the vertical scale of the downward-prop-
agating buoyancy modes is similar for a broad range of
horizontal scales, and because the inertial wave train is
always concentrated at the level of the forcing. Since
CI is independent of z0 for high-level forcing, z0 $ 1,
we expect the strongest wind perturbations to occur for
z0 5 O(1), except for the gravity wave contribution.
This is consistent with the difference between z0 5 p/4
and z0 5 p/2 in the barotropic and cold-advection so-
lutions. In the warm-advection solution, u9avg is similar
for these two forcing levels because of the enhanced
baroclinic gravity wave contribution in the region b(z
2 z0) . 0, as described by (A15).

b. Transient solution

We focus here on the region that separates steady
waves from the overlying undisturbed flow. Background
rotation will be neglected, as it will not qualitatively
alter the dimensions of this wave front. The dispersion
relation is then

(k 2 n)2m2 2 k2 5 0. (A20)

At the initial time, the wave front is a step function in
z. For the single spectral component, k0 . 0, the initial
condition is c 5 H(z) cos(k0x 1 z), where H(z) is the
Heaviside function, or

cos(k x 1 z), z , 00c(x, z, 0) 5 (A21)50, z . 0.

The choice m 5 11, which is implicit in (A21), cor-

responds to upward energy propagation. The vertical
transform is

1 exp(ik x) exp(2ik x)0 0ĉ(x, m, 0) 5 1 , (A22)1 24pi m 2 1 m 1 1, ,

where 1, indicates that the poles are on the negative
imaginary side of the real-m axis. Since upward energy
propagation in general requires n 5 n1(k, m) 5 k 2
|k|/m, the time-dependent solution is

c(x, z, t)

`1 exp[ik (x 2 t)] exp[2ik (x 2 t)]0 05 1E 1 24pi m 2 1 m 1 1, ,2`

k t03 exp i mz 1 dm.1 2[ ]m
(A23)

As soon as t . 0, the m dependence of n (k, m) prevents
moving the complex integration path to m 5 1`i to
obtain the full solution in z . 0. Hence, a disturbance
appears in z . 0. The boundary condition at z 5 0 is
maintained by (A23) because there is no downward sig-
nal propagation.

By defining m9 5 m 2 1 or m9 5 m 1 1 as necessary,
the solution may be rewritten

exp[i(k x 1 z)]0c 5 Re5 2p

` k t dm903 exp im9 z 2 , (A24)E 1 2 6[ ]1 1 m9 im9
2`

where ‘‘Re’’ denotes the real part. We refer to the def-
inite integral in (A24) as I(z, t) and note that I 5 2pH(z)
at t 5 0, as required by (A21).

As an integral over m9, I(z, t) can be approximated
for large z using the method of stationary phase (Bender
and Orszag 1978). The phase w(m9) 5 m9[z 2 k0t/(1 1
m9)] is stationary at m9 5 6 k0t/z 2 1. The positiveÏ
(negative) square root corresponds to upstream (down-
stream) intrinsic phase and group propagation. Since
stationary modes have m9 5 0, we can interpret

k0t [ z1(t) (A25)

as the height of a zero-frequency signal located initially
at z 5 0. At the stationary-phase points, we find that w
5 2(z1/2 7 )2 and d2w/dm92 5 6 z3/2. Hence,1/2 21/2z 2z1 1

`dI k t05 exp im9 z 2 dm9E 1 2[ ]dz 1 1 m9
2`

1/42p z ip1 1/2 1/2 2; exp 2i(z 7 z ) 6 , (A26)O 131 2 [ ]z 46

where the sum is taken over the two stationary-phase
points. Unfortunately, this estimate is not useful in z ,
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z1 because of the constraint z3 k z1 implicit in the ap-
proximation method.

If we write z 5 z1(t) 1 z9, then z9 is the vertical
coordinate in a frame moving vertically with the energy
of the stationary waves. With z9 K z, the phase in (A23)
is w ø 2 z92/4z1 for the part of the disturbance origi-
nating from below the observation point and w ø 4z1

1 2z9 for the part originating from upstream. Over iso-
lated topography, the latter is removed by horizontal
dispersion. Hence the modification of the steady wave
field above the forcing includes a gradual phase mod-
ulation on the scale z1(t).Ï

The last result can be obtained independently by as-
suming that the integral is dominated by nearly station-
ary waves, m9 ø 0. Using a truncated Taylor series for
w(m9) about this value yields

`dI
2; exp[im9(z 2 z ) 1 iz m9 ] dm9E 1 1dz

2`

1/2 2
p z 2 z ip15 exp 2i 1 . (A27)

1/21 2 1 2[ ]z 2z 41 1

This gives the same result near z 5 z1 as (A26). The
variation of amplitude away from z 5 z1 is not provided
by (A27), and (A26) is not valid in z , z1. However,
the scale of the wave front can be inferred from the
amplitude of the jump. Thus, if dI/dz ; , then dz21/2z1

; is necessary to preserve an O(1) variation in I(z, t).1/2z1

Assume that the disturbance over the mountain con-
sists of steady waves near the surface, separated from
an overlying, undisturbed region by a transition layer
of depth hf and height zf . The estimate for F (u) becomes
Fr times the steady momentum flux, u0w0, which is21hf

of order Ro. The nonlinearity in the transient problem
for c1 is FA 5 (]x 1 ] t) . Hence, the volume integral(u)F z

is of order FrRo (1 1 lf /t f ), where l and t denote21hf

horizontal distance and Eulerian timescales in the tran-
sition layer. Signals rise at the vertical group speed,

cgz 5 2km22(1 1 m2/k2)21/2. (A28)

Since k ø Ro $ O(1) and m ø 1 at the bottom of the
layer, (A28) implies that cgz ; k ; Ro. Thus, since
(lf /t f ) ; k21(cgz/hf ) ; , the largest part of the mo-21hf

mentum forcing when hf , 1 is FrRo .22hf

Comparing this result to the estimate in section 3 for
steady momentum forcing (namely FrRo21), and assum-

ing Ro . 1, we see that the transient forcing ceases to
be important when the depth hf is of order Ro3/2. How-
ever, for large z and t in the case of an impulsive start-
up, the stationary-phase arguments indicate that hf ;
Ro ; Ro3/2t1/2. This means that the transient mo-1/2zf

mentum forcing becomes unimportant for t . O(Ro).
The actual surface wind, u 5 2cz, induced by the tran-
sient forcing is further diminished by a factor of 21/2zf

or for large zf .21zf
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