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ABSTRACT

Coherent baroclinic wave packets are present in the Southern Hemisphere, most clearly in the summer season.
These coherent packets are also found in a hierarchy of models of nonlinear baroclinic instability—a two-layer
quasigeostrophic (QG ) model on a -plane, a two-level primitive equation ( PE) model, and a general circulation
model. The flows are chaotic, but the packet itself can remain remarkably coherent, despite the complex evolution
of the flow within the packet. In both QG and PE models, the packets become more robust as the supercriticality
of the flow is reduced. In both models and the observations, the packets move with a group velocity that is
greater than the phase speed of the individual disturbances, so that these disturbances exhibit downstream
development. The structure of the baroclinic waves in the packet as a function of longitude resembles the life
cycles of sinusoidal baroclinic waves as a function of time. More than one packet can exist in the domain at
the same time. In the QG model, the number of packets increases in a systematic way as the length of the

channel increases.

1. Introduction

The Southern Hemisphere (SH) circulation provides
an important proving ground for theories and models
of finite amplitude baroclinic instability. It is useful to
study the development and organization of baroclinic
eddies without the complexity introduced by the large
planetary waves and localized storm tracks of the
Northern Hemisphere (NH). In this paper we focus
on the coherent baroclinic wave packets into which
eddies are organized in the SH, particularly in summer,
and show that such packets form spontaneously in a
variety of models.

Randel and Stanford (1985) describe a particularly
simple form of eddy development in the SH summer,
in which a single zonal harmonic dominates the flow,
and in which there is near simultaneous growth of a
series of disturbances around a latitude circle. The
waves grow due to baroclinic energy conversion and
then decay due to the barotropic transfer of energy to
the zonal flow. The calculations of Simmons and Hos-
kins (1978) with a primitive equation model on the
sphere, initialized with the most unstable normal mode,
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mimic this life cycle remarkably well. This qualitative
behavior can also be seen in the simplest two-layer
quasigeostrophic model of an unstable westerly jet, if
one initializes the flow with an unstable normal mode
(Feldstein and Held 1989; Feldstein 1991). However,
this modal form of development is relatively rare, both
in the atmosphere and in atmospheric models.

More typically, the amplitude of baroclinic waves is
strongly modulated in longitude, by an envelope or
packet of wave activity. As described in the following,
this envelope can propagate coherently, retaining its
shape, while the disturbances within the packet undergo
their individual life cycles. The envelope is found to
propagate to the east more rapidly than the phase speed
of the individual disturbances, so that these eddies can
be said to undergo “downstream development.”
Downstream development is often observed in the NH
(Namias and Clapp 1944; Hovmolier 1949; Joung and
Hitchman 1982), but it is ubiquitous in the SH sum-
mer. Van Loon (1965) and Trenberth (1986) show
clear examples, and Orlanski and Katzfey (1991 ) pro-
vide a detailed analysis of a particular case.

Models of downstream development have been
studied by Simmons and Hoskins ( 1979 ) and Orlanski
and Chang (1993). In the linear evolution of a localized
perturbation to a baroclinically unstable flow, new dis-
turbances develop downstream and depending on the
model and the mean flow, also upstream of the original
disturbance, and the unstable packet spreads in time.
Nonlinearity must be invoked to explain solutions in
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which the packet envelope propagates steadily, with a
well-defined group velocity, while retaining its shape.
The nonlinear Schrédinger equation is the classic ex-
ample of an equation that possesses just such a solution
(e.g., Whitham 1974). In the literature on weakly non-
linear baroclinic instability, coherent wave-packet so-
lutions have been discussed by Pedlosky (1972), Moroz
(1981), and Moroz and Brindley (1981, 1984). The
latter group of papers was motivated by observations
of modulated waves in annulus experiments ( Hide et
al. 1977; Mason 1975). Although they are a natural
starting point, for reasons described in the following
we suspect that these weakly nonlinear theories are not
adequate for studying the SH packets or those found
in the atmospheric models that we have examined.

After describing the wave packets in the SH summer,
a series of models are discussed: a multilayer general
circulation model with a zonally symmetric lower
boundary and, therefore, a zonally symmetric climate;
a two-level primitive equation model on the sphere;
and a two-layer quasigeostrophic (QG) model on a
beta-plane. We thereby isolate the baroclinic wave
packets in successively simpler dynamical frameworks.
In the latter two models the supercriticality of the flow
is varied, and in the QG model the size of the domain
is also varied, to explore the dependence of the packets
on these parameters.

We also examine the statistical structure of the eddies
within the packet, emphasizing the cast-west asym-
metry in this structure resulting from the fact that the
youngest eddies are found on the eastern edge of the
packet and the oldest on the western edge. We go a
step further to show the very close relation between
the evolution in time of a disturbance consisting of
only a single zonal harmonic, and the evolution in
space of the eddies within a coherent packet. This re-
lation is also shown to hold for the mean flow modi-
fication by the eddies, if we define the “mean” to be
an average over the fast-phase variations within the
packet.

In the concluding section, we briefly address the
limitations of weakly nonlinear theory and speculate
on the importance of such packets for atmospheric
predictability.

2. Observations

First we describe baroclinic wave packets in obser-
vations from the Southern Hemisphere (SH). The data
used in this study are derived from the ECMWF anal-
yses at 0000 and 1200 UTC. The dataset covers January
1980 to December 1987.

Snapshots of the eddy (deviation from the zonal
mean ) meridional wind field, v’, at 300 mb are shown
in Fig. 1. These fields are taken at 0000 UTC on 3-8
February 1984 (days 1-6 hereafter). At day 1, there
are two wave packets in the domain, one centered near
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FIG. 1. Snapshots of the eddy meridional wind fields at 300 mb
during (a) 3 February—(f) 8 February 1984. The contour interval is
15 m s~'. For clarity, the zero contour is omitted. Solid contours are
positive and dashed contours negative.
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FIG. 2. Hovmaller diagrams of (a) eddy meridional wind and (b) eddy meridional wind squared
during DJF of 1983/84 in the SH at 45°S and 300 mb. The contour intervals are (a) 20 m s™*
and (b) 400 m? s72. In (a) the zero contour is omitted, solid contours are positive, and dashed

contours negative.

45°E (Packet A) and the other near 120°W (Packet
B). The packets move toward the east with a speed of
about 30 deg day . By day 4, Packets A and B have
moved near 150°E and the Greenwich meridian, re-
spectively. Packet A appears to lose some of its coher-
ence after day 4, whereas Packet B continues to prop-
agate steadily. Note that the individual eddies decay
or grow, while traveling toward the east about 3-4 times
slower than the wave packets. For example, a weak
minimum (indicated by the shaded area) in the down-
stream side of Packet B, near 60°W at day 1, intensifies
until day 3. By this time, it has moved only 15 degrees
toward the east. As this minimum moves toward the
upstream side of Packet B, it starts to decay; at day 6,
it lies near 10°W and is about to disappear.

The propagation of coherent wave packets, depicted
in Fig. 1, is easily illustrated with a longitude-time, or
Hovmoller, contour diagram. Figure 2a shows a
Hovmoller diagram of the v’ field at 45°S and 300 mb
during the SH summer ( December-February, DJF) in
1983/84. A Hovmoller diagram of v'? is also included
in Fig. 2b because this sometimes allows the packet to
be more easily identified. The period corresponding to
Fig. 1 is indicated by the arrows to the left of the figures.
Data from other SH summers exhibit similar charac-

teristics to those shown in Fig. 2. The eastward-prop-
agating wave packets often disappear between the date
line and 100°W where the mean flow is anticyclonic
and climatological eddy energy is weak. Constructing
a Hovmoller diagram by following a mean streamline
rather than a latitude circle does not alter this picture
significantly. Although the stationary wave seems to
prevent the wave packet from propagating directly to
the east at times, there are a few events where the wave
packet propagates through this region and circles the
globe, as shown in Fig. 1.

The winter season for the SH midlatitudes has also
been examined. Wave packets are found in the winter
SH, but seem to be less coherent than in summer. One-
point correlation maps in longitude and time (Fraed-
rich and Ludz 1987) are useful in comparing the sea-
sons. Ignoring the zonal asymmetries in eddy statistics
for this purpose, average maps are computed with the
base point set equal to each grid point at 45°S to obtain
a single correlation map for v’. Figures 3a and 3b are
the composites of the maps for summer and winter
using seven years of data. They are obtained by com-
puting maps for each season (DJF and JJA) and each
year (1980-1987) and then averaging for each season.
The correlations are larger in summer than in winter,



1416

_ N W b O

72N

L

I L
+60 +120

TIME LAG (days)
g

T B W

LI DL LA L LA L

| I ST N I I

-2
-3+
L
o /
i 1 1 1 1
180 +60 +120 180

LONGITUDE

FiG. 3. Composite one-point correlation maps of eddy meridional
wind at 45°S and 300 mb in the longitude-time domain for (a) the
summer and (b) the winter season during 1980-1987. The contour
interval is 0.2, with the dashed contours being negative. The base
point is indicated with a filled dot. In (a), solid arrow indicates group
velocity, and dashed arrow phase velocity. :

consistent with packet being more prominent in sum-
mer. The group velocity of the packet and phase speed
of the eddies can be estimated as shown in Fig. 3. For
both summer and winter seasons, the velocity of the
packet is greater than the phase speed of the individual
disturbances, implying downstream development. In
the summer composite, eddies dominated by zonal
wavenumber 6 propagate at about 7 m s™!, whereas
the group velocity is about 35 m s !,

Figures 4a and 4b are longitude-time (w-k, here-
after) spectra of v” at 45°S and 300 mb averaged over
7 summers and 7 winters. The group velocity dw/dk
can be estimated by computing a finite differenced Aw/
Ak using the w—-k spectra; in Fig. 4a, the spectral peaks
at zonal wavenumbers 6 and 7 are at frequencies of
0.16 and 0.26 days™!, respectively. The slope Aw/Ak
gives a value of 35 m s, consistent with the value
obtained from the one-point correlation map.

There are at least three reasons why the SH summer
might be expected to possess more coherent wave
packets than SH winter: 1) Eddies have somewhat
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larger scales in winter. As seen in Fig. 4, wavenumbers
4-6 dominate in winter, as compared to 5-7 for sum-
mer. One suspects that larger eddies are more difficult
to organize into coherent wave packets, due to the
weaker scale separation between the envelope and the
eddies themselves. 2) Stationary eddies are stronger in
winter, making coherent propagation more difficult.
3) The summer storm track is much more confined
meridionally (e.g., Randel and Held 1991, Fig. 5).
Since coherent eddies are generally easier to obtain
when there is only one dimension in which the eddies
can propagate, this meridional confinement could favor
coherence. [ One would also expect more coherent ed-
dies when the flow is less strongly unstable, but the
maximum baroclinicity and eddy kinetic energies ap-
pear to be comparable in SH winter and summer
(Trenberth 1982); the summer time eddies and baro-
clinicity are weaker only in the sense of being more -
strongly confined meridionally].

3. An idealized GCM

This model is a 9-level, R30, o-coordinate, global
spectral model developed at GFDL. The details of the
model can be found in Manabe et al. (1979) and Gor-
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FiG. 4. Composite space-time (w—k) spectra of eddy meridional
wind for (a) the summer and (b) the winter season during 1980-
1987. The contour interval is 10 m? s 72/ Aw.
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F1G. 5. Hovméller diagrams of (a) eddy meridional wind and (b) eddy meridional wind squared
for 100 days at 35°C and 205 mb in the idealized GCM experiment. The contour intervals are
(a) 20 m s~' and (b) 300 m? s~2. In (a) the zero contour is omitted, solid contours are positive,

and dashed contours negative.

don and Stern (1982). In this version of the model,
the lower boundary condition is an all-ocean surface
with a zonally symmetric surface temperature distri-
bution of the form

40 K
TS=29OK+—§—(1 — 3 sin’¢).

(1)

The model contains a full hydrologic cycle, including
cloud prediction. Insolation is given its annual mean
value. After 2000 days of integration, the model climate
is very close to being zonally symmetric. The two
hemispheres of the model are also statistically identical.

Figures 5a and 5b show the Hovmoller diagram of
v"and v'2, for 100 days from the 2000-day integration.
In this idealized GCM, the midlatitude storm track lies
about 10° equatorward of its observed location near
45°, Therefore, the data are sampled at 35° and 205
mb. In Fig. 5, coherent wave packets are very clearly
seen. Again, downstream development associated with
the packet is evident. The structure of the w-k spectrum
of the GCM data (not shown) is also very similar to
that of the SH summer. As might be anticipated due
to the horizontally homogeneous lower boundary of
the model, the wave packets are somewhat more co-

herent here than in the SH observations. In fact, be-
tween days 1 and 25, in Fig. 5, a coherent packet can
be seen propagating twice around the earth. This
model allows us to conclude that the packets observed
in the SH are not a consequence of some peculiarity
of the earth’s surface, such as the Antarctic plateau.
Further analysis of the GCM data will be presented in
section 6.

4. A two-level primitive equation model
a. Model description

The two-level primitive equation model used in this
study is essentially identical to that of Hendon and
Hartmann (1985). A pressure coordinate, global spec-
tral model with finite differencing in the vertical is used.
The spherical harmonic expansion is truncated at R30.
The horizontal velocity and potential temperature are
predicted at P, = 250 mb and P, = 750 mb. (The
subscripts 1 and 2 refer to the upper and lower levels,
respectively.) The ““vertical velocity” w (=dP/dt) is
defined at 500 mb and at the upper and lower bound-
aries, where it is set to zero.
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We define barotropic and baroclinic variables,

_ Wt u
u:
2
and
ﬁ_ul‘lb
2

The model can be written as four prediction equations
for the barotropic and baroclinic vorticity, baroclinic
divergence, and barotropic potential temperature:

% - v+ Bu+ a1 - Y X (D)
e re (2 o)
2§+2§ V(azrV)s“, (2.a)
¥ _ o Sa L fo
i V- [(f+ 9a+ (a]

(2.b)

%= VX[(f+ Hi+ {u] - CBVH — V2E

Ky = 2 4
ED—V =+ V| D, (2.c)
B
- V-[8a] — 0D — r(8 — 6,) — vV°0, (2.d)
where u = (u, v) is the horizontal velocity,
{=VXu, D=V-u, E=u-i,
and
1[[{P\" P\*
=== —{=] | =0.124
m=3 () - (5] -0
with « = 2/7. The vertically averaged divergence is

assumed to vanish identically. A
The value of the static stability 6, is fixed as 15 K.
The value of 8, is

9e=0?m(1 — 3 sin%¢), 3)
where ¢ is latitude and 4,, is the temperature difference
between the pole and equator in radiative equilibrium.

Only the lower-level wind is subject to mechanical
damping, for which the value of the coeflicient «, is
0.2 day~!. The radiative relaxation time scale, r ' is
30 days. The coefficient of the quad-harmonic hori-
zontal diffusion » is chosen as 8 X 10¥ m®s™!. Al-
though this value is somewhat larger than it need be,
it does not damp the large-scale motion significantly.
When the model is integrated with a smaller value of
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v (=8 X 10%7), our results are essentially unchanged.
The time stepping procedure includes implicit treat-
ment of the terms responsible for gravity waves.

b. Results

The value of 6,, [in (3)] is systematically varied in
order to study the effect of supercriticality on the wave
packets. Figures 6a-c show Hovmoller diagrams of the
variance of the upper-level meridional wind v}, at a
latitude slightly poleward of the jet maximum for 100
days of 1000-day integrations for 6,, = 80 K, 60 K,
and 30 K. The peaks in the spectrum of v'? are centered
at zonal wavenumbers 4, 5, and 7 for 6,, = 80 K, 60
K, and 30 K, respectively. Figure 6 shows that wave
packets become more coherent as the supercriticality
is decreased. When #,, = 80 K, propagating packets
form occasionally (Fig. 6a). When 8,, is decreased to
60 K, wave packets occur more frequently (Fig. 6b).
When 6,, is further decreased to 30 K, well-defined
packets emerge and remain coherent for a very long
time (Fig. 6¢). Note also that in the 30 K case there
are two distinct wave packets in the domain. Time-
lagged one-point correlation maps using time series of
1000 days are shown in Figs. 7a—c. It is clear that the
signal of the wave packets becomes stronger as 6, de-
creases. Also, the velocity of the packet is always larger
than the phase velocity of the individual waves, typi-
cally by a factor of 3.

In each case, the group velocity estimated from the
slope of the w-k spectrum and that obtained from the
correlation maps agrees very well. The group velocity
is always close to the speed of the upper-level zonal
wind.

5. A two-layer quasigeostrophic model

a. Model description

The dimensionless equations of our quasigeostrophic
(QG) two-layer model on a beta-plane are

K10, ¥, - ¥
—(”—l',r‘J(\I,]’Ql):r( ]2 2'_79)—”V6\Illa
(4.a)
390,
at + J(‘I/29 Q2)
v, — )

- —”(—IT\I_,_Z - ‘re) — ky VA, — VO, (4.D)

where

g =p6y+ Vz‘I’j+(—1)j<-\I—’];—\I’3), j=12(5)

and j = 1 and 2 refer to the upper and lower layers,
once again. The velocity field is determined by the re-
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FiG. 6. Hovméller diagrams of the upper-level eddy meridional wind squared for 6,, = (a) 80 K, (b) 60 K, and (¢) 30 K near the
midlatitude jet maximum in the two-level PE model. The contour intervals are (a) 700 m? s~2, (b) 300 m? s2, and (c) 100 m? s 72,

lation, (u;, v;) = (—8y;/dy, d¢;/dx). The horizontal
length scale is the radius of deformation, A. The pa-
rameters that remain are «,, (strength of lower layer
drag), r (strength of radiative damping), » (biharmonic
diffusivity), and 8 (gradient of Coriolis parameter).
One can think of 3 as playing the same role as 6,, in
the PE model of section 4, except that the supercriti-
cality of the flow increases as 3 decreases. Time is non-
dimensionalized by A/ U,, where U, is the horizontal
velocity scale.
A Gaussian zonal wind shear of the form

U, = —20r,/3y = exp[—(y — W/2)*/o?]

balances the “radiative equilibrium temperature,”
7.(), with ¢ = 10. The channel walls are located at
y = 0 and W (=21). This channel width is sufficient
that the eddies are confined away from the walls, so
the precise value of W should be irrelevant. A thermal
relaxation time scale (=r!) is held fixed at 30 days (1
“day” = N/ Up). The model is finite differenced in the
meridional direction and is spectral in the zonal direc-
tion. Since this model is identical with that in Lee and
Held (1991, LH hereafter), the reader is referred to
that paper and references therein for further descrip-
tion.

We found it convenient to utilize three different res-
olutions in different parts of this study. The grid points

between the channel walls, number of zonal waves,
and biharmonic diffusion coefficients for those three
models are listed below:

High Medium  Low
Grid points 600 300 70
Number of the zonal
waves 40 20 20
Biharmonic diffusion
coefficient 3X107° 7X10™* 6x1073
b. Results

The discussion of this model is made more complex
by the existence of hysteresis and subcritical instability,
as described in LH. Typically, as one increases £, the
eddy energy in the statistically steady state does not
decrease to zero smoothly as the linear stability bound-
ary, By, is approached. Instead, nonzero eddy ampli-
tudes are found up to 8y > B¢, beyond which the eddy
amplitude collapses to zero. Since the flow with no
eddies present is stable for 8 > 8,, two distinct solutions
exist for 8 between B and 8x: one with zero eddy am-
plitude and one with nonzero eddy amplitude. In fact,
the region with two distinct stable solutions generally
extends to the smaller value 3, < 8y. In the range
BrL < B < By, two distinct states with nonzero eddy
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F1G. 7. One-point correlation maps of the upper-level eddy me-
ridional wind in the longitude-time domain for 8,, = (a) 80 K, (b)
60 K, and (c) 30 K near the midlatitude jet maximum in the two-
level PE model. The contour interval is 0.2. The base point is indicated
by a filled dot.

amplitudes exist, which we refer to as the “upper” and
“lower” branches. (The difference between 3, and Gy
is particularly sensitive to resolution and the strength
of the diffusivity in the model.) As x4, is reduced, 8,
approaches 8y, until the multiple solutions disappear
at a critical value of k;; (~0.05). Coherent packets are
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found in a large part of this model’s parameter space—
in the linearly unstable region as well as in the linearly
stable region. They can also be found both in the upper
and lower branches when these exist at the same pa-
rameter setting.

This model is first used to examine the transition
from a zonally symmetric baroclinic wave train to a
localized wave packet. For this purpose, we use the
low-resolution model with k,, = 0.05, and vary 8 to
change the supercriticality. This value of x;, is small
enough that we find a unique statistically steady state
for each value of §8 (in the low-resolution model). The
linear stability boundary, By, is 0.38. The eddy ampli-
tudes are steady for 0.3 < 8 < 0.38 and periodic for
0.23 < B < 0.3. In a higher resolution, less diffusive
version of the model these states all become chaotic.
We have chosen the low-resolution more diffusive
model here in the hope that these nonchaotic flows
would be easier to analyze.

Linear growth rates as a function of zonal wave-
number are displayed in Table 1 for several values of
8. The 20 zonal wavenumbers retained in the model
range from k = 0.1 to 2.0 in steps of 0.1 [so the length
of the channel, L, is 27w /(0.1) = 20, in units of A].
For 8 = 0.33, only one of these waves (kK = 0.8) is
unstable. When £ falls below 0.32, the growth rates for
0.7 and 0.9 become significant.

A steady periodic wave train is produced by this
model for 8 > 0.32, in the cases when only one retained
wavenumber has nonnegligible growth rate. Figure 8
displays instantaneous pictures of upper-layer eddy
streamfunction for 8 = 0.31, 0.30, 0.27, 0.24, 0.22,
and 0.20. For 8 = 0.31, a broad packet has emerged,
which propagates steadily with constant amplitude. For
B8 = 0.3, the width of the packet decreases, but the
amplitude remains steady. For 8 = 0.27 and 0.24, the
width and amplitude of the packet oscillate periodi-
cally. In Figs. 8c and 8d the flow is shown at a time at
which the width of the packet is a minimum; the max-
imum width of the packet is similar to that in Fig. 8b.
As 8 is reduced further, the packet splits into two: when
B8 = 0.22 (Fig. 8e), there is a hint of separation, while
two distinct wave packets form for 8 = 0.20. The so-
lution for 8 = 0.20 is chaotic in time.

To examine the time dependence of the amplitude
and width of the packets more systematically, these
quantities need to be defined objectively. The envelope
of the packet is defined by “demodulating” the spatial
structure of the streamfunction (in the upper layer, at
the center of the channel) at each instant of time. De-
modulation is an algorithm that separates the modu-
lating envelope from the carrier wave (e.g., see Bloom-
field 1976). It requires the specification of the carrier
wavelength, but our results are not sensitive to its pre-
cise value. The maximum amplitude of the packet, 4,
is set equal to the maximum value of the envelope
function. The width of the packet, W, is then calculated
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TABLE 1. Linear growth rates, w; (X1072), of the most unstable mode for x = 0.05 in the low-resolution model.

k

B 0.675 0.700 0.725 0.750 0.775 0.800 0.825 0.850 0.875 0.900
0.30 0.65 1.56 2.28 2.79 3.07 3.13 2.98 2.59 1.95 1.02
0.31 0.13 1.05 1.80 2.34 2.66 2.76 2.64 2.27 1.65 0.73
0.32 0.53 1.31 1.89 2.25 2.38 2.28 1.94 1.34 0.42
0.33 0.03 0.82 1.43 1.82 1.99 1.92 1.60 1.01 0.09
0.34 0.32 0.96 1.39 1.58 1.54 1.25 0.67
0.35 0.49 0.94 1.17 1.16 0.88 0.32
0.36 0.01 0.49 0.74 0.76 0.51
0.37 0.03 0.31 0.35 0.12

by identifying the two locations where the amplitude
of the envelope is half of 4.

Figs. 9a—c show A as a function of W for § = 0.28,
0.24, and 0.23, with the same value of k3, (0.05). Both
A and W are essentially periodic in time, the small
scatter in the figures resulting from the demodulating
algorithm. For 8 = 0.28, there is a clear negative cor-
relation between 4 and W. However, W takes on dif-
ferent values depending on whether A is increasing or
decreasing, resulting in a loop in A-W space. When 3
= (.24, this loop opens up further. When g is reduced
to 0.23, the loop is broken as A4 increases (near A
= 2.7), signaling the start of the breakup of the single
packet.

The nonlinear Schrédinger equation (NLS hereafter)
has been used to describe coherent wave packets in
many different fields, ranging from solid state physics
to fluid mechanics (Whitham 1974). A coherent,
steadily propagating wave packet is one of the exact
solutions of the NLS equation. This solution states that
the amplitude and width of the packet are inversely
proportional to each other, while both the amplitude
and width are independent of the velocity of the packet,
the latter being equal to the group velocity determined
by the underlying linear dispersion relation.

The negative temporal correlation between 4 and
W in Fig. 9 suggests that the NLS equation may mimic
some of the dynamical balances maintaining the pack-
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FI1G. 8. Snapshots of upper-layer eddy streamfunction from the low-resolution QG model for 8§ = (a) 0.31, (b) 0.30, (c) 0.27,
(d) 0.24, (e) 0.22, and (f) 0.2, with «,, = 0.05. Contour intervals are (a) 0.4, (b) 0.5, (¢) 0.8, (d) 1.0, (e) 1.0, and (f) 1.0.
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ets. We have also estimated the speed of the packets
and find no correlation between this speed and either
Aor W,

Instead of increasing the supercriticality, one can
also obtain multiple wave packets by increasing the
channel length. We choose the 8 = 0.30 case (see Fig.
8b) of the low-resolution model as a control run. When
the channel length is doubled (by halving the funda-
mental wavenumber and doubling the number of
waves, so that the length of the channel L is 40w, main-
taining the same zonal resolution ), two wave packets
emerge. When the channel length is quadrupled (L
= 80w), five packets emerge. Figures 10a and 10b dis-
play snapshots of the upper-layer streamfunction from
the low-resolution model in these unrealistically long
channels. These packets propagate without changing
their shape and amplitude. For L = 407 (see Fig. 10a)
both the width of the packet and the wavenumber of
the carrier waves (k = 0.8) are essentially identical to
those for L = 20x (see Fig. 8b). The spectrum of the
upper-layer eddy streamfunction for L = 40w, shown
in Fig. 11a, indicates that there are two dominant zonal
wavenumbers, 0.8 and 0.7.

For L = 80r, the width of packet seems to be slightly
narrower than for L = 207 and 40«. Figure 11b shows
the zonal wavenumber spectrum of the eddy stream-
function for the L = 80x case. The dominant zonal
wavenumbers are 0.7 and 0.825. The latter is not re-
solved for the shorter channels, but it is close to k = 0.8,
giving packets whose size is comparable with that in
the shorter channels. Note that the zonal wavenumbers
between 0.725 to 0.8 have negligible energy. In order
to examine whether this behavior depends on the initial
conditions, we have integrated the model with the am-
plitude of the initial disturbances with zonal wave-
£ numbers from 0.725 to 0.8, an order of magnitude
P SNPGRS H T SEENT DRSS R larger than that of the other zonal wavenumbers. The

22 8
energy of these zonal wavenumbers was found to decay
2oy —————————— to zero after a long transient stage.

The packet structure has also been examined in a
. few selected integrations with the medium-resolution
] model, once again with x4 = 0.05. For the standard
i channel length of 20, one packet emerges for 8 = 0.34
and 0.30, and remains very coherent, even though the
amplitude and width of the packet evolve in a much
more chaotic manner than in the low-resolution model.
Plots similar to those in Fig. 9 show no clear patterns,
although there still could be relationships between A
and W discoverable by other means. (For 8 = 0.34,
two branches of solutions exist in this medium-reso-
lution model, as By = 0.346; we refer here to the upper
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FiG. 10. Snapshots of upper-tayer eddy streamfunction from the
low-resolution QG model for 8 = 0.3 and xp = 0.05, with channel
length of (a) 40= and (b) 80=. Contour interval is 0.5.

branch.) The splitting appears to take place near 3
= (.25, at a larger value of 8 than in the low-resolution
model.

This medium-resolution model has also been inte-
grated with a channel length of 40w, setting § = 0.30.
While there is only one packet for L = 20w, there are
three for L = 40«. The energy spectrum still has two
peaks, but they are not as sharp as in the lower-reso-
lution model. The packets at this point of parameter
space are not sensitive to the zonal quantization, but
there are other points, particularly within the lower
branch of solution, near the linear stability boundary,
where there does appear to be some sensitivity.

6. The internal structure of the packet

These baroclinic wave packets have an intriguing
internal structure that is related to the interaction be-
tween the packet and the “mean” flow. The “mean”
is defined here as an average over the fast phase vari-
ations. Figure 12 shows snapshots of the potential vor-
ticity in both layers together with the upper-layer eddy
streamfunction for 8 = 0.3 and x,, = 0.05. These results
are from the high-resolution model. The medium-res-
olution results are similar but less well defined. The
eddy streamfunction (Fig. 12c) shows that the packet
is located at the center of the domain. The correspond-
ing Hovmoller diagram (Fig. 13) of the eddy stream-
function at the central latitude clearly shows that the
wave packet remains coherent for long times, The up-
per-layer potential vorticity field (Fig. 12a), however,
shows that wave breaking is occurring and mainly on
the upstream side of the packet. In the lower layer,
potential vorticity mixing occurs at the center of the
jet with more vigorous mixing occurring near the up-
stream side of the packet once again. New waves are
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developing on the eastern side of the packet; on the
western side, wave breaking is dominant. This structure
of the baroclinic waves within the packet closely re-
sembles that seen in various stages in the life cycles of
baroclinic waves (Randel and Stanford 1985; Simmons
and Hoskins 1978; Feldstein and Held 1989). Similar
structure is seen at other parameter settings.

The resemblance between the spatial structure of
the eddies in the packet and the life cycles of baroclinic
waves as a function of time suggests that the mainte-
nance of the wave packet might be related to the mech-
anism that controls modal baroclinic wave life cycles.

We compare the packet structure with the fime evo-
lution of the eddy statistics and mean flow during
modal development. For this purpose, we consider a
model with a single zonal wavenumber. A medium res-
olution model is utilized, since its solutions are qual-
itatively similar to those of the high-resolution model,
yet it is more efficient to integrate. We choose 8 = 0.24
and «,, = 0.2. At this parameter setting, the flow is
weakly unstable and both lower- and upper-branch so-
lution exist. We focus on the lower branch here, since
it produces a simpler life cycle in the one-wave model.
We chose k = (.72 once again because the life cycles
of the unstable baroclinic waves for this value of k are
relatively simple. The flow is very weakly unstable and
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FI1G. 11. The upper-layer eddy streamfunction squared as a function
of zonal wavenumber from the low-resolution QG model for 8 = 0.3
and &y = 0.05 with channel length of (a) 407 and (b) 80x.
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eddy amplitudes are very small at this parameter set-
ting. .

Figures 14a and 14b show the evolution of the zon-
ally averaged eddy streamfunction variances
and ¥4 as a function of time for this one-wave model.
While the wave grows, the structure of the wave in
both layers deviates a little from its linear normal mode
structure. During the decay stage, however, the upper-
layer streamfunction changes its structure significantly,
and the wave amplitudes near the sides of the jet in-
crease. The evolution of du; /9t and du, /At is illustrated
in Figs. 14c and 14d, respectively; du, /3t is largest at
the center of the jet, while du, /dr is largest at the jet
margins, near the linear critical latitudes.

The zonal mean flow in this model evolves according
to the equation:

% =g, + v] — 6 kmity, i=1,2 (7.2)
and

8 fu —u, _ 62v2,T_ . Uy — U\ U . (7b)
at\ 2 ay 2 2
Here, the overbar refers to the zonal mean, the prime
to the deviation from the zonal mean, and ;/ (v{

= —-v])isthe “residual” circulation (Edmon et al. 1980).
An equation for v7 can be obtained from (7) by elim-
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inating the time tendencies. The small direct effect of
diffusion on the mean flow has been neglected in (7).
The evolution of the zonally averaged potential vor-
ticity fluxes in both layers is shown in Figs. 14e and
14f, respectively. The structure of v ¢’ corresponds
well to the decelerating region of #; at the sides of the
jet (compare Figs. 14c and 14e). Near the end of the
life cycles, we find that both the thermal forcing and
surface friction are essential in restoring the vertical
shear as the disturbance decays, allowing the next dis-
turbance to grow.

This life cycle for a single zonal harmonic is now
compared with the structure of waves within a coherent
packet, using the medium-resolution multiwave model
with 20 zonal wavenumbers (from 0.1 to 2.0). The
model parameters are identical with those in the one-
wave model discussed above. Once again, we find a
remarkably coherent wave packet for this parameter
setting. _

In order to determine the location of the packet, we
perform the following procedure. For each model day,
the streamfunction is demodulated so that the location
where the maximum amplitude of the packet occurs
can be identified. Once this location is known, the co-
ordinate system is translated in such a way that the
maximum amplitude of the packet appears at the mid-
dle of the domain. In the above process, it is assumed
that the wavenumber of the carrier wave is the same
as the dominant zonal wavenumber of the stream-
function. Once the packet has been located, we can
fast phase average by averaging in time in this moving
reference frame.

TIME  (\/Ug)

LONGITUDE

FiG. 13. A Hovmoller diagram of the upper-layer eddy stream-
function at the center of the channel in the high-resolution QG model
for 8 = 0.3 and «3, = 0.05. Contour interval is 1.0.
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Figures 15a and 15b show the eddy streamfunction
amplitude in the upper and lower layers, { (X))} and
{¥3(X)}, respectively. The brackets refer to averages
over the fast phase variations. In the upper layer, one
clearly sees the asymmetry of the structure of the
streamfunction between the upstream and downstream
fringe of the packet. There is a remarkable similarity
between the temporal evolution of y/? (in Figs. 15a
and 15b) and the spatial structure of {¢?(X)}: the
“older” waves are found at the western edge of the
packet, because the group velocity is greater than the
phase velocity. In both cases, the structure of the
streamfunction in the upper layer changes as the wave
decays, but in the lower layer the streamfunction struc-
ture is essentially unchanged. The evolution of a wave
with increasing time in the one-wave model is quali-
tatively similar to that with decreasing X in the packet.

In Figs. 15¢c and 15d, the spatial structure of — { du, /
dX} and —{du,/3X} are shown, respectively. The
qualitative structures closely resemble their counter-
parts du; (¢)/ 9t in the life cycle. The structure of — { du; /
4X } in both layers is slightly asymmetric about the

center of the jet. This is because the averaging over
phase is not perfect. The eddy zonal wind is antisym-
metric about the jet center; if the scale of the eddy is
not sufficiently small, the fast phase average is unable
to completely remove this asymmetric structure.

The fast phase-averaged eddy potential vorticity
fluxes in both layers are shown in Figs. 15¢ and 15f.
Once again, the structure of {v} g} } corresponds to
the region of negative —{du,/0X } at the sides of the
jet. In the lower layer, the positive — {du,/dX } at the
center of the channel is due to forcing by {v3 g2 }. The
structure of {v; ¢ } in each layer closely resembles
the evolution of its temporal counterpart (see Figs. 14e
and 14f).

These results encourage us to replace du;(¢)/dt in
(7) with —C,{du; /X } in a frame of reference moving
with the packet, continuing to ignore all x derivatives
of eddy statistics. Consistently {v7} at each longitude
is computed just as in the zonally symmetric case. The
resulting balance is fairly close but not perfect due to
the assumption of the scale of the packet being much
larger than the scale of the eddies.
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We find that 1) at the center of the jet { u, } increases
toward the west (i.e., upstream) due to forcing by
{v¥g>} and 2) at the sides of the jet {u; } decreases
toward the west because of {vl qr } and, secondarily,
the dlsmpatlon whereas { u, } decreases toward the west
due to {v]7}. Near the upstream end both thermal
forcing and surface damping restore the vertical shear
so that waves can begin to grow farther upstream. This
wave growth becomes the downstream fringe of the
next wave packet.

We have also applied this analysis method to the
results of a more realistic model, the idealized GCM
that was briefly described in section 3.

Figures 16a-e show the fast phase-averaged variance
of the meridional wind ({v*?}50s) and eddy relative
vorticity flux ({v*{* }205) at 205 mb, the heat fluxes
at 205 ( { v*T*}50s5),and at 830 mb ({v*T* }830) and
the precipitation. The location of the packet is repre-
sented by the maximum of the {v*2},9s field shown
in Fig. 16a. We have examined packets at every level
of the model and find that the vertical structure of the
packet as measured by {v*?} is nearly barotropic
throughout the troposphere.

The maximum poleward heat fluxes are vertically
tilted to the west (compare Figs. 16¢ with 16d). The
maximum {v*{* },45 is located about 30 degrees to
the west of the packet center so that it lies slightly to
the west and equatorward of the maximum poleward
heat flux at 830 mb.

Precipitation also exhibits a packetlike structure (see
Fig. 16e). Most of the precipitation is concentrated in
a relatively small region on the equatorward and west-
ern side of the packet. The concentration of the pre-
cipitation equatorward of the packet is expected since
most of the precipitation in midlatitudes occurs along
fronts that stretch equatorward from the center of the
cyclones. Figure 16e implies that the precipitation starts
to occur at the mature stage and persists during the
decay stage of the eddies in the packets.

7. Concluding remarks

The observations from the SH indicate that the
summer season, with its weaker baroclinicity, exhibits
coherent packets that are very similar to those in the
idealized models. In the two-level PE model, we sys-
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tematically varied the temperature gradient between
the pole and the equator to examine the effect of the
supercriticality on the behavior of the baroclinic wave
packet. The packets become more robust as the su-
percriticality of the flow is reduced. Qualitatively sim-
ilar results are found in the two-layer QG model as
well, in that the wave packets manifest themselves bet-
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ter as the nondimensional 3 is increased, provided that
the flow is unstable enough to support finite-amplitude
waves with more than two different zonal wavenum-
bers.

Using the two-layer QG model, we have shown that
more than one packet can exist in the domain at the
same time. As the length of the channel increases, with
other parameters in the model being fixed, the number
of packets increases in a systematic way.

While this work is not described in this paper, we
have tried to obtain similar results in a simpler QG
model with uniform vertical shear across the channel,
rather than with a jetlike structure. In weakly unstable
flows with this simpler model, coherent packets are
found to evolve when two different zonal wavenumbers
have comparable, small, growth rates. However, when
the channel is lengthened, a wavenumber lying between
these two values becomes consistent with the quanti-
zation condition due to the zonal periodicity, and this
wavenumber has larger growth rate. The result is a si-
nusoidal, unmodulated wave train once again. The de-
pendence of the formation of wave packets on zonal
wavenumber quantization is also found in weakly un-
stable flows with a jetlike structure in the lower branch
of solution near the linear stability boundary. In con-
trast, in moderately supercritical flow, the packet is
much more coherent and clearly has a scale that is
independent of the zonal quantization in both jet and
uniform shear cases. However, the region in parameter
space within which the flow is sensitive to quantization
appears to be larger in the uniform shear case than in
the case of an unstable jet. Also, the packets in the
uniform shear case do not show any east-west asym-
metric structure.

In a relatively weakly supercritical and diffusive flow,
where the solution exhibits a periodic oscillation, there
is a clear negative correlation between the amplitude
and the half-width of the packet. This behavior is con-
sistent with expectations based on the nonlinear
Schrédinger equation (NLS). As in the solution of the
NLS equation, the velocity of the packet appears to be
independent of the width and amplitude of the packet.
A looplike structure is observed in the scatter diagram
between the amplitude and the half-width of the packet.
However, at higher resolution and weaker diffusion,
the flow becomes chaotic, and the pronounced negative
correlation disappears, although the packet often re-
mains remarkably coherent.

We have argued that the structure of the baroclinic
waves in the packet is analogous to life cycles of un-
stable baroclinic waves as a function of time. Analysis
of the weakly nonlinear wave packet in the two-layer
QG model shows that the waves grow baroclinically in
the downstream (eastern ) end and decay barotropically
in the upstream (western ) end of the packet. Both dis-
sipation and radiative forcing reestablish the baroclin-
icity of the basic flow at the western end of the packet.
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The barotropic decay at the upstream end of the packet
is most clearly seen in a more strongly nonlinear flow
in a high-resolution model, where the potential vorticity
field indicates that wave breaking occurs preferentially
on the upstream side of the packet. A composite anal-
ysis of the packets in an idealized multilayer GCM is
consistent with this picture of the life cycle of eddies
within the packet.

The eddy “life cycle” as a function of longitude inside
the packet is so similar to the temporal life cycle of an
unmodulated wave that one is tempted to estimate the
scale of the packet as (C,y — ¢) 7, where Cp, is the eddy
group velocity, ¢ the wave phase speed, and 7 the time
required for the zonally uniform wave train to pass
through its life cycle of baroclinic growth and barotro-
pic decay. This estimate does not work quantitatively—
it overestimates the packet length by roughly a factor
of 2 in the cases that we examined. Following a given
high or low inside the packet, it both grows and decays
faster than its counterpart in a uniform wave train.
This is intuitively what one should expect, given that
the growing wave is being fed by energy flux from larger
disturbances upstream, and the decaying eddy is losing
mcere energy than is received from its neighbor (Or-
lanski and Chang 1993). It appears that these packets
have a dynamics distinct from that captured by the
NLS equation. The central fact is that the unmodu-
lated, single zonal wave train possesses a distinct asym-
metric life cycle. A theory for the packet would com-
bine this life cycle with the effect of the zonal divergence
of wave energy or activity in a modulated wave train.

At least in the Southern Hemisphere, these packets
may have some implications for weather forecasting.
Because the packet can remain coherent despite chaotic
internal dynamics, the packet envelope should be more
predictable than the individual weather systems. It will
be of interest to study the eddy “envelope” predict-
ability. It may also be useful to construct the envelope
of the baroclinic eddies on a routine basis by demodu-
lation or comparable methods, for qualitative guidance
as to the occurrence of periods of disturbed or stable
weather.
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